Valorization of the Red Algae Gelidium sesquipedale by Extracting a Broad Spectrum of Minor Compounds Using Green Approaches
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic and Flavonoid Contents of Red Seaweed Extracts
2.2. Profiling of Mycosporines and Mycosporine-like Amino-Acids (MAAs) in Red Seaweed Extracts
2.3. Antioxidant Activity of Red Seaweed Extracts
2.4. Extraction of Phycobiliproteins and Evaluation of Their Antioxidant Capacity
2.5. Anti-Enzymatic Activities of Red Seaweed and Phycobiliproteins Extracts
3. Materials and Methods
3.1. Materials
3.1.1. Algal Biomass
3.1.2. Chemicals
3.2. Extraction Methods
3.2.1. Production of Red Seaweed Extracts
Ultrasound-Assisted Extraction
Conventional Solvent Extraction
3.2.2. Production of Phycobiliproteins Extracts
Serial Extraction
Ultrasound-Assisted Extraction and Combination with Maceration
3.3. Determination of Total Phenolic Content (TPC)
3.4. Determination Total Flavonoid Content (TFC)
3.5. Identification and Quantification of Mycosporines and MAAs
3.5.1. Chromatographic Conditions
3.5.2. Mycosporines and MAAs Profiling
3.5.3. Quantitative Analysis of MAAs
3.6. Spectrophotometric Determination of Phycobiliproteins
3.7. Antioxidant Capacity Analysis
3.7.1. DPPH Radical-Scavenging Assay
3.7.2. Ferric Reducing Antioxidant Power (FRAP) Assay
3.8. Anti-Enzymatic Activities
3.8.1. Acetylcholinesterase (AChE) Inhibition Assay
3.8.2. Elastase Inhibition Assay
3.8.3. Tyrosinase Inhibition Assay
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rengasamy, K.R.; Mahomoodally, M.F.; Aumeeruddy, M.Z.; Zengin, G.; Xiao, J.; Kim, D.H. Bioactive Compounds in Seaweeds: An Overview of Their Biological Properties and Safety. Food Chem. Toxicol. 2020, 135, 111013. [Google Scholar] [CrossRef]
- Ma, R.; Wang, B.; Chua, E.T.; Zhao, X.; Lu, K.; Ho, S.-H.; Shi, X.; Liu, L.; Xie, Y.; Lu, Y.; et al. Comprehensive Utilization of Marine Microalgae for Enhanced Co-Production of Multiple Compounds. Mar. Drugs 2020, 18, 467. [Google Scholar] [CrossRef]
- Torres, M.D.; Flórez-Fernández, N.; Domínguez, H. Integral Utilization of Red Seaweed for Bioactive Production. Mar. Drugs 2019, 17, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrera-Lorenzo, N.; Fuente, E.; Suárez-Ruiz, I.; Gil, R.R.; Ruiz, B. Pyrolysis Characteristics of a Macroalgae Solid Waste Generated by the Industrial Production of Agar–Agar. J. Anal. Appl. Pyrolysis 2014, 105, 209–216. [Google Scholar] [CrossRef]
- Herrero, M.; Sánchez-Camargo, A.d.P.; Cifuentes, A.; Ibáñez, E. Plants, Seaweeds, Microalgae and Food by-Products as Natural Sources of Functional Ingredients Obtained Using Pressurized Liquid Extraction and Supercritical Fluid Extraction. TrAC Trends Anal. Chem. 2015, 71, 26–38. [Google Scholar] [CrossRef]
- Gallego, R.; Bueno, M.; Herrero, M. Sub- and Supercritical Fluid Extraction of Bioactive Compounds from Plants, Food-by-Products, Seaweeds and Microalgae—An Update. TrAC Trends Anal. Chem. 2019, 116, 198–213. [Google Scholar] [CrossRef]
- European Commission Report on the Blue Growth Strategy: Towards More Sustainable Growth and Jobs in the Blue Economy; European Union: Brussels, Belgium, 2017.
- Carrasco-Reinado, R.; Escobar, A.; Carrera, C.; Guarnizo, P.; Vallejo, R.A.; Fernández-Acero, F.J. Valorization of Microalgae Biomass as a Potential Source of High-Value Sugars and Polyalcohols. LWT 2019, 114, 108385. [Google Scholar] [CrossRef]
- Pérez, M.J.; Falqué, E.; Domínguez, H. Antimicrobial Action of Compounds from Marine Seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef] [Green Version]
- Grina, F.; Ullah, Z.; Kaplaner, E.; Moujahid, A.; Eddoha, R.; Nasser, B.; Terzioğlu, P.; Yilmaz, M.A.; Ertaş, A.; Öztürk, M.; et al. In Vitro Enzyme Inhibitory Properties, Antioxidant Activities, and Phytochemical Fingerprints of Five Moroccan Seaweeds. South Afr. J. Bot. 2020, 128, 152–160. [Google Scholar] [CrossRef]
- Grozdanic, N.; Stanojkovic, T.P.; Kljajic, Z.; Etahiri, S.; Assobhei, O.; Konic-Ristic, A.; Srdic-Rajic, T.; Kardum, N.; Backovic, S. 105 In Vitro Evaluation of Antioxidant and Antitumoral Activities of Marine Algae Gelidium Sesquipedale and Fucus Spiralis. Eur. J. Cancer 2012, 48, S26. [Google Scholar] [CrossRef]
- Lebbar, S.; Fanuel, M.; Le Gall, S.; Falourd, X.; Ropartz, D.; Bressollier, P.; Gloaguen, V.; Faugeron-Girard, C. Agar Extraction By-Products from Gelidium Sesquipedale as a Source of Glycerol-Galactosides. Molecules 2018, 23, 3364. [Google Scholar] [CrossRef] [Green Version]
- Matos, J.; Gomes, A.; Cardoso, C.; Afonso, C.; Campos, A.M.; Gomes, R.; Falé, P.; Delgado, I.; Coelho, I.; Castanheira, I.; et al. Commercial Red Seaweed in Portugal (Gelidium Sesquipedale and Pterocladiella Capillacea, Florideophyceae): Going beyond a Single-Purpose Product Approach by Valorizing Bioactivity. Thalassas 2020, 36, 213–224. [Google Scholar] [CrossRef]
- Álvarez-Viñas, M.; Flórez-Fernández, N.; Torres, M.D.; Domínguez, H. Successful Approaches for a Red Seaweed Biorefinery. Mar. Drugs 2019, 17, 620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parailloux, M.; Godin, S.; Fernandes, S.C.M.; Lobinski, R. Untargeted Analysis for Mycosporines and Mycosporine-Like Amino Acids by Hydrophilic Interaction Liquid Chromatography (HILIC)—Electrospray Orbitrap MS2/MS3. Antioxidants 2020, 9, 1185. [Google Scholar] [CrossRef]
- Trigueros, E.; Sanz, M.T.; Alonso-Riaño, P.; Beltrán, S.; Ramos, C.; Melgosa, R. Recovery of the Protein Fraction with High Antioxidant Activity from Red Seaweed Industrial Solid Residue after Agar Extraction by Subcritical Water Treatment. J. Appl. Phycol. 2021, 33, 1181–1194. [Google Scholar] [CrossRef]
- Castejón, N.; Luna, P.; Señoráns, F.J. Alternative Oil Extraction Methods from Echium Plantagineum L. Seeds Using Advanced Techniques and Green Solvents. Food Chem. 2018, 244, 75–82. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A Clean, Green Extraction Technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Synytsya, A.; Čopíková, J.; Kim, W.J.; Park, Y.I. Cell Wall Polysaccharides of Marine Algae. In Springer Handbook of Marine Biotechnology; Kim, S.-K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 543–590. ISBN 978-3-642-53971-8. [Google Scholar]
- Demuez, M.; Mahdy, A.; Tomás-Pejó, E.; González-Fernández, C.; Ballesteros, M. Enzymatic Cell Disruption of Microalgae Biomass in Biorefinery Processes. Biotechnol. Bioeng. 2015, 112, 1955–1966. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Ummat, V.; Tiwari, B.; Rajauria, G. Exploring Ultrasound, Microwave and Ultrasound–Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae. Mar. Drugs 2020, 18, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.M.; da Silva, G.J.; Pereira, L. Seaweed Phenolics: From Extraction to Applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, Y.; Liu, Y.; Xia, Y.; Tang, T. Analysis of Flavonoids in Portulaca Oleracea L. by UV–Vis Spectrophotometry with Comparative Study on Different Extraction Technologies. Food Anal. Methods 2010, 3, 90–97. [Google Scholar] [CrossRef]
- Singh, J.; Jayaprakasha, G.K.; Patil, B.S. An Optimized Solvent Extraction and Characterization of Unidentified Flavonoid Glucuronide Derivatives from Spinach by UHPLC-HR-QTOF-MS. Talanta 2018, 188, 763–771. [Google Scholar] [CrossRef]
- Mane, S.; Bremner, D.H.; Tziboula-Clarke, A.; Lemos, M.A. Effect of Ultrasound on the Extraction of Total Anthocyanins from Purple Majesty Potato. Ultrason. Sonochem. 2015, 27, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Getachew, A.T.; Jacobsen, C.; Holdt, S.L. Emerging Technologies for the Extraction of Marine Phenolics: Opportunities and Challenges. Mar. Drugs 2020, 18, 389. [Google Scholar] [CrossRef] [PubMed]
- Ummat, V.; Tiwari, B.K.; Jaiswal, A.K.; Condon, K.; Garcia-Vaquero, M.; O’Doherty, J.; O’Donnell, C.; Rajauria, G. Optimisation of Ultrasound Frequency, Extraction Time and Solvent for the Recovery of Polyphenols, Phlorotannins and Associated Antioxidant Activity from Brown Seaweeds. Mar. Drugs 2020, 18, 250. [Google Scholar] [CrossRef] [PubMed]
- Metidji, H.; Dob, T.; Mohamed, T.; Krimat, S.; Ksouri, A.; Nouasri, A. In Vitro Screening of Secondary Metabolites and Evaluation of Antioxidant, Antimicrobial and Cytotoxic Properties of Gelidium Sesquipedale Thuret et Bornet Red Seaweed from Algeria. J. Mater. Environ. Sci. 2015, 6, 3184–3196. [Google Scholar]
- Xu, P.; Tan, H.; Jin, W.; Li, Y.; Santhoshkumar, C.; Li, P.; Liu, W. Antioxidative and Antimicrobial Activities of Intertidal Seaweeds and Possible Effects of Abiotic Factors on These Bioactivities. J. Ocean. Limnol. 2018, 36, 2243–2256. [Google Scholar] [CrossRef]
- de la Coba, F.; Aguilera, J.; Lopez Figueroa, F.; de Gálvez, M.; Herrera-Ceballos, E. Antioxidant Activity of Mycosporine-like Amino Acids Isolated from Three Red Macroalgae and One Marine Lichen. J. Appl. Phycol. 2008, 21, 161–169. [Google Scholar] [CrossRef]
- Nishida, Y.; Kumagai, Y.; Michiba, S.; Yasui, H.; Kishimura, H. Efficient Extraction and Antioxidant Capacity of Mycosporine-Like Amino Acids from Red Alga Dulse Palmaria Palmata in Japan. Mar. Drugs 2020, 18, 502. [Google Scholar] [CrossRef]
- Cardozo, K.; Marques, L.; Carvalho, V.; Carignan, M.; Pinto, E.; Marinho-Soriano, E.; Colepicolo, P. Analyses of Photoprotective Compounds in Red Algae from the Brazilian Coast. Rev. Bras. De Farmacogn. Braz. J. Pharmacogn. 2011, 21, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; McReynolds, C.; Petitpas, A.; Thomas, M.; Fernandes, S.C.M. Marine-Derived Polymeric Materials and Biomimetics: An Overview. Polymers 2020, 12, 1002. [Google Scholar] [CrossRef]
- Fernandes, S.C.M.; Alonso-Varona, A.; Palomares, T.; Zubillaga, V.; Labidi, J.; Bulone, V. Exploiting Mycosporines as Natural Molecular Sunscreens for the Fabrication of UV-Absorbing Green Materials. ACS Appl. Mater. Interfaces 2015, 7, 16558–16564. [Google Scholar] [CrossRef] [PubMed]
- de la Coba, F.; Aguilera, J.; Korbee, N.; de Gálvez, M.V.; Herrera-Ceballos, E.; Álvarez-Gómez, F.; Figueroa, F.L. UVA and UVB Photoprotective Capabilities of Topical Formulations Containing Mycosporine-like Amino Acids (MAAs) through Different Biological Effective Protection Factors (BEPFs). Mar. Drugs 2019, 17, 55. [Google Scholar] [CrossRef] [Green Version]
- Wada, N.; Sakamoto, T.; Matsugo, S. Mycosporine-Like Amino Acids and Their Derivatives as Natural Antioxidants. Antioxidants 2015, 4, 603–646. [Google Scholar] [CrossRef]
- Lee, T.-M.; Shiu, C.-T. Implications of Mycosporine-like Amino Acid and Antioxidant Defenses in UV-B Radiation Tolerance for the Algae Species Ptercladiella Capillacea and Gelidium Amansii. Mar. Environ. Res. 2009, 67, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Chan, P.T.; Matanjun, P.; Yasir, S.M.; Tan, T.S. Antioxidant Activities and Polyphenolics of Various Solvent Extracts of Red Seaweed, Gracilaria Changii. J. Appl. Phycol. 2015, 27, 2377–2386. [Google Scholar] [CrossRef]
- Zakaria, N.A.; Ibrahim, D.; Sulaiman, S.F.; Supardy, A. Assessment of Antioxidant Activity, Total Phenolic Content and in-Vitro Toxicity of Malaysian Red Seaweed, Acanthophora Spicifera. J. Chem. Pharm. Res. 2011, 3, 182–191. [Google Scholar]
- Farasat, M.; Khavari-Nejad, R.-A.; Nabavi, S.M.B.; Namjooyan, F. Antioxidant Activity, Total Phenolics and Flavonoid Contents of Some Edible Green Seaweeds from Northern Coasts of the Persian Gulf. Iran. J. Pharm. Res. IJPR 2014, 13, 163. [Google Scholar]
- Li, W.; Su, H.-N.; Pu, Y.; Chen, J.; Liu, L.-N.; Liu, Q.; Qin, S. Phycobiliproteins: Molecular Structure, Production, Applications, and Prospects. Biotechnol. Adv. 2019, 37, 340–353. [Google Scholar] [CrossRef]
- Kannaujiya, V.K.; Kumar, D.; Pathak, J.; Sinha, R.P. Chapter 10—Phycobiliproteins and Their Commercial Significance. In Cyanobacteria; Mishra, A.K., Tiwari, D.N., Rai, A.N., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 207–216. ISBN 978-0-12-814667-5. [Google Scholar]
- Pagels, F.; Guedes, A.C.; Amaro, H.M.; Kijjoa, A.; Vasconcelos, V. Phycobiliproteins from Cyanobacteria: Chemistry and Biotechnological Applications. Biotechnol. Adv. 2019, 37, 422–443. [Google Scholar] [CrossRef]
- Mittal, R.; Tavanandi, H.A.; Mantri, V.A.; Raghavarao, K.S.M.S. Ultrasound Assisted Methods for Enhanced Extraction of Phycobiliproteins from Marine Macro-Algae, Gelidium Pusillum (Rhodophyta). Ultrason. Sonochem. 2017, 38, 92–103. [Google Scholar] [CrossRef]
- Sharma, R.; Bhunia, B.; Mondal, A.; Kanti Bandyopadhyay, T.; Devi, I.; Oinam, G.; Prasanna, R.; Abraham, G.; Nath Tiwari, O. Statistical Optimization of Process Parameters for Improvement of Phycobiliproteins (PBPs) Yield Using Ultrasound-Assisted Extraction and Its Kinetic Study. Ultrason. Sonochem. 2020, 60, 104762. [Google Scholar] [CrossRef]
- Sukwong, P.; Sunwoo, I.Y.; Nguyen, T.H.; Jeong, G.-T.; Kim, S.-K. R-Phycoerythrin, R-Phycocyanin and ABE Production from Gelidium Amansii by Clostridium Acetobutylicum. Process Biochem. 2019, 81, 139–147. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Kettle, C.; Morton, D.W. A Molecular Approach in Drug Development for Alzheimer’s Disease. Biomed. Pharmacother. 2018, 106, 553–565. [Google Scholar] [CrossRef]
- Moodie, K.L.W.; Sepčić, K.; Turk, T.; Frangež, R.; Svenson, J. Natural Cholinesterase Inhibitors from Marine Organisms. Nat. Prod. Rep. 2019, 36, 1053–1092. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin Whitening Agents: Medicinal Chemistry Perspective of Tyrosinase Inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F. Screening of a Hundred Plant Extracts as Tyrosinase and Elastase Inhibitors, Two Enzymatic Targets of Cosmetic Interest. Ind. Crop. Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- Oumaskour, K.; Boujaber, N.; Etahiri, S.; Assobhei, O. Anti-Inflammatory and Antimicrobial Activities of Twenty-Tree Marine Red Algae from the Coast of Sidi Bouzid (El Jadida-Morocco). Int. J. Pharm. Pharm. Sci. 2013, 5, 145–149. [Google Scholar]
- Matanjun, P.; Mohamed, S.; Mustapha, N.M.; Muhammad, K.; Ming, C.H. Antioxidant Activities and Phenolics Content of Eight Species of Seaweeds from North Borneo. J. Appl. Phycol. 2008, 20, 367. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D.A.; Barrow, C.J. A Simple 96-Well Microplate Method for Estimation of Total Polyphenol Content in Seaweeds. J. Appl. Phycol. 2006, 18, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.-J.; Zhang, W.-W.; Li, X.-M.; Wang, B.-G. Evaluation of Antioxidant Property of Extract and Fractions Obtained from a Red Alga, Polysiphonia Urceolata. Food Chem. 2006, 95, 37–43. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Neto, R.T.; Marçal, C.; Queirós, A.S.; Abreu, H.; Silva, A.M.S.; Cardoso, S.M. Screening of Ulva Rigida, Gracilaria Sp., Fucus Vesiculosus and Saccharina Latissima as Functional Ingredients. Int. J. Mol. Sci. 2018, 19, 2987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Eun Lee, K.; Bharadwaj, S.; Yadava, U.; Gu Kang, S. Evaluation of Caffeine as Inhibitor against Collagenase, Elastase and Tyrosinase Using in Silico and in Vitro Approach. J. Enzym. Inhib. Med. Chem. 2019, 34, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Liyanaarachchi, G.D.; Samarasekera, J.K.R.R.; Mahanama, K.R.R.; Hemalal, K.D.P. Tyrosinase, Elastase, Hyaluronidase, Inhibitory and Antioxidant Activity of Sri Lankan Medicinal Plants for Novel Cosmeceuticals. Ind. Crop. Prod. 2018, 111, 597–605. [Google Scholar] [CrossRef]
Area Max (106) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Traditional | Ultrasound-Assisted Extraction (UAE) | |||||||||||||
Name | ISF 1 | Formula | Mass Error (ppm) | Mmi 2 (Da) | [M + H]+ (m/z) | RT [min] | CFI 3 (/8) | FISh Score 4 (%) | Fragment Ions 5 (MS²) | RT 15 min | 40 °C 15 min | RT 30 min | 40 °C 30 min | |
Asterina-330 | C12 H20 O6 N2 | −N.11 | 288.1318 | 289.1390 | 10.83 | 8 | 40 | 274.1157; 230.1260; 212.1155; 186.0998 | 391 ± 78 | 318 ± 62 | 230 ± 14 | 218 ± 21 | 62.3 ± 46 | |
Asterina-330 | [(M + H)—(CH3)] | C11 H17 O6 N2 | −N.7 | 273.1087 | 274.1159 | 10.83 | 8 | - | 230.1260; 212.1155; 186.0998 | 7.4 ± 0.7 | 4.9 ± 0.5 | 5.23 ± 0.5 | 4.61 ± 0.5 | 2.42 ± 0.2 |
Aplysiapalythine A | C13 H22 O6 N2 | 0.35 | 302.1479 | 303.1550 | 9.76 | 8 | 50 | 288.1316; 244.1416; 186.0998 | 1.22 ± 0.3 | 2.33 ± 0.03 | 2.71 ± 0.8 | 1.94 ± 0.03 | 0.9 ± 0.08 | |
Porphyra-334 | C14 H22 O8 N2 | −0.15 | 346.1376 | 347.1446 | 8.73 | 8 | 37 | 303.1187; 288.1316; 244.1417; 227.1026; 209.0920 | 7.25 ± 0.9 | 12.4 ± 3.3 | 7 ± 1 | 8.12 ± 1.4 | 0.65 ±0.4 | |
Palythine | C10 H16 O5 N2 | −N.78 | 244.1057 | 245.1131 | 10.14 | 8 | 45 | 230.0897; 209.0921; 86.0998 | 176 ± 35 | 131 ± 58 | 75 ± 4.5 | 95.4 ± 5.5 | 0.16 ± 0.02 | |
Aplysiapalythine C | [(M + H)—(CO)] | C10 H18 O4 N2 | 0.21 | 230.1267 | 231.1340 | 10.84/15.05 | 7 | - | 216.1104; 172.0840 | 4.26 ± 2.2 | 2.93 ± 0.9 | 2.57 ± 0.2 | 2.73 ± 0.4 | 2.18 ± 0.3 |
Unknown | C12 H20 O7 N2 | −N.36 | 304.1269* | 305.1342 | 9.13 | 7 | - | 287.1238; 275.1238; 245.1132; 230.0898; 86.0998 | 2.18 ± 0.2 | 1.91 ± 0.2 | 1.03 ± 0.06 | 2.05 ± 0.3 | < 0.01 | |
Aplysiapalythine B | C12 H20 O5 N2 | −N.43 | 272.1371 | 273.1443 | 8.58 | 7 | 55 | 258.1208; 214.1310; 183.1128; 165.1021 | 2.83 ± 0.6 | 1.78 ± 0.01 | 1.73 ± 0.4 | 1.80 ± 0.1 | < 0.01 | |
Shinorine | C13 H20 O8 N2 | −N.05 | 332.1216 | 333.1289 | 9.13 | 5 | 34 | 318.1058; 303.1187; 255.0973; 274.1159; 230.1260; 186.0998 | 25 ± 2.4 | 50 ±16 | 27 ± 0.3 | 33 ± 3 | 0.2 ± 0.01 | |
Aplysiapalythine C | C11 H18 O5 N2 | 0.23 | 258.1216 | 259.1289 | 10.82 | 4 | 48 | 241.1182; 231.1337; 191.0815 | 1.78 ± 0.5 | 1.79 ± 0.13 | 1.79 ± 0.7 | 2.37 ± 0.25 | 1.63 ± 0.2 |
MAAs Content (mg/100 g dw) | |||||
---|---|---|---|---|---|
Extraction Method | Asterina-330 | Porphyra-334 | Palythine | Shinorine | Σ MAAs |
Traditional method | 832.4 ± 166.3 a | 37.4 ± 4.6 b | 374.3 ± 74.6 a | 127.9 ± 12.3 b | 1372 ± 253.8 a |
UAE RT 15 min | 676.2 ± 131.7 ab | 63.6 ± 16.8 a | 279.5 ± 123.9 ab | 252.5 ± 82.1 a | 1271 ± 352.9 ab |
UAE RT 30 min | 468.4 ± 44.8 bc | 42.2 ± 7.0 ab | 205.2 ± 11.8 b | 171.0 ± 15.5 a | 886 ± 74.2 b |
UAE 40 °C 15 min | 494.4 ± 30.7 bc | 36.5 ± 5.5 b | 161.6 ± 9.6 c | 139.5 ± 1.5 b | 832 ± 43.9 b |
UAE 40 °C 30 min | 134.7 ± 98.0 d | 3.8 ± 2.0 c | 0.94 ± 0.04 d | 1.31 ± 0.07 c | 144 ± 97.9 c |
Extraction Method | R-PE Content (mg/100 g) | R-PC Content (mg/100 g) | Total Content (mg/100 g) | Extraction Efficiency (%) | DPPH (mg TE/100 g) | FRAP (mg TE/100 g) |
---|---|---|---|---|---|---|
Traditional | ||||||
Serial extraction (5 h) | 97.1 ± 2.4 a | 50.2 ± 1.6 a | 147.3 ± 3.2 a | 100 | 34.9 ± 5.5 d | 13.8 ± 1.4 d |
Ultrasound (UAE) | ||||||
UAE 10 min | 37.5 ± 1.0 d | 17.4 ± 0.7 c | 54.7 ± 1.6 d | 37 | 41.4 ± 3.3 bc | 21.7 ± 0.2 b |
UAE 15 min | 37.6 ± 1.3 d | 16.5 ± 0.5 c | 54.1 ± 2.1 d | 37 | 38.5 ± 2.5 cd | 17.3 ± 1.6 c |
Ultrasound + maceration (Mac) | ||||||
UAE 15 min + Mac 45 min | 48.3 ± 1.5 c | 24.0 ± 1.4 b | 72.4 ± 0.5 c | 49 | 48.9 ± 2.5 a | 23.5 ± 1.1 a |
UAE 15 min + Mac 1 h | 52.4 ± 1.3 b | 25.7 ± 0.5 b | 77.9 ± 1.6 b | 53 | 45.6 ± 2.8 ab | 22.6 ± 0.8 ab |
Samples | AChE Assay IC50 (mg/mL) | Tyrosinase Assay IC50 (mg/mL) | Elastase Assay IC50 (mg/mL) |
---|---|---|---|
Red seaweed extracts (water) | |||
Traditional method | 36.3 ± 3.1 a | NI | NI |
UAE RT 15 min | 56.6 ± 1.5 b | NI | NI |
UAE RT 30 min | 59.0 ± 3.1 b | NI | NI |
UAE 40 °C 15 min | 68.2 ± 0.6 c | NI | NI |
UAE 40 °C 30 min | 76.1 ± 6.2 c | NI | NI |
Phycobiliproteins extracts | |||
Serial extraction (5 h) | > 100 e | > 100 b | > 100 b |
US 15 min + Mac 45 min | 94.3 ± 0.2 d | 86.5 ± 0.5 a | 87.4 ± 0.4 a |
Positive standards | |||
Neostigmine bromide | 0.06 ± 0.01 | NT | NT |
Kojic acid | NT | 0.05 ± 0.01 | NT |
Quercetin | NT | NT | 0.22 ± 0.01 |
Extraction Conditions | Targeted Bioactive Compound and/or Bioactivity Evaluation | ||||||
---|---|---|---|---|---|---|---|
Extraction Approach | Temperature | Time | Solvents | ||||
Ethanol | Ethanol:Water (70:30 v/v) | Ethanol:Water (50:50 v/v) | Water | ||||
Traditional method (n = 3) | RT | 8 h | x | x | x | phenolic compounds, flavonoids, and antioxidant properties | |
RT | 8 h | x | identification and quantification of MAAs and anti-enzymatic activities | ||||
UAE RT 15 min (n = 3) | RT | 15 min | x | x | x | phenolic compounds, flavonoids, and antioxidant properties | |
RT | 15 min | x | identification and quantification of MAAs and anti-enzymatic activities | ||||
UAE RT 30 min (n = 3) | RT | 30 min | x | x | x | phenolic compounds, flavonoids, and antioxidant properties | |
RT | 30 min | x | identification and quantification of MAAs and anti-enzymatic activities | ||||
UAE 40 °C 15 min (n = 3) | 40 °C | 15 min | x | x | x | phenolic compounds, flavonoids, and antioxidant properties | |
40 °C | 15 min | x | identification and quantification of MAAs and anti-enzymatic activities | ||||
UAE 40 °C 30 min (n = 3) | 40 °C | 30 min | x | x | x | phenolic compounds, flavonoids, and antioxidant properties | |
40 °C | 30 min | x | identification and quantification of MAAs and anti-enzymatic activities |
Extraction Conditions | Targeted Bioactive Compound and/or Bioactivity Evaluation | ||||
---|---|---|---|---|---|
Extraction Approach | Maceration | Ultrasound | |||
Temperature | Time | Temperature | Time | ||
Traditional | |||||
Serial extraction (n = 3) | - | - | −4 °C | 5 h | phycobiliproteins, antioxidant properties and anti-enzymatic activities |
Ultrasound (UAE) | |||||
UAE 10 min (n = 3) | RT | 10 min | - | - | phycobiliproteins and antioxidant properties |
UAE 15 min (n = 3) | RT | 15 min | - | - | phycobiliproteins and antioxidant properties |
Ultrasound + maceration (UAE + Mac) | |||||
UAE 15 min + Mac 45 min (n = 3) | RT | 15 min | −4 °C | 45 min | phycobiliproteins, antioxidant properties and anti-enzymatic activities |
UAE 15 min + Mac 1 h (n = 3) | RT | 15 min | −4 °C | 1 h | phycobiliproteins and antioxidant properties |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castejón, N.; Parailloux, M.; Izdebska, A.; Lobinski, R.; Fernandes, S.C.M. Valorization of the Red Algae Gelidium sesquipedale by Extracting a Broad Spectrum of Minor Compounds Using Green Approaches. Mar. Drugs 2021, 19, 574. https://doi.org/10.3390/md19100574
Castejón N, Parailloux M, Izdebska A, Lobinski R, Fernandes SCM. Valorization of the Red Algae Gelidium sesquipedale by Extracting a Broad Spectrum of Minor Compounds Using Green Approaches. Marine Drugs. 2021; 19(10):574. https://doi.org/10.3390/md19100574
Chicago/Turabian StyleCastejón, Natalia, Maroussia Parailloux, Aleksandra Izdebska, Ryszard Lobinski, and Susana C. M. Fernandes. 2021. "Valorization of the Red Algae Gelidium sesquipedale by Extracting a Broad Spectrum of Minor Compounds Using Green Approaches" Marine Drugs 19, no. 10: 574. https://doi.org/10.3390/md19100574
APA StyleCastejón, N., Parailloux, M., Izdebska, A., Lobinski, R., & Fernandes, S. C. M. (2021). Valorization of the Red Algae Gelidium sesquipedale by Extracting a Broad Spectrum of Minor Compounds Using Green Approaches. Marine Drugs, 19(10), 574. https://doi.org/10.3390/md19100574