Chemical Synthesis and NMR Solution Structure of Conotoxin GXIA from Conus geographus
Abstract
:1. Introduction
2. Results and Discussion
2.1. NMR Spectroscopy and Resonance Assignment
2.2. Disulfide Connectivity
2.3. Secondary Hα Shifts
2.4. Backbone Amide Hydrogen Bonds
2.5. Structure Determination
2.6. GXIA Structural Features
2.7. Structural Comparison
2.8. Electrostatic Surface and Proposed Activity as a Voltage Sensor Toxin
2.9. Side Chain Positions
3. Experimental Section
3.1. Peptide Synthesis and Co-Elution
3.2. NMR Spectroscopy
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Armishaw, C.J.; Alewood, P.F. Conotoxins as Research Tools and Drug Leads. Curr. Protein Pept. Sci. 2005, 6, 221–240. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.K.; Stevenson, B.J.; Ownby, J.-P.; Cady, M.T.; Watkins, M.; Olivera, B.M. The Mitochondrial Genome of Conus Textile, Coxi–Coxii Intergenic Sequences and Conoidean Evolution. Mol. Phylogenet. Evol. 2008, 46, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohn, A.J. Piscivorous Gastropods of the Genus Conus. Proc. Natl. Acad. Sci. USA 1956, 42, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohn, A.J. The Ecology of Conus in Hawaii. Ecol. Monogr. 1959, 29, 47–90. [Google Scholar] [CrossRef]
- Olivera, B.M.; Gray, W.R.; Zeikus, R.; McIntosh, J.M.; Varga, J.; Rivier, J.; De Santos, V.; Cruz, L.J. Peptide Neurotoxins from Fish-Hunting Cone Snails. Science 1985, 230, 1338–1343. [Google Scholar] [CrossRef] [PubMed]
- Terlau, H.; Olivera, B.M. Conus Venoms: A Rich Source of Novel Ion Channel-Targeted Peptides. Physiol. Rev. 2004, 84, 41–68. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.A.; Wright, C.E.; Angus, J.A. Actions of Intrathecal Ω-Conotoxins Cvid, Gvia, Mviia, and Morphine in Acute and Neuropathic Pain in the Rat. Eur. J. Pharmacol. 2002, 451, 279–286. [Google Scholar] [CrossRef]
- Endean, R.; Parish, G.; Gyr, P. Pharmacology of the Venom of Conus geographus. Toxicon 1974, 12, 131–138. [Google Scholar] [CrossRef]
- Terlau, H.; Shon, K.-J.; Grilley, M.; Stocker, M.; Stuehmer, W.; Olivera, B.M. Strategy for Rapid Immobilization of Prey by a Fish-Hunting Marine Snail. Nature 1996, 381, 148–151. [Google Scholar] [CrossRef]
- Dutt, M.; Giacomotto, J.; Ragnarsson, L.; Andersson, A.; Brust, A.; Dekan, Z.; Alewood, P.F.; Lewis, R.J. The Alpha1-Adrenoceptor Inhibitor Rho-Tia Facilitates Net Hunting in Piscivorous Conus Tulipa. Sci. Rep. 2019, 9, 17841. [Google Scholar] [CrossRef] [Green Version]
- Olivera, B.M.; McIntosh, J.M.; Curz, L.J.; Luque, F.; Gray, W.R. Purification and Sequence of a Presynaptic Peptide Toxin from Conus geographus Venom. Biochemistry 1984, 23, 5087–5090. [Google Scholar] [CrossRef] [PubMed]
- Olivera, B.M.; Cruz, L.J. Conotoxins, in Retrospect. Toxicon 2001, 39, 7–14. [Google Scholar] [CrossRef]
- Davis, J.; Jones, A.; Lewis, R.J. Remarkable Inter-and Intra-Species Complexity of Conotoxins Revealed by Lc/Ms. Peptides 2009, 30, 1222–1227. [Google Scholar] [CrossRef] [PubMed]
- Kaas, Q.; Westermann, J.C.; Halai, R.; Wang, C.K.; Craik, D.J. Conoserver, a Database for Conopeptide Sequences and Structures. Bioinformatics 2008, 24, 445–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, A.H.; Muttenthaler, M.; Dutertre, S.; Himaya, S.W.A.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Conotoxins: Chemistry and Biology. Chem. Rev. 2019, 119, 11510–11549. [Google Scholar] [CrossRef] [PubMed]
- Schmidtko, A.; Lötsch, J.; Freynhagen, R.; Geisslinger, G. Ziconotide for Treatment of Severe Chronic Pain. Lancet 2010, 375, 1569–1577. [Google Scholar] [CrossRef]
- Dutertre, S.; Jin, A.-H.; Vetter, I.; Hamilton, B.; Sunagar, K.; Lavergne, V.; Dutertre, V.; Fry, B.G.; Antunes, A.; Venter, D.J. Evolution of Separate Predation-and Defence-Evoked Venoms in Carnivorous Cone Snails. Nat. Commun. 2014, 5, 3521–3529. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.-X.; Chen, X.-K.; Zhang, C.; Wang, L.-X.; Duan, K.-L.; He, L.-L.; Cao, Y.; Liu, S.-Y.; Zhong, M.-N.; Ulens, C. A Novel Conotoxin from Conus betulinus, Κ-Btx, Unique in Cysteine Pattern and in Function as a Specific Bk Channel Modulator. J. Biol. Chem. 2003, 278, 12624–12633. [Google Scholar] [CrossRef] [Green Version]
- Kauferstein, S.; Huys, I.; Lamthanh, H.; Stöcklin, R.; Sotto, F.; Menez, A.; Tytgat, J.; Mebs, D. A Novel Conotoxin Inhibiting Vertebrate Voltage-Sensitive Potassium Channels. Toxicon 2003, 42, 43–52. [Google Scholar] [CrossRef]
- Fiedler, B.; Zhang, M.-M.; Buczek, O.; Azam, L.; Bulaj, G.; Norton, R.S.; Olivera, B.M.; Yoshikami, D. Specificity, Affinity and Efficacy of Iota-Conotoxin Rxia, an Agonist of Voltage-Gated Sodium Channels NaV 1.2, 1.6 and 1.7. Biochem. Pharmacol. 2008, 75, 2334–2344. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-Montiel, A.; Bernaldez, J.; Jimenez, S.; Ueberhide, B.; Gonzalez, L.J.; Licea-Navarro, A. Antimycobacterial Activity: A New Pharmacological Target for Conotoxins Found in the First Reported Conotoxin from Conasprella ximenes. Toxins 2018, 10, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buczek, O.; Wei, D.; Babon, J.J.; Yang, X.; Fiedler, B.; Chen, P.; Yoshikami, D.; Olivera, B.M.; Bulaj, G.; Norton, R.S. Structure and Sodium Channel Activity of an Excitatory I1-Superfamily Conotoxin. Biochemistry 2007, 46, 9929–9940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeder, C.I.; Rosengren, K.J. Three-Dimensional Structure Determination of Peptides Using Solution Nuclear Magnetic Resonance Spectroscopy. Methods Mol. Biol. 2020, 2068, 129–162. [Google Scholar] [PubMed]
- Wagner, G.; Wüthrich, K. Sequential Resonance Assignments in Protein 1H Nuclear Magnetic Resonance Spectra: Basic Pancreatic Trypsin Inhibitor. J. Mol. Biol. 1982, 155, 347–366. [Google Scholar] [CrossRef]
- Shen, Y.; Bax, A. Protein Structural Information Derived from NMR Chemical Shift with the Neural Network Program Talos-N. Methods Mol. Biol. 2015, 1260, 17–32. [Google Scholar]
- Rosengren, K.J.; Daly, N.L.; Plan, M.R.; Waine, C.; Craik, D.J. Twists, Knots, and Rings in Proteins Structural Definition of the Cyclotide Framework. J. Biol. Chem. 2003, 278, 8606–8616. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, D.A.; Kaas, Q.; Rosengren, K.J. Prediction of Disulfide Dihedral Angles Using Chemical Shifts. Chem. Sci. 2018, 9, 6548–6556. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Bigam, C.G.; Yao, J.; Abildgaard, F.; Dyson, H.J.; Oldfield, E.; Markley, J.L.; Sykes, B.D. 1H, 13C and 15N Chemical Shift Referencing in Biomolecular NMR. J. Biomol. NMR 1995, 6, 135–140. [Google Scholar] [CrossRef]
- Wishart, D.; Sykes, B.; Richards, F. The Chemical Shift Index: A Fast and Simple Method for the Assignment of Protein Secondary Structure through NMR Spectroscopy. Biochemistry 1992, 31, 1647–1651. [Google Scholar] [CrossRef]
- Andersen, N.H.; Neidigh, J.W.; Harris, S.M.; Lee, G.M.; Liu, Z.; Tong, H. Extracting Information from the Temperature Gradients of Polypeptide NH Chemical Shifts. 1. The Importance of Conformational Averaging. J. Am. Chem. Soc. 1997, 119, 8547–8561. [Google Scholar] [CrossRef]
- Cierpicki, T.; Otlewski, J. Amide Proton Temperature Coefficients as Hydrogen Bond Indicators in Proteins. J. Biomol. NMR 2001, 21, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Wagner, G. NMR Investigations of Protein Structure. Prog. Nucl. Magn. Reson. Spectrosc. 1990, 22, 101–139. [Google Scholar] [CrossRef] [Green Version]
- Güntert, P. Automated NMR Structure Calculation with Cyana. In Protein NMR Techniques; Springer: Berlin/Heidelberg, Germany, 2004; pp. 353–378. [Google Scholar]
- Brünger, A.T.; Adams, P.D.; Clore, G.M.; DeLano, W.L.; Gros, P.; Grosse-Kunstleve, R.W.; Jiang, J.-S.; Kuszewski, J.; Nilges, M.; Pannu, N.S. Crystallography & Nmr System: A New Software Suite for Macromolecular Structure Determination. Acta Crystallogr. Sect. D Biol. Crystallogr. 1998, 54, 905–921. [Google Scholar]
- Koradi, R.; Billeter, M.; Wüthrich, K. Molmol: A Program for Display and Analysis of Macromolecular Structures. J. Mol. Graph. 1996, 14, 51–55. [Google Scholar] [CrossRef]
- Peng, C.; Liu, L.; Shao, X.; Chi, C.; Wang, C. Identification of a Novel Class of Conotoxins Defined as V-Conotoxins with a Unique Cysteine Pattern and Signal Peptide Sequence. Peptides 2008, 29, 985–991. [Google Scholar] [CrossRef]
- Holm, L.; Rosenström, P. Dali Server: Conservation Mapping in 3D. Nucleic Acids Res. 2010, 38, W545–W549. [Google Scholar] [CrossRef]
- Marvin, L.; De, E.; Cosette, P.; Gagnon, J.; Molle, G.; Lange, C. Isolation, Amino Acid Sequence and Functional Assays of Sgtx1. Eur. J. Biochem. 1999, 265, 572–579. [Google Scholar] [CrossRef] [Green Version]
- Ruta, V.; Jiang, Y.; Lee, A.; Chen, J.; MacKinnon, R. Functional Analysis of an Archaebacterial Voltage-Dependent K+ Channel. Nature 2003, 422, 180–185. [Google Scholar] [CrossRef]
- Lee, C.W.; Kim, S.; Roh, S.H.; Endoh, H.; Kodera, Y.; Maeda, T.; Kohno, T.; Wang, J.M.; Swartz, K.J.; Kim, J.I. Solution Structure and Functional Characterization of Sgtx1, a Modifier of Kv2. 1 Channel Gating. Biochemistry 2004, 43, 890–897. [Google Scholar] [CrossRef]
- Jung, H.J.; Lee, J.Y.; Kim, S.H.; Eu, Y.-J.; Shin, S.Y.; Milescu, M.; Swartz, K.J.; Kim, J.I. Solution Structure and Lipid Membrane Partitioning of Vstx1, an Inhibitor of the Kvap Potassium Channel. Biochemistry 2005, 44, 6015–6023. [Google Scholar] [CrossRef]
- Deuis, J.R.; Dekan, Z.; Wingerd, J.S.; Smith, J.J.; Munasinghe, N.R.; Bhola, R.F.; Imalch, W.L.; Herzig, V.; Armstrong, D.A.; Rosengren, K.J.; et al. Pharmacological Characterisation of the Highly Nav1.7 Selective Spider Venome Peptide Pn3a. Sci. Rep. 2017, 7, 40883. [Google Scholar] [CrossRef] [PubMed]
- Ruta, V.; MacKinnon, R. Localization of the Voltage-Sensor Toxin Receptor on Kvap. Biochemistry 2004, 43, 10071–10079. [Google Scholar] [CrossRef] [PubMed]
- Swartz, K.J. Tarantula Toxins Interacting with Voltage Sensors in Potassium Channels. Toxicon 2007, 49, 213–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swartz, K.J.; MacKinnon, R. An Inhibitor of the Kv2. 1 Potassium Channel Isolated from the Venom of a Chilean Tarantula. Neuron 1995, 15, 941–949. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Kim, J.I.; Min, H.J.; Sato, K.; Swartz, K.J.; Shimada, I. Solution Structure of Hanatoxin1, a Gating Modifier of Voltage-Dependent K+ Channels: Common Surface Features of Gating Modifier Toxins. J. Mol. Biol. 2000, 297, 771–780. [Google Scholar] [CrossRef]
- Swartz, K.J.; MacKinnon, R. Hanatoxin Modifies the Gating of a Voltage-Dependent K+ Channel through Multiple Binding Sites. Neuron 1997, 18, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Li-Smerin, Y.; Swartz, K.J. Localization and Molecular Determinants of the Hanatoxin Receptors on the Voltage-Sensing Domains of a K+ Channel. J. Gen. Physiol. 2000, 115, 673–684. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.C.; Wang, J.M.; Swartz, K.J. Interaction between Extracellular Hanatoxin and the Resting Conformation of the Voltage-Sensor Paddle in Kv Channels. Neuron 2003, 40, 527–536. [Google Scholar] [CrossRef] [Green Version]
- Alabi, A.A.; Bahamonde, M.I.; Jung, H.J.; Kim, J.I.; Swartz, K.J. Portability of Paddle Motif Function and Pharmacology in Voltage Sensors. Nature 2007, 450, 370–375. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.M.; Roh, S.H.; Kim, S.; Lee, C.W.; Kim, J.I.; Swartz, K.J. Molecular Surface of Tarantula Toxins Interacting with Voltage Sensors in Kv Channels. J. Gen. Physiol. 2004, 123, 455–467. [Google Scholar] [CrossRef] [Green Version]
- Wee, C.L.; Bemporad, D.; Sands, Z.A.; Gavaghan, D.; Sansom, M.S. Sgtx1, a Kv Channel Gating-Modifier Toxin, Binds to the Interfacial Region of Lipid Bilayers. Biophys. J. 2007, 92, L07–L09. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondal, S.; Vijayan, R.; Shichina, K.; Babu, R.M.; Ramakumar, S. I-Superfamily Conotoxins: Sequence and Structure Analysis. Silico Biol. 2005, 5, 557–571. [Google Scholar]
- Keller, R.L.J. Optimizing the Process of Nuclear Magnetic Resonance Spectrum Analysis and Computer Aided Resonance Assignment. Ph.D. Thesis, Eidgenössische Technische Hochschule ETH Zürich, Zurich, Switzerland, 2005. [Google Scholar]
- Chen, V.B.; Arendall, W.B.; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. Molprobity: All-Atom Structure Validation for Macromolecular Crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 66, 12–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Energies: | |
Overall (kcal/mol) | −1185 ± 20.1 |
Bonds (kcal/mol) | 10.6 ± 0.81 |
Angles (kcal/mol) | 33.6 ± 2.2 |
Improper (kcal/mol) | 13.3 ± 1.7 |
Dihedral (kcal/mol) | 145 ± 1.1 |
Van Der Waal (kcal/mol) | −126.2 ± 3.9 |
NOE (kcal/mol) | 0.013 ± 0.0049 |
cDih (kcal/mol) | 0.32 ± 0.21 |
Electrostatic | −1261 ± 21.8 |
RMS: | |
Bonds (Å) | 0.0100 ± 0.00041 |
Angles (°) | 1.01 ± 0.034 |
Improper (Å) | 1.43 ± 1.1 |
Dihedral (Å) | 41.3 ± 1.6 |
NOE (Å) | 0.0054 ± 0.0011 |
cDih (Å) | 0.20 ± 0.064 |
MolProbity Analysis: | |
Clashscore | 9.43 ± 2.22 |
Poor Rotamers | 0 ± 0 |
Ramachandran Favoured | 88.8 ± 2.5% |
Ramachandran Outliers | 0 ± 0 |
Molprobity Score (% rank) | 2.06 ± 0.14 (72 ± 7.3%) |
Pairwise RMSD: | |
Backbone atoms (Å) | 0.60 ± 0.18 |
Heavy atoms (Å) | 1.07 ± 0.19 |
Experimental data: | |
NOE distance restraints: | |
Sequential (i–j = 1) | 112 |
Medium range (i–j < 5) | 50 |
Long range (i–j ≥ 5) | 99 |
Dihedral restraints: | 41 backbone/21 side chain |
Hydrogen bond restraints: | 34 (for 17 hydrogen bonds) |
NOE violations > 0.2 Å | 0 |
cDih violations > 2.0° | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armstrong, D.A.; Jin, A.-H.; Braga Emidio, N.; Lewis, R.J.; Alewood, P.F.; Rosengren, K.J. Chemical Synthesis and NMR Solution Structure of Conotoxin GXIA from Conus geographus. Mar. Drugs 2021, 19, 60. https://doi.org/10.3390/md19020060
Armstrong DA, Jin A-H, Braga Emidio N, Lewis RJ, Alewood PF, Rosengren KJ. Chemical Synthesis and NMR Solution Structure of Conotoxin GXIA from Conus geographus. Marine Drugs. 2021; 19(2):60. https://doi.org/10.3390/md19020060
Chicago/Turabian StyleArmstrong, David A., Ai-Hua Jin, Nayara Braga Emidio, Richard J. Lewis, Paul F. Alewood, and K. Johan Rosengren. 2021. "Chemical Synthesis and NMR Solution Structure of Conotoxin GXIA from Conus geographus" Marine Drugs 19, no. 2: 60. https://doi.org/10.3390/md19020060
APA StyleArmstrong, D. A., Jin, A. -H., Braga Emidio, N., Lewis, R. J., Alewood, P. F., & Rosengren, K. J. (2021). Chemical Synthesis and NMR Solution Structure of Conotoxin GXIA from Conus geographus. Marine Drugs, 19(2), 60. https://doi.org/10.3390/md19020060