Limited Benefit of Marine Protein Hydrolysate on Physical Function and Strength in Older Adults: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Results
3. Discussion
- -
- Future studies should be performed on a frailer population or on populations with immobilized older adults. The population that is most in need of help with stimulating MPS is composed of people who are immobilized over a period of time, e.g., after injuries or illnesses affecting mobility.
- -
- MPH might have the potential to mitigate loss of muscle function and strength in populations of older adults with lower protein and seafood intake.
- -
- Physical activity should be measured more precisely.
- -
- The large number of tablets was burdensome and might have caused gastrointestinal symptoms in both the intervention and control groups. The number of tablets should be reduced. The use of a soft drink, similar to the supplement used in the feasibility study by Drotningsvik et al. [26], might be a better choice. Alternatively, MPH could be used as an additive in enteral nutrition solutions or soft drink supplements.
4. Materials and Methods
4.1. Recruitment
4.2. Randomisation
4.3. Intervention
4.4. Assessments
4.5. Main Outcome: Short Physical Performance Test (SPPB)
4.6. Secondary Outcome: Grip Strength
4.7. Sample Size and Statistical Power Calculation
4.8. Statistical Analyses
4.9. Ethical Approval and Registration
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Expectation of Lifetime, by Sex and Age 1986–2019. Available online: https://www.ssb.no/en/statbank/table/05375 (accessed on 1 October 2020).
- Phillips, S.M. Nutrition in the elderly: A recommendation for more (evenly distributed) protein? Am. J. Clin. Nutr. 2017, 106, 12–13. [Google Scholar] [CrossRef] [Green Version]
- Breen, L.; Phillips, S.M. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the ‘anabolic resistance’ of ageing. Nutr. Metab. (Lond.) 2011, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Verlaan, S.; Aspray, T.J.; Bauer, J.M.; Cederholm, T.; Hemsworth, J.; Hill, T.R.; McPhee, J.S.; Piasecki, M.; Seal, C.; Sieber, C.C.; et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: A case-control study. Clin. Nutr. 2015, 36, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Wysokiński, A.; Sobów, T.; Kłoszewska, I.; Kostka, T. Mechanisms of the anorexia of aging-a review. Age (Dordr) 2015, 37, 9821. [Google Scholar] [CrossRef]
- Liao, C.D.; Tsauo, J.Y.; Wu, Y.T.; Cheng, C.P.; Chen, H.C.; Huang, Y.C.; Chen, H.C.; Liou, T.H. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2017, 106, 1078–1091. [Google Scholar] [CrossRef] [Green Version]
- Brioche, T.; Pagano, A.F.; Py, G.; Chopard, A. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention. Mol. Asp. Med. 2016, 50, 56–87. [Google Scholar] [CrossRef]
- Galvan, E.; Arentson-Lantz, E.; Lamon, S.; Paddon-Jones, D. Protecting Skeletal Muscle with Protein and Amino Acid during Periods of Disuse. Nutrients 2016, 8, 404. [Google Scholar] [CrossRef] [Green Version]
- Dale, H.F.; Madsen, L.; Lied, G.A. Fish-derived proteins and their potential to improve human health. Nutr. Rev. 2019, 77, 572–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vikoren, L.A.; Nygard, O.K.; Lied, E.; Rostrup, E.; Gudbrandsen, O.A. A randomised study on the effects of fish protein supplement on glucose tolerance, lipids and body composition in overweight adults. Br. J. Nutr. 2013, 109, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Nobile, V.; Duclos, E.; Michelotti, A.; Bizzaro, G.; Negro, M.; Soisson, F. Supplementation with a fish protein hydrolysate (Micromesistius poutassou): Effects on body weight, body composition, and CCK/GLP-1 secretion. Food Nutr. Res. 2016, 60, 29857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lees, M.J.; Carson, B.P. The Potential Role of Fish-Derived Protein Hydrolysates on Metabolic Health, Skeletal Muscle Mass and Function in Ageing. Nutrients 2020, 12, 2434. [Google Scholar] [CrossRef] [PubMed]
- Nygard, L.A.K.; Dahl, L.; Mundal, I.; Saltyte Benth, J.; Rokstad, A.M.M. Protein intake, protein mealtime distribution and seafood consumption in elderly Norwegians: Associations with physical function and strength. Geriatrics 2020, 5, 100. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Perera, S.; Pahor, M.; Katula, J.A.; King, A.C.; Groessl, E.J.; Studenski, S.A. What is a meaningful change in physical performance? Findings from a clinical trial in older adults (the LIFE-P study). J. Nutr. Health Aging 2009, 13, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Bergland, A.; Strand, B.H. Norwegian reference values for the Short Physical Performance Battery (SPPB): The Tromsø Study. BMC Geriatr. 2019, 19, 216. [Google Scholar] [CrossRef] [Green Version]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.J.; Dennison, E.M.; Der, G.; Gale, C.R.; Inskip, H.M.; Jagger, C.; et al. Grip strength across the life course: Normative data from twelve British studies. PLoS ONE 2014, 9, e113637. [Google Scholar] [CrossRef] [Green Version]
- Strand, B.H.; Bergland, A.; Jørgensen, L.; Schirmer, H.; Emaus, N.; Cooper, R. Do More Recent Born Generations of Older Adults Have Stronger Grip? A Comparison of Three Cohorts of 66- to 84-Year-Olds in the Tromsø Study. J. Gerontol. Ser. A 2018, 74, 528–533. [Google Scholar] [CrossRef]
- Koivunen, K.; Sillanpää, E.; Munukka, M.; Portegijs, E.; Rantanen, T. Cohort Differences in Maximal Physical Performance: A Comparison of 75- and 80-Year-Old Men and Women Born 28 Years Apart. J. Gerontol. Ser. A 2020. [Google Scholar] [CrossRef]
- Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity, 5th ed.; Nordic Council of Ministers: Copenhagen, Denmark, 2014; Volume 2014.
- Totland, T.H.; Helsedirektoratet. Norkost 3: En Landsomfattende Kostholdsundersøkelse Blant Menn og Kvinner i Norge i Alderen 18–70 år, 2010–2011; Helsedirektoratet: Oslo, Norway, 2012. [Google Scholar]
- Lundblad, M.W.; Andersen, L.F.; Jacobsen, B.K.; Carlsen, M.H.; Hjartaker, A.; Grimsgaard, S.; Hopstock, L.A. Energy and nutrient intakes in relation to National Nutrition Recommendations in a Norwegian population-based sample: The Tromso Study 2015-16. Food Nutr. Res. 2019, 63. [Google Scholar] [CrossRef]
- Helsedirektoratet. IS-1881: Kostråd for å Fremme Folkehelsen og Forebygge Kroniske Sykdommer; Helsedirektoratet: Oslo, Norway, 2011. [Google Scholar]
- Hämäläinen, P.; Suni, J.; Pasanen, M.; Malmberg, J.; Miilunpalo, S. Changes in physical performance among high-functioning older adults: A 6-year follow-up study. Eur. J. Ageing 2006, 3, 3–14. [Google Scholar] [CrossRef] [Green Version]
- McKendry, J.; Currier, B.S.; Lim, C.; McLeod, J.C.; Thomas, A.C.Q.; Phillips, S.M. Nutritional Supplements to Support Resistance Exercise in Countering the Sarcopenia of Aging. Nutrients 2020, 12, 2057. [Google Scholar] [CrossRef]
- Chatfield, M.D.; Brayne, C.E.; Matthews, F.E. A systematic literature review of attrition between waves in longitudinal studies in the elderly shows a consistent pattern of dropout between differing studies. J. Clin. Epidemiol. 2005, 58, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Drotningsvik, A.; Oterhals, Å.; Flesland, O.; Nygård, O.; Gudbrandsen, O.A. Fish protein supplementation in older nursing home residents: A randomised, double-blind, pilot study. Pilot Feasibility Stud. 2019, 5, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Øverby, N.C.; Frost Andersen, L. Ungkost-2000: Landsomfattende Kostholdsundersøkelse Blant Elever i 4.—og 8. Klasse i Norge; Sosial- og Helsedirektoratet: Oslo, Norway, 2002. [Google Scholar]
- Gulsvik, A.K.; Thelle, D.S.; Mowe, M.; Wyller, T.B. Increased mortality in the slim elderly: A 42 years follow-up study in a general population. Eur. J. Epidemiol. 2009, 24, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Winter, J.E.; MacInnis, R.J.; Wattanapenpaiboon, N.; Nowson, C.A. BMI and all-cause mortality in older adults: A meta-analysis. Am. J. Clin. Nutr. 2014, 99, 875–890. [Google Scholar] [CrossRef] [Green Version]
- Helsedirektoratet. IS-1580: Nasjonale Faglige Retningslinjer for Forebygging og Behandling av Underernæring; Helsedirektoratet: Oslo, Norway, 2010. [Google Scholar]
- Berner, L.A.; Becker, G.; Wise, M.; Doi, J. Characterization of dietary protein among older adults in the United States: Amount, animal sources, and meal patterns. J. Acad. Nutr. Diet. 2013, 113, 809–815. [Google Scholar] [CrossRef]
- Wijnhoven, H.A.H.; Elstgeest, L.E.M.; de Vet, H.C.W.; Nicolaou, M.; Snijder, M.B.; Visser, M. Development and validation of a short food questionnaire to screen for low protein intake in community-dwelling older adults: The Protein Screener 55+ (Pro55+). PLoS ONE 2018, 13, e0196406. [Google Scholar] [CrossRef] [Green Version]
- Dahl, L.; Maeland, C.A.; Bjorkkjaer, T. A short food frequency questionnaire to assess intake of seafood and n-3 supplements: Validation with biomarkers. Nutr. J. 2011, 10, 127. [Google Scholar] [CrossRef] [Green Version]
- Markhus, M.W.; Graff, I.E.; Dahl, L.; Seldal, C.F.; Skotheim, S.; Braarud, H.C.; Stormark, K.M.; Malde, M.K. Establishment of a seafood index to assess the seafood consumption in pregnant women. Food Nutr. Res. 2013, 57, 19272. [Google Scholar] [CrossRef]
- Bergh, S.; Lyshol, H.; Selbæk, G.; Strand, B.H.; Taraldsen, K.; Thingstad, P. Short Physical Performance Battery (SPPB). Available online: https://stolav.no/PublishingImages/Sider/Bevegelsesvansker-og-fall-hos-eldre/SPPB%20Norsk%20versjon%2006.05.13.pdf (accessed on 1 October 2020).
- Freiberger, E.; de Vreede, P.; Schoene, D.; Rydwik, E.; Mueller, V.; Frandin, K.; Hopman-Rock, M. Performance-based physical function in older community-dwelling persons: A systematic review of instruments. Age Ageing 2012, 41, 712–721. [Google Scholar] [CrossRef] [Green Version]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nygard, L.A.K.; Mundal, I.; Dahl, L.; Saltyte Benth, J.; Rokstad, A.M.M. Nutrition and physical performance in older people-effects of marine protein hydrolysates to prevent decline in physical performance: A randomised controlled trial protocol. BMJ Open 2018, 8, e023845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Intervention | Control | |
---|---|---|
Demographic and clinical characteristics | ||
Demographic: Age in years, mean (SD) | 73.4 (8.7) | 72.0 (7.7) |
Weight, kg mean (SD) | 72.2 (13.1) | 78.5 (14.7) |
BMI, kg/m2 mean (SD) | 25.5 (3.8) | 27.7 (4.7) |
Gender, female, n (%) | 29 (67.4) | 28 (65.1) |
Education level college/university, n (%) | 21 (48.8) | 19 (44.2) |
Perform strength exercise weekly, n (%) | 22 (51.2) | 20 (46.5) |
Other physical activities daily, n (%) | 28 (65.1) | 17 (39.5) |
Live alone, n (%) | 16 (37.2) | 14 (32.6) |
Dietary factors | ||
Energy intake, kcal, mean (SD) | 1809 (551) | 1802 (527) |
Energy intake, kcal/kgBW 1, mean (SD) | 26.4 (8.8) | 25.2 (8.8) a |
Protein intake, g/kgBW 1, mean (SD) | 1.1 (0.3) | 1.1 (0.4) a |
Protein intake, g/1000 kcal, mean (SD) | 42.3 (10.4) | 43.5 (10.1) |
Seafood index 2, mean (SD) | 3.3 (1.4) a | 3.4 (1.2) |
Serum 25-hydroxy vitamin D, nmol/L, mean (SD) | 84.2 (31.3) c | 84.1 (31.8) b |
Outcome variables | ||
SPPB 3, total points, mean (SD) | ||
baseline | 10.7(2.3) | 10.4 (2.4) |
6 months | 11.0 (2.1) d | 11.0 (1.6) c |
12 months | 11.4 (1.8) f | 11.1 (1.8) g |
Grip strength, kg, mean (SD) | ||
baseline | 33.0 (11.4) | 33.1 (11.9) |
6 months | 34.2 (12.6) d | 34.1 (10.6) b |
12 months | 37.0 (11.5) f | 33.9 (10.9) g |
Gait speed, m/s, mean (SD) | ||
baseline | 1.1 (0.3) | 1.0 (0.3) |
6 months | 1.0 (0.3) d | 1.0 (0.2) c |
12 months | 1.1 (0.2) f | 1.1 (0.2) g |
Compliance % of tablets taken, 0–6 months (SD) | 83.5 (23.1) | 83.4 (23.8) |
% of tablets taken, 6–12 months (SD) | 92.1 (18.4) | 92.9 (5.8) |
Difficulties swallowing tablets n (%) | 16 (29.7) d | 10 (25.6) c |
Gastrointestinal effects of tablets n (%) | 11 (32.4) e | 15 (37.5) b |
Completing | Drop-Out | p-Value | ||
---|---|---|---|---|
Age in years, (mean ± SD) | 70.5 (6.3) | 75.5 (9.5) | 0.01 2 | |
Female gender, n (%) | 28 (58.3) | 29 (76.3) | 0.08 3 | |
Living alone, n (%) | 12 (25.0) | 18 (47.4) | 0.03 3 | |
Education level college/university, n (%) | 27 (56.3) | 13 (34.2) | 0.04 3 | |
Intervention group, n (%) | 28 (58.3) | 15 (39.5) | 0.08 3 | |
Control group, n (%) | 20 (41.7) | 23 (60.5) | 0.08 3 | |
Nutrition | ||||
Protein intake, g/kgBW 1 | 1.1 (0.4) | 1.1 (0.3) | 0.98 2 | |
Energy intake, kcal/kgBW 1 | 25.9 (10.2) | 25.8 (6.6) | 0.98 2 | |
Seafood intake, index | 3.5 (1.3) | 3.2 (1.2) | 0.38 2 | |
Physical function | ||||
SPPB, points (mean ± SD) | 11.2 (1.5) | 9.7 (3.0) | 0.01 2 | |
Grip strength, kg (mean ± SD) | 35.7 (11.2) | 29.6 (11.3) | 0.01 2 | |
Gait speed, m/s (mean ± SD) | 1.1 (0.3) | 0.9 (0.3) | <0.001 2 |
SPPB | Grip Strength | Gait Speed | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N = 196 (n = 85 at T0, n = 68 at T6, n = 43 at T12) | N = 197 (n = 85 at T0, n = 68 at T6, n = 43 at T12) | N = 196 (n = 85 ved T0, n = 68 ved T6, n = 43 ved T12) | ||||||||||
Bivariate Models | Multiple Model | Bivariate Models | Multiple Model | Bivariate Models | Multiple Model | |||||||
Regr.coeff (SE) | p-Value | Regr.coeff (SE) | p-Value | Regr.coeff (SE) | p-Value | Regr.coeff (SE) | p-Value | Regr.coeff | p-Value | Regr.coeff (SE) | p-Value | |
Intercept Time | 10.1 (1.5) | 0.01 | 11.08 (2.4) | <0.001 | 31.9 (4.0) | 0.003 | 65.6 (12.2) | <0.001 | 1.0 (0.1) | 0.01 | 2.4 (0.4) | |
T0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
T6 | 0.2 (0.2) | 0.25 | 0.2 (0.2) | 0.23 | 0.4 (0.6) | 0.5 | 0.5 (0.6) | 0.45 | −0.02 (0.003) | 0.57 | −0.01 (0.003) | 0.80 |
T12 | 0.2 (0.2) | 0.30 | 0.1 (0.2) | 0.42 | 0.01 (0.5) | 0.98 | 0.2 (0.6) | 0.76 | −0.0052 (0.04) | 0.90 | −0.0002 (0.04) | 0.99 |
Group | ||||||||||||
Intervention group–ref | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
Control group | −0.5 (0.2) | 0.030 | −0.5 (0.2) | 0.030 | −0.7 (2.2) | 0.75 | −1.2 (−1.2) | 0.31 | −0.1 (0.04) | 0.03 | −0.1 (0.04) | 0.02 |
Time x Group | ||||||||||||
T0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
T6 | −0.04 (0.3) | 0.89 | −0.1 (0.3) | 0.80 | −0.6 (0.8) | 0.50 | 0.5 (0.8) | 0.51 | −0.01 (0.04) | 0.88 | −0.02 (0.04) | 0.65 |
T12 | 0.03 (0.2) | 0.99 | 0.1 (0.2) | 0.83 | 0.2 (0.8) | 0.85 | 0.04 (0.8) | 0.96 | 0.01 (0.1) | 0.89 | −0.004 (0.1) | 0.94 |
Age | −0.02 (0.02) | 0.46 | −0.02 (0.03) | 0.39 | −0.1 (0.3) | 0.74 | −0.3 (0.2) | 0.07 | −0.02 (0.01) | 0.003 | −0.02 (0.01) | 0.01 |
Gender, female | −0.2 (0.2) | 0.49 | −0.2 (0.2) | 0.33 | −17.8 (1.2) | <0.001 | −018.3 (1.3) | <0.001 | 0.02 (0.04) | 0.61 | −0.03 (0.04) | 0.46 |
Education, higher | 0.5 (0.02) | 0.02 | 0.6 (0.2) | 0.01 | −1.0 (2.5) | 0.70 | 0.4 (1.3) | 0.76 | 0.1 (0.04) | 0.07 | 0.1 (0.04) | 0.08 |
Strength exercise | 0.1 (0.2) | 0.40 | 0.1 (0.2) | 0.39 | −4.6 (0.6) | 0.51 | −0.2 (0.5) | 0.71 | 0.1 (0.03) | 0.05 | 0.1 (0.03) | 0.02 |
Live Alone | −0.1 (0.2) | 0.58 | −0.1 (0.3) | 0.85 | −7.2 (2.3) | 0.003 | −0.2 (1.5) | 0.91 | −0.03 (0.04) | 0.46 | 0.02 (0.1) | 0.61 |
Seafood intake | −0.1 (0.1) | 0.33 | −0.1 (0.1) | 0.40 | 0.3 (0.3) | 0.23 | 0.4 (0.3) | 0.09 | 0.01 (0.01) | 0.68 | 0.01 (0.1) | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nygård, L.K.; Mundal, I.; Dahl, L.; Šaltytė Benth, J.; Rokstad, A.M.M. Limited Benefit of Marine Protein Hydrolysate on Physical Function and Strength in Older Adults: A Randomized Controlled Trial. Mar. Drugs 2021, 19, 62. https://doi.org/10.3390/md19020062
Nygård LK, Mundal I, Dahl L, Šaltytė Benth J, Rokstad AMM. Limited Benefit of Marine Protein Hydrolysate on Physical Function and Strength in Older Adults: A Randomized Controlled Trial. Marine Drugs. 2021; 19(2):62. https://doi.org/10.3390/md19020062
Chicago/Turabian StyleNygård, Linda Kornstad, Ingunn Mundal, Lisbeth Dahl, Jūratė Šaltytė Benth, and Anne Marie Mork Rokstad. 2021. "Limited Benefit of Marine Protein Hydrolysate on Physical Function and Strength in Older Adults: A Randomized Controlled Trial" Marine Drugs 19, no. 2: 62. https://doi.org/10.3390/md19020062
APA StyleNygård, L. K., Mundal, I., Dahl, L., Šaltytė Benth, J., & Rokstad, A. M. M. (2021). Limited Benefit of Marine Protein Hydrolysate on Physical Function and Strength in Older Adults: A Randomized Controlled Trial. Marine Drugs, 19(2), 62. https://doi.org/10.3390/md19020062