Influences of Molecular Weights on Physicochemical and Biological Properties of Collagen-Alginate Scaffolds
Abstract
:1. Introduction
2. Results
2.1. Molecular Weight of Collagen and Alginate
2.2. Degree of Cross-Linking
2.3. FTIR Analysis
2.4. Microstructure Analysis (SEM) of the Scaffolds
2.5. Porosity, Density, and Compressive Properties of the Scaffolds
2.6. Tensile and Compressive Properties
2.7. Weight Loss and Water Retention Capacity
2.8. Enzymatic Degradation
2.9. Antioxidant Capacity
2.10. In Vivo Blood Coagulant Assay
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Methods
4.2.1. Modification of Alginate Molecular Size Using Subcritical Water
4.2.2. Gel Permeation Chromatography
4.2.3. Preparation of Collagen–Alginate Scaffolds
4.3. Characterizations of Collagen–Alginate Scaffolds
4.3.1. Fourier-Transform Infrared Spectroscopy (FTIR)
4.3.2. Microstructure Characterization
4.3.3. Porosity and Density Assessment
4.3.4. Weight Loss
4.3.5. Tensile and Compressive Property
4.3.6. Water Retention Capacity
4.3.7. Degree of Cross-Linking
4.3.8. Enzymatic Degradation
4.3.9. Antioxidant Capacity
4.3.10. In Vitro Blood Clotting Assay
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avila Rodríguez, M.I.; Rodríguez Barroso, L.G.; Sánchez, M.L. Collagen: A review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 2018, 17, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Kiyose, C.; Higuchi, T.; Uchida, N.; Suzuki, H. Effect of collagen hydrolysates from salmon and trout skins on the lipid profile in rats. J. Agric. Food Chem. 2009, 57, 10477–10482. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Shan, T.; Ma, Y.-x.; Tay, F.R.; Niu, L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol. 2019, 37, 464–491. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, L.; Gao, C. Facile fabrication of the glutaraldehyde cross-linked collagen/chitosan porous scaffold for skin tissue engineering. Mater. Sci. Eng. C 2012, 32, 2361–2366. [Google Scholar] [CrossRef]
- Chandika, P.; Ko, S.-C.; Oh, G.-W.; Heo, S.-Y.; Nguyen, V.-T.; Jeon, Y.-J.; Lee, B.; Jang, C.H.; Kim, G.; Park, W.S.; et al. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application. Int. J. Biol. Macromol. 2015, 81, 504–513. [Google Scholar] [CrossRef]
- Sang, L.; Luo, D.; Xu, S.; Wang, X.; Li, X. Fabrication and evaluation of biomimetic scaffolds by using collagen–alginate fibrillar gels for potential tissue engineering applications. Mater. Sci. Eng. C 2011, 31, 262–271. [Google Scholar] [CrossRef]
- Karri, V.V.S.R.; Kuppusamy, G.; Talluri, S.V.; Mannemala, S.S.; Kollipara, R.; Wadhwani, A.D.; Mulukutla, S.; Raju, K.R.S.; Malayandi, R. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int. J. Biol. Macromol. 2016, 93, 1519–1529. [Google Scholar] [CrossRef]
- Sun, L.; Li, B.; Jiang, D.; Hou, H. Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material. Colloids Surf. B Biointerfaces 2017, 159, 89–96. [Google Scholar] [CrossRef]
- Ma, L.; Gao, C.; Mao, Z.; Zhou, J.; Shen, J.; Hu, X.; Han, C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003, 24, 4833–4841. [Google Scholar] [CrossRef]
- Ferrario, C.; Rusconi, F.; Pulaj, A.; Macchi, R.; Landini, P.; Paroni, M.; Colombo, G.; Martinello, T.; Melotti, L.; Gomiero, C. From food waste to innovative biomaterial: Sea urchin-derived collagen for applications in skin regenerative medicine. Mar. Drugs 2020, 18, 414. [Google Scholar] [CrossRef]
- Hong, H.; Fan, H.; Chalamaiah, M.; Wu, J. Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives. Food Chem. 2019, 301, 125222. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Black, L.; Santacana-Laffitte, G.; Patrick, J.; Charles, W. Preparation and assessment of glutaraldehyde-crosslinked collagen–chitosan hydrogels for adipose tissue engineering. J. Biomed. Mater. Res. Part A 2007, 81A, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Aida, T.M.; Yamagata, T.; Watanabe, M.; Smith, R.L., Jr. Depolymerization of sodium alginate under hydrothermal conditions. Carbohydr. Polym. 2010, 80, 296–302. [Google Scholar] [CrossRef]
- Li, X.; Xu, A.; Xie, H.; Yu, W.; Xie, W.; Ma, X. Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue engineering. Carbohydr. Polym. 2010, 79, 660–664. [Google Scholar] [CrossRef]
- Ding, W.; Zhou, J.; Zeng, Y.; Wang, Y.-n.; Shi, B. Preparation of oxidized sodium alginate with different molecular weights and its application for crosslinking collagen fiber. Carbohydr. Polym. 2017, 157, 1650–1656. [Google Scholar] [CrossRef]
- Murphy, E.C.; Friedman, A.J. Hydrogen peroxide and cutaneous biology: Translational applications, benefits, and risks. J. Am. Acad. Dermatol. 2019, 81, 1379–1386. [Google Scholar] [CrossRef]
- Nkurunziza, D.; Ho, T.C.; Protzman, R.A.; Cho, Y.-J.; Getachew, A.T.; Lee, H.-J.; Chun, B.S. Pressurized hot water crosslinking of gelatin-alginate for the enhancement of spent coffee oil emulsion stability. J. Supercrit. Fluids 2021, 169, 105120. [Google Scholar] [CrossRef]
- Pieper, J.; Hafmans, T.; Veerkamp, J.; Van Kuppevelt, T. Development of tailor-made collagen–glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials 2000, 21, 581–593. [Google Scholar] [CrossRef]
- Olde Damink, L.H.H.; Dijkstra, P.J.; Van Luyn, M.J.A.; Van Wachem, P.B.; Nieuwenhuis, P.; Feijen, J. Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J. Mater. Sci. Mater. Med. 1995, 6, 460–472. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.-P.; Wang, Y.-J.; Ren, L.; Wu, G.; Caridade, S.G.; Fan, J.-B.; Wang, L.-Y.; Ji, P.-H.; Oliveira, J.M.; Oliveira, J.T.; et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J. Biomed. Mater. Res. Part A 2010, 95A, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Reddy, N.; Reddy, R.; Jiang, Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 2015, 33, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Umashankar, P.; Mohanan, P.; Kumari, T. Glutaraldehyde treatment elicits toxic response compared to decellularization in bovine pericardium. Toxicol. Int. 2012, 19, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra Roy, V.; Ho, T.C.; Lee, H.-J.; Park, J.-S.; Nam, S.Y.; Lee, H.; Getachew, A.T.; Chun, B.-S. Extraction of astaxanthin using ultrasound-assisted natural deep eutectic solvents from shrimp wastes and its application in bioactive films. J. Clean. Prod. 2021, 284, 125417. [Google Scholar] [CrossRef]
- Liu, M.; Shen, Y.; Ao, P.; Dai, L.; Liu, Z.; Zhou, C. The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Adv. 2014, 4, 23540–23553. [Google Scholar] [CrossRef]
- Sun, L.; Li, B.; Yao, D.; Song, W.; Hou, H. Effects of cross-linking on mechanical, biological properties and biodegradation behavior of Nile tilapia skin collagen sponge as a biomedical material. J. Mech. Behav. Biomed. Mater. 2018, 80, 51–58. [Google Scholar] [CrossRef]
- Choi, Y.S.; Hong, S.R.; Lee, Y.M.; Song, K.W.; Park, M.H.; Nam, Y.S. Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials 1999, 20, 409–417. [Google Scholar] [CrossRef]
- Khiari, Z.; Ndagijimana, M.; Betti, M. Low molecular weight bioactive peptides derived from the enzymatic hydrolysis of collagen after isoelectric solubilization/precipitation process of turkey by-products. Poult. Sci. 2014, 93, 2347–2362. [Google Scholar] [CrossRef]
- Chung, L.; Dinakarpandian, D.; Yoshida, N.; Lauer-Fields, J.L.; Fields, G.B.; Visse, R.; Nagase, H. Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J. 2004, 23, 3020–3030. [Google Scholar] [CrossRef]
- Fan, L.; Peng, M.; Zhou, X.; Wu, H.; Hu, J.; Xie, W.; Liu, S. Modification of carboxymethyl cellulose grafted with collagen peptide and its antioxidant activity. Carbohydr. Polym. 2014, 112, 32–38. [Google Scholar] [CrossRef]
- Kelishomi, Z.H.; Goliaei, B.; Mahdavi, H.; Nikoofar, A.; Rahimi, M.; Moosavi-Movahedi, A.A.; Mamashli, F.; Bigdeli, B. Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food Chem. 2016, 196, 897–902. [Google Scholar] [CrossRef]
- Tan, H.; Wu, J.; Lao, L.; Gao, C. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater. 2009, 5, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Pawlaczyk, I.; Capek, P.; Czerchawski, L.; Bijak, J.; Lewik-Tsirigotis, M.; Pliszczak-Król, A.; Gancarz, R. An anticoagulant effect and chemical characterization of Lythrum salicaria L. glycoconjugates. Carbohydr. Polym. 2011, 86, 277–284. [Google Scholar] [CrossRef]
Materials | Average Molecular Weight (Da) | Abbreviation |
---|---|---|
Collagen 1 | ~6000 | C6 |
Collagen 2 | 25,000 | C25 |
Untreated alginate | 32,000–250,000 | A250 |
Alginate hydrolyzed at 110 °C | 125,000 | A125 |
Alginate hydrolyzed at 120 °C | 63,000 | A63 |
Alginate hydrolyzed at 130 °C | 21,000 | A21 |
Type of Fabrication | Absorption Band Peaks (cm−1) | |||||
---|---|---|---|---|---|---|
Amide A | Amide B | Amide I | Amide II | Amide III | C‒O‒C | |
Collagen | 3282 | 3057 | 1627 | 1525 | 1236 | - |
Sodium alginate | - | - | - | - | - | 1024 |
C6-A250 | 3301 | 3074 | 1635 | 1542 | 1240 | 1028 |
C25-A250 | 3301 | 3095 | 1638 | 1540 | 1240 | 1024 |
C25-A125 | 3295 | 3082 | 1633 | 1540 | 1239 | 1029 |
C25-A63 | 3301 | 3071 | 1636 | 1540 | 1237 | 1026 |
C25-A21 | 3289 | 3068 | 1639 | 1546 | 1237 | 1027 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, T.C.; Park, J.-S.; Kim, S.-Y.; Lee, H.; Lim, J.-S.; Kim, S.-J.; Choi, M.-H.; Nam, S.Y.; Chun, B.-S. Influences of Molecular Weights on Physicochemical and Biological Properties of Collagen-Alginate Scaffolds. Mar. Drugs 2021, 19, 85. https://doi.org/10.3390/md19020085
Ho TC, Park J-S, Kim S-Y, Lee H, Lim J-S, Kim S-J, Choi M-H, Nam SY, Chun B-S. Influences of Molecular Weights on Physicochemical and Biological Properties of Collagen-Alginate Scaffolds. Marine Drugs. 2021; 19(2):85. https://doi.org/10.3390/md19020085
Chicago/Turabian StyleHo, Truc Cong, Jin-Seok Park, Sung-Yeoul Kim, Hoyeol Lee, Ju-Sop Lim, Shin-Jun Kim, Mi-Hee Choi, Seung Yun Nam, and Byung-Soo Chun. 2021. "Influences of Molecular Weights on Physicochemical and Biological Properties of Collagen-Alginate Scaffolds" Marine Drugs 19, no. 2: 85. https://doi.org/10.3390/md19020085
APA StyleHo, T. C., Park, J. -S., Kim, S. -Y., Lee, H., Lim, J. -S., Kim, S. -J., Choi, M. -H., Nam, S. Y., & Chun, B. -S. (2021). Influences of Molecular Weights on Physicochemical and Biological Properties of Collagen-Alginate Scaffolds. Marine Drugs, 19(2), 85. https://doi.org/10.3390/md19020085