Fucoidan from Laminaria japonica Inhibits Expression of GLUT9 and URAT1 via PI3K/Akt, JNK and NF-κB Pathways in Uric Acid-Exposed HK-2 Cells
Abstract
:1. Introduction
2. Results
2.1. FPS Inhibits UA-Induced Expression of URAT1 and GLUT9 in HK-2 Cells
2.2. FPS Inhibits UA-Induced Expression of URAT1 and GLUT9 via Repressing NF-κB Pathway
2.3. JNK Pathway Involved in FPS Suppressing UA-Induced Expression of URAT1 and GLUT9
2.4. FPS Inhibits Expression of GLUT9 and URAT1 through Repressing UA-Induced Activation of PI3K/Akt Pathway in HK-2 Cells
3. Discussion
4. Materials and Methods
4.1. Cells Culture
4.2. Western Blotting Analysis
4.3. Immunofluorescent (IF) Staining
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Xiao, Y. Hyperuricemia and its relative diseases. Chin. J. Lab. Diagn. 2016, 20, 2147–2150. [Google Scholar]
- Wu, J.; Qiu, L.; Cheng, X.; Xu, T.; Wu, W.; Zeng, X.; Ye, Y.; Guo, X.; Cheng, Q.; Liu, Q.; et al. Hyperuricemia and clustering of cardiovascular risk factors in the Chinese adult population. Sci. Rep. 2017, 7, 5456. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.K.; Mount, D.B.; Reginato, A.M. Pathogenesis of gout. Ann. Intern. Med. 2005, 143, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Lipkowitz, M.S. Regulation of uric acid excretion by the kidney. Curr. Rheumatol. Rep. 2012, 14, 179–188. [Google Scholar] [CrossRef]
- Gustafsson, D.; Unwin, R. The pathophysiology of hyperuricemia and its possible relationship to cardiovascular disease, morbidity and mortality. BMC Nephrol. 2013, 14, 164. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, T.; Ohya, K.; Shimada, S.; Anzai, N.; Tamai, I. Functional cooperation of URAT1 (SLC22A12) and URATv1 (SLC2A9) in renal reabsorption of urate. Nephrol. Dial. Transpl. 2013, 28, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Gliozzi, M.; Malara, N.; Muscoli, S.; Mollace, V. The treatment of hyperuricemia. Int. J. Cardiol. 2016, 213, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Tie, Y.; Hu, Y.C.; Liu, L. Advances in hyperuricemia drugs for gout treatment. Chin. J. Clin. Pharmacol. 2017, 9, 853–856. [Google Scholar]
- Chen, G.L.; Zhou, Y.F.; Zhang, Y. Medicines for treating gout and hyperuricemia. Chin. J. Clin. Pharmacol. Ther. 2017, 1, 104–109. [Google Scholar]
- Hao, S.; Zhang, C.; Song, H. Natural products improving hyperuricemia with hepatorenal dual effects. Evid-Based Complement. Altern. Med. 2016, 2016, 7390504. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Chen, S.; Li, S.; Lu, M.; Li, Y.; Su, Y. Efficacy and safety of Chinese medicinal herbs for the treatment of hyperuricemia: A systematic review and meta-analysis. Evid-Based Complement. Altern. Med. 2016, 2016, 2146204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkowska, K.; Smith, K.M.; Yao, S.Y.M.; Ng, A.M.L.; O’Neill, D.; Karpinski, E.; Young, J.D.; Heeseman, C.I. Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses. Am. J. Physiol. Ren. Physiol. 2012, 4, F527–F539. [Google Scholar] [CrossRef] [Green Version]
- Li, B.L.; Wang, J.H.; Cai, T.Y.; Guo, J.M.; Teng, F.Z.; Zhu, Y.J.; Lin, J.P.; Mao, R.; Xiao, Y.; Su, Y.X. Effect of Tongfengning serum containing on expression of urate transporter in HK-2 induced by uric acid. Chin. J. Exp. Trad. Med. Formulae 2019, 21, 53–59. [Google Scholar]
- Pozharitskaya, O.N.; Shikov, A.N.; Faustova, N.M.; Obluchinskaya, E.D.; Kosman, V.M.; Vuorela, H.; Makarov, V.G. Pharmacokinetic and tissue distribution of fucoidan from Fucus vesiculosus after oral administration. Mar. Drugs 2018, 4, 132. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Geng, L.; Yue, Y.; Zhang, Q. Use of fucoidan to treat renal diseases: A review of 15 years of clinic studies. Prog. Mol. Biol. Transl. Sci. 2019, 163, 95–111. [Google Scholar]
- Liang, B.R.; Liu, T.L.; Wu, X.L.; Xie, H.B.; Zhang, S.J.; Zhang, J.Q.; Chen, S.Q. Effect of fucoidan urate transporters in uric acid nephropathy rats. J. Chin. Med. Mater. 2013, 11, 1830–1833. [Google Scholar]
- Zhang, D.Y.; Xiao, W.; Tao, Y.X.; Gu, Y.P.; Liu, H.Z. Antagonistic effect of fucoidan from Laminaria japonica against adenine-induced hyperuricemia in mice. Nat. Prod. Res. Dev. 2016, 3, 433–437. [Google Scholar]
- Zhang, D.Y.; Liu, H.Z.; Luo, P.; Li, Y.Q. Production inhibition and excretion promotion of urate by fucoidan from Laminaria japonica in adenine-induced hyperuricemic mice. Mar. Drugs 2018, 12, 472. [Google Scholar] [CrossRef] [Green Version]
- Chau, Y.T.; Chen, H.Y.; Lin, P.H.; Hsia, S.M. Preventive effects of fucoidan and fucoxanthin on hyperuricemic rats induced by potassium oxonate. Mar. Drugs 2019, 6, 343. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Lu, X.; Lu, C.; Shen, N.; Jiang, Y.; Chen, M.; Wu, H. Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway. Arthritis Res. Ther. 2018, 20, 20. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wang, X.; Jiang, L.; Tan, R.; Xiong, M.; He, W.; Fang, L.; Wen, P.; Yang, J. Uric acid increases fibronectin synthesis through upregulation of lysyl oxidase expression in rat renal tubular epithelial cells. Am. J. Physiol. Ren. Physiol. 2010, 2, F336–F346. [Google Scholar]
- Zhou, Y.; Fang, L.; Jiang, L.; Wen, P.; Cao, H.; He, W.; Dai, C.; Yang, J. Uric acid induces renal inflammation via activating tubular NF-κB signaling pathway. PLoS ONE 2012, 6, e39738. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhou, P.; Xu, C.; Zhou, X.; Hu, W.; Zhang, J. Baicalein attenuates renal fibrosis by inhibiting inflammation via down-regulating NF-κB and MAPK signal pathways. J. Mol. Histol. 2015, 3, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.C. The study of signal transduction pathways and related mechanisms involved in vascular cell adhesion molecule-1 in gouty arthritis. Chongqing Med. Uni. 2012, 5, 2–3. [Google Scholar]
- Li, H.; Ou, G.; He, Y.; Ren, L.; Yang, X.; Zeng, M. Resveratrol attenuates the MSU crystal-induced inflammatory response through the inhibition of TAK1 activity. Int. Immunopharm. 2019, 67, 62–68. [Google Scholar] [CrossRef]
- Boo, H.J.; Hyun, J.H.; Kim, S.C.; Kang, J.; Kim, M.K.; Kim, S.Y.; Cho, H.; Yoo, E.S.; Kang, H.K. Fucoidan from Undaria pinnatifida induces apoptosis in A549 human lung carcinoma cells. Phytother. Res. 2011, 25, 1082–1086. [Google Scholar] [CrossRef]
- Duan, Y.; Li, J.; Jing, X.; Ding, X.; Yu, Y.; Zhao, Q. Fucoidan induces apoptosis and Inhibits proliferation of hepatocellular carcinoma via the p38 MAPK/ERK and PI3K/Akt signal pathways. Cancer Manag. Res. 2020, 12, 1713–1723. [Google Scholar] [CrossRef] [Green Version]
- Ryu, E.; Kim, M.J.; Shin, H.S.; Jiang, Y.H.; Choi, H.S.; Jo, I.; Johnson, R.J.; Kang, D.H. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am. J. Physiol. Ren. Physiol. 2013, 5, F471–F480. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, X.; Song, R.; Li, X.; Tao, B.; Mao, J. Qi-Zhu-Xie-Zhuo-Fang reduces serum uric acid levels and ameliorates renal fibrosis in hyperuricemic nephropathy rats. Biomed. Pharmacother. 2017, 91, 358–365. [Google Scholar]
- Xu, W.; Yang, Z.; Lu, N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhes. Migr. 2015, 4, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, X.Y.; Bai, L.; Bai, S.J.; Wang, Y.K.; Ji, T. Uric acid induced epithelial-mesenchymal transition of renal tubular cells through PI3K/p-Akt signaling pathway. J. Cell. Physiol. 2019, 234, 15563–15569. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cui, W.; Zhang, Q.; Jia, Y.; Sun, Y.; Weng, L.; Luo, D.; Zhou, H.; Yang, Y. Low molecular weight fucoidan ameliorates diabetic nephropathy via inhibiting epithelial-mesenchymal transition and fibrotic processes. Am. J. Transl. Res. 2015, 9, 1553–1563. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Tan, X.; Lin, Z.; Li, F.; Yang, C.; Zheng, H.; Li, L.; Liu, H.; Shang, J. Fucoidan from Laminaria japonica Inhibits Expression of GLUT9 and URAT1 via PI3K/Akt, JNK and NF-κB Pathways in Uric Acid-Exposed HK-2 Cells. Mar. Drugs 2021, 19, 238. https://doi.org/10.3390/md19050238
Zhang Y, Tan X, Lin Z, Li F, Yang C, Zheng H, Li L, Liu H, Shang J. Fucoidan from Laminaria japonica Inhibits Expression of GLUT9 and URAT1 via PI3K/Akt, JNK and NF-κB Pathways in Uric Acid-Exposed HK-2 Cells. Marine Drugs. 2021; 19(5):238. https://doi.org/10.3390/md19050238
Chicago/Turabian StyleZhang, Yu, Xiaohui Tan, Zhen Lin, Fangping Li, Chunyan Yang, Haiying Zheng, Lingyu Li, Huazhong Liu, and Jianghua Shang. 2021. "Fucoidan from Laminaria japonica Inhibits Expression of GLUT9 and URAT1 via PI3K/Akt, JNK and NF-κB Pathways in Uric Acid-Exposed HK-2 Cells" Marine Drugs 19, no. 5: 238. https://doi.org/10.3390/md19050238
APA StyleZhang, Y., Tan, X., Lin, Z., Li, F., Yang, C., Zheng, H., Li, L., Liu, H., & Shang, J. (2021). Fucoidan from Laminaria japonica Inhibits Expression of GLUT9 and URAT1 via PI3K/Akt, JNK and NF-κB Pathways in Uric Acid-Exposed HK-2 Cells. Marine Drugs, 19(5), 238. https://doi.org/10.3390/md19050238