New Isocoumarin Analogues from the Marine-Derived Fungus Paraphoma sp. CUGBMF180003
Abstract
:1. Introduction
2. Results
2.1. Structure Elucidation
2.2. Biological Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Microbial Material, Fermentation, Extraction, and Purification
3.3. Biological Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moslemi, A.; Ades, P.K.; Crous, P.W.; Groom, T.; Scott, J.B.; Nicolas, M.E.; Taylor, P.W.J. Paraphoma chlamydocopiosa sp. nov. and Paraphoma pye sp. nov., two new species associated with leaf and crown infection of pyrethrum. Plant. Pathol. 2018, 67, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Gomzhina, M.M.; Gasich, E.L.; Khlopunova, L.B.; Gannibal, P.B. Paraphoma species associated with Convolvulaceae. Mycol. Prog. 2020, 19, 185–194. [Google Scholar] [CrossRef]
- Sameshima-Yamashita, Y.; Koitabashi, M.; Tsuchiya, W.; Suzuki, K.; Watanabe, T.; Shinozaki, Y.; Yamamoto-Tamura, K.; Yamazaki, T.; Kitamoto, H. Enhancement of biodegradable plastic-degrading enzyme production from Paraphoma-like fungus, strain B47-9. J. Oleo. Sci. 2016, 65, 257–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koitabashi, M.; Sameshima-Yamashita, Y.; Koike, H.; Sato, T.; Moriwaki, J.; Morita, T.; Watanabe, T.; Yoshida, S.; Kitamoto, H. Biodegradable plastic-degrading activity of various species of Paraphoma. J. Oleo. Sci. 2016, 65, 621–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.Y.; Sun, B.D.; Zhang, G.S.; Deng, H.; Wang, M.H.; Tan, X.M.; Zhang, X.Y.; Jia, H.M.; Zhang, H.W.; Zhang, T.; et al. Polyketides with different post-modifications from desert endophytic fungus Paraphoma sp. Nat. Prod. Res. 2018, 32, 939–943. [Google Scholar] [CrossRef]
- Poluektova, E.; Tokarev, Y.; Sokornova, S.; Chisty, L.; Evidente, A.; Berestetskiy, A. Curvulin and phaeosphaeride a from Paraphoma sp. VIZR 1.46 isolated from Cirsium arvense as potential herbicides. Molecules 2018, 23, 2795. [Google Scholar] [CrossRef] [Green Version]
- El-Elimat, T.; Raja, H.A.; Figueroa, M.; Falkinham, J.O., 3rd; Oberlies, N.H. Isochromenones, isobenzofuranone, and tetrahydronaphthalenes produced by Paraphoma radicina, a fungus isolated from a freshwater habitat. Phytochemistry 2014, 104, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Majetich, M.; Grove, J.L. Synthesis of 8-hydroxyisochromenes and 8-hydroxyisocoumarins from 3-ethoxycyclohex-2-en-1-one. Heterocycles 2012, 84, 983–1012. [Google Scholar] [CrossRef]
- Nitta, K.; Takura, C.; Yamamoto, I.; Yamamoto, Y.; Imai, J.; Yamatodani, S. Studies on the metabolic products of Oospora sp. (Oospora astringenes). Agr. Biol. Chem. 1963, 27, 813–827. [Google Scholar]
- Sonnenbichler, J.B.; Bliestle, I.M.; Peipp, H.; Holdenrieder, O. Secondary fungal metabolites and their biological activities, I. isolation of antibiotic compounds from cultures of Heterobasidion annosum synthesized in the presence of antagonistic fungi or host plant cells. Biol. Chem. Hoppe Seyler 1989, 370, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Sonnenbichler, J.; Sonnenbichler, I.; Schwarz, D. Biosynthesis of oosponol and oospoglycol elucidated by 13C NMR. Phytochemistry 1997, 44, 267–269. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. Clustal-W-Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids. Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Felsenstein, J. Confidence-Limits on Phylogenies—An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 7th ed.; Approved Standard; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Liao, M.F.; Wang, K.; Ren, J.W.; Liu, L.; Cai, L.; Han, J.J.; Liu, H.W. 2H-Pyranone and isocoumarin derivatives isolated from the plant pathogenic fungus Leptosphaena maculans. J. Asian. Nat. Prod. Res. 2019, 21, 939–946. [Google Scholar] [CrossRef]
- Xin, Z.H.; Tian, L.; Zhu, T.J.; Wang, W.L.; Du, L.; Fang, Y.C.; Gu, Q.Q.; Zhu, W.M. Isocoumarin derivatives from the sea squirt-derived fungus Penicillium stoloniferum QY2-10 and the halotolerant fungus Penicillium notatum B-52. Arch. Pharm. Res. 2007, 30, 816–819. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, S.; Liu, H.; Huang, X.; Liu, Y.; Tao, Y.; She, Z. Cytotoxic isocoumarin derivatives from the mangrove endophytic fungus Aspergillus sp. HN15-5D. Arch. Pharm. Res. 2019, 42, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Song, R.Y.; Wang, X.B.; Yin, G.P.; Liu, R.H.; Kong, L.Y.; Yang, M.H. Isocoumarin derivatives from the endophytic fungus, Pestalotiopsis sp. Fitoterapia 2017, 122, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chen, S.; Niu, S.; Guo, L.; Yin, J.; Che, Y. Exserolides A–F, new isocoumarin derivatives from the plant endophytic fungus Exserohilum sp. Fitoterapia 2014, 96, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wu, X.; Li, G.; Feng, Z.; Xu, J. Pestalotiopisorin B, a new isocoumarin derivative from the mangrove endophytic fungus Pestalotiopsis sp. HHL101. Nat. Prod. Res. 2020, 34, 1002–1007. [Google Scholar] [CrossRef]
- Damasceno, J.P.L.; Rodrigues, R.P.; Gonçalves, R.C.R.; Kitagawa, R.R. Anti-Helicobacter pylori activity of isocoumarin paepalantine: Morphological and molecular docking analysis. Molecules 2017, 22, 786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, J.; Shao, C.L.; Li, Z.Y.; Gan, L.S.; Fu, X.M.; Bian, W.T.; Zhao, H.Y.; Wang, C.Y. Isocoumarin derivatives and benzofurans from a sponge-derived Penicillium sp. fungus. J. Nat. Prod. 2013, 76, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Qi, J.; Shao, C.L.; Zhao, D.L.; Hou, X.M.; Wang, C.Y. Bioactive diphenyl ethers and isocoumarin derivatives from a gorgonian-derived fungus Phoma sp. (TA07-1). Mar. Drugs. 2017, 15, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, W.; Wang, W.; Li, X.N.; Zhang, Y.; Wang, L.P.; Yuan, C.M.; Huang, L.J.; Hao, X.J. A novel isocoumarin with anti-influenza virus activity from Strobilanthes cusia. Fitoterapia 2015, 107, 60–62. [Google Scholar] [CrossRef] [PubMed]
Position | 1 (DMSO-d6) | 2 (DMSO-d6) | 3 (DMSO-d6) | |||
---|---|---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 166.2, CO | 166.2, CO | 166.2, CO | |||
3 | 146.7, C | 147.3, C | 149.5, C | |||
4 | 108.7, C | 108.6, C | 110.5, C | |||
4a | 129.6, C | 130.4, C | 130.0, C | |||
5 | 113.3, CH | 6.93, d (8.5) | 113.0, CH | 6.99, d (8.5) | 113.9, CH | 7.12, d (8.5) |
6 | 124.2, CH | 7.31, d (8.5) | 120.6, CH | 7.51, d (8.5) | 120.4, CH | 8.50, d (8.5) |
7 | 143.8, C | 145.7, C | 146.4, C | |||
8 | 148.6, C | 150.2, C | 150.2, C | |||
8a | 105.9, C | 105.6, C | 106.0, C | |||
9 | 16.5, CH3 | 2.24, s | 16.5, CH3 | 2.25, s | 57.6, CH2 | 4.36, s |
10 | 12.0, CH3 | 2.06, s | 11.9, CH3 | 2.07, s | 11.5, CH3 | 2.17, s |
7-OH/-OMe | 9.69, br s | 56.1, CH3 | 3.85, s | 56.1, CH3 | 3.87, s | |
8-OH | 11.12, s | 11.24, s |
Position | 4 (CDCl3) | 5 (CDCl3) | 6 (Acetone-d6) | |||
---|---|---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 165.6, CO | 166.4, CO | 163.2, CO | |||
3 | 148.1, C | 141.2, CH | 7.37, s | 151.1, C | ||
4 | 117.7, C | 122.1, C | 127.3, C | |||
4a | 136.5, C | 135.7, C | 133.9, C | |||
5 | 114.9, CH | 7.33, d (8.0) | 113.4, CH | 7.13, d (8.0) | 118.9, CH | 7.50, dd (7.5, 1.0) |
6 | 137.8, CH | 7.70, dd (8.0, 8.0) | 137.4, CH | 7.66, dd (8.0, 8.0) | 137.5, CH | 7.69, dd (8.5, 7.5) |
7 | 116.7, CH | 7.06, d (8.0) | 116.0, CH | 7.02, d (8.0) | 119.0, CH | 7.04, dd (8.5, 1.0) |
8 | 162.1, C | 162.4, C | 163.2, C | |||
8a | 106.9, C | 106.8, C | 107.8, C | |||
9 | 57.1, CH2 | 4.82, s | 65.0, CH | 5.06, q (6.5) | 75.3, CH | 5.83, dd (6.0, 3.0) |
10 | 60.1, CH2 | 5.09, s | 23.3, CH3 | 1.60, d (6.5) | 39.9, CH2 | 3.06, dd (18.0, 6.0) 2.76, dd (18.0, 3.0) |
11 | 171.8, C | 196.4, C | ||||
12 | 21.0, CH3 | 2.12, s | ||||
8-OH | 11.06, s | 11.28, s |
Position | 12 (DMSO-d6) | 13 (DMSO-d6) | 14 (CDCl3) | |||
---|---|---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 164.4, CO | 164.4, CO | 165.4, CO | |||
3 | 143.5, C | 143.6, C | 143.7, C | |||
4 | 122.9, C | 122.9, C | 123.7, C | |||
4a | 132.4, C | 132.4, C | 132.2, C | |||
5 | 113.7, CH | 7.11, d ( 8.0) | 113.8, CH | 7.11, d, 8.0 | 113.0, CH | 6.88, d (7.5) |
6 | 138.1, CH | 7.82, dd (8.0, 8.0) | 138.1, CH | 7.81, dd, 8.0, 8.0 | 138.0, CH | 7.68, dd (8.0, 7.5) |
7 | 117.5, CH | 7.14, d (8.0) | 117.5, CH | 7.14, d, 8.0 | 118.6, CH | 7.12, d (8.0) |
8 | 161.4, C | 161.4, C | 163.0, C | |||
8a | 106.4, C | 106.5, C | 106.8, C | |||
9 | 45.6, CH2 | 4.48, s | 45.6, CH2 | 4.45, s | 43.7, CH2 | 4.57, d (17.5) 4.24, d (17.5) |
10 | 160.9, CO | 160.8, CO | 162.1, CO | |||
1′ | 43.7, CH2 | 3.73, t (7.5) | 44.1, CH2 | 3.66, t, 7.5 | 55.0, CH | 5.34, dd (10.5, 5.5) |
2′ | 33.8, CH2 | 2.93, t (7.5) | 33.0, CH2 | 2.80, t (7.5) | 35.9, CH2 | 3.51, dd (14.5, 5.5) 3.19, dd (14.5, 10.5) |
3′ | 138.6, C | 128.6, C | 135.8, C | |||
4′ | 128.6, CH | 7.27, d (7.0) | 129.5, CH | 7.04, d (8.5) | 128.5, CH | 7.21, d (8.0) |
5′ | 128.4, CH | 7.30, dd ( 7.0, 7.0) | 115.3, CH | 6.67, d (8.5) | 129.1, CH | 7.28, dd (8.0, 8.0) |
6′ | 126.3, CH | 7.21, t (7.0) | 155.8, C | 127.4, CH | 7.22, t (8.0) | |
7′ | 128.4, CH | 7.30, dd (7.0, 7.0) | 115.3, CH | 6.67, d (8.5) | 129.1, CH | 7.28, dd (8.0, 8.0) |
8′ | 128.6, CH | 7.27, d (7.0) | 129.5, CH | 7.04, d (8.5) | 128.5, CH | 7.21, d (8.0) |
1′ | 171.1, CO | |||||
2″ | 52.9, CH3 | 3.76, s | ||||
8-OH | 10.92, s | 11.04, s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Li, J.; Zhang, K.; Wei, S.; Lin, R.; Polyak, S.W.; Yang, N.; Song, F. New Isocoumarin Analogues from the Marine-Derived Fungus Paraphoma sp. CUGBMF180003. Mar. Drugs 2021, 19, 313. https://doi.org/10.3390/md19060313
Xu X, Li J, Zhang K, Wei S, Lin R, Polyak SW, Yang N, Song F. New Isocoumarin Analogues from the Marine-Derived Fungus Paraphoma sp. CUGBMF180003. Marine Drugs. 2021; 19(6):313. https://doi.org/10.3390/md19060313
Chicago/Turabian StyleXu, Xiuli, Jiangpeng Li, Kai Zhang, Shangzhu Wei, Rui Lin, Steven W. Polyak, Na Yang, and Fuhang Song. 2021. "New Isocoumarin Analogues from the Marine-Derived Fungus Paraphoma sp. CUGBMF180003" Marine Drugs 19, no. 6: 313. https://doi.org/10.3390/md19060313
APA StyleXu, X., Li, J., Zhang, K., Wei, S., Lin, R., Polyak, S. W., Yang, N., & Song, F. (2021). New Isocoumarin Analogues from the Marine-Derived Fungus Paraphoma sp. CUGBMF180003. Marine Drugs, 19(6), 313. https://doi.org/10.3390/md19060313