Preparation of Cross-linked Chitosan Quaternary Ammonium Salt Hydrogel Films Loading Drug of Gentamicin Sulfate for Antibacterial Wound Dressing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Films
2.1.1. FTIR Spectra
2.1.2. Thermal Analysis
2.1.3. Scanning Electron Microscopy
2.1.4. Thickness, Density, and Mechanical Properties
2.1.5. Water Content, Water Solubility, Swelling Degree, and Water Vapor Permeability
2.2. In Vitro Gentamicin Sulfate Release
2.3. Antibacterial Evaluation
2.4. Cytotoxicity Analysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of Cross-linked Chitosan Quaternary Ammonium Salt Hydrogel Films Loading with Gentamicin Sulfate (CTMCSG)
3.3. Characterization of Films
3.3.1. Fourier Transform Infrared (FT-IR) Spectroscopy
3.3.2. Thermal Analysis
3.3.3. Scanning Electron Morphology
3.3.4. Thickness and Density
3.3.5. Mechanical Properties
3.3.6. Water Content and Swelling Degree
3.3.7. Water Vapor Permeability
3.4. Evaluation of Sustained Release Performance
3.5. Antibacterial Assay
3.6. Cytotoxicity Assay
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qi, L.; Ou, K.; Hou, Y.; Yuan, P.; Yu, W.; Li, X.; Wang, B.; He, J.; Cui, S.; Chen, X. Unidirectional water-transport antibacterial trilayered nanofiber-based wound dressings induced by hydrophilic-hydrophobic gradient and self-pumping effects. Mater. Des. 2021, 201, 109461. [Google Scholar] [CrossRef]
- Moeini, A.; Pedram, P.; Makvandi, P.; Malinconico, M.; Gomez d’Ayala, G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr. Polym. 2020, 233, 115839. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Yang, Y.; He, J.; Li, M.; Guo, B. Novel supramolecular self-healing silk fibroin-based hydrogel via host–guest interaction as wound dressing to enhance wound healing. Chem. Eng. J. 2021, 417, 128278. [Google Scholar] [CrossRef]
- Ho, T.T.; Doan, V.K.; Tran, N.M.; Nguyen, L.K.; Le, A.N.; Ho, M.H.; Trinh, N.T.; Van Vo, T.; Tran, L.D.; Nguyen, T.H. Fabrication of chitosan oligomer-coated electrospun polycaprolactone membrane for wound dressing application. Mat. Sci. Eng. C-Mater. 2021, 120, 111724. [Google Scholar] [CrossRef]
- Zeng, D.; Shen, S.; Fan, D. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications. Chin. J. Chem. Eng. 2021, 30, 308–320. [Google Scholar] [CrossRef]
- Khan, B.A.; Khan, A.; Khan, M.K.; Braga, V.A. Preparation and properties of High sheared Poly(Vinyl Alcohol)/Chitosan blended Hydrogels films with Lawsonia inermis extract as wound dressing. J. Drug Deliv. Sci. Technol. 2021, 61, 102227. [Google Scholar] [CrossRef]
- Chalitangkoon, J.; Wongkittisin, M.; Monvisade, P. Silver loaded hydroxyethylacryl chitosan/sodium alginate hydrogel films for controlled drug release wound dressings. Int. J. Biol. Macromol. 2020, 159, 194–203. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, Y.; Li, S.; Xing, L.; Du, S.; Yuan, G.; Li, J.; Zhou, T.; Xiong, D.; Tan, H.; et al. Doubly crosslinked biodegradable hydrogels based on gellan gum and chitosan for drug delivery and wound dressing. Int. J. Biol. Macromol. 2020, 164, 2204–2214. [Google Scholar] [CrossRef]
- Liu, P.; Jin, K.; Wong, W.; Wang, Y.; Liang, T.; He, M.; Li, H.; Lu, C.; Tang, X.; Zong, Y.; et al. Ionic liquid functionalized non-releasing antibacterial hydrogel dressing coupled with electrical stimulation for the promotion of diabetic wound healing. Chem. Eng. J. 2021, 415, 129025. [Google Scholar] [CrossRef]
- Song, F.; Gong, J.; Tao, Y.; Cheng, Y.; Lu, J.; Wang, H. A robust regenerated cellulose-based dual stimuli-responsive hydrogel as an intelligent switch for controlled drug delivery. Int. J. Biol. Macromol. 2021, 176, 448–458. [Google Scholar] [CrossRef]
- Qu, J.; Liang, Y.; Shi, M.; Guo, B.; Gao, Y.; Yin, Z. Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release. Int. J. Biol. Macromol. 2019, 140, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Bardajee, G.R.; Hooshyar, Z. One-pot synthesis of biocompatible superparamagnetic iron oxide nanoparticles/hydrogel based on salep: Characterization and drug delivery. Carbohydr. Polym. 2014, 101, 741–751. [Google Scholar] [CrossRef]
- Hosseini, M.S.; Nabid, M.R. Synthesis of chemically cross-linked hydrogel films based on basil seed (Ocimum basilicum L.) mucilage for wound dressing drug delivery applications. Int. J. Biol. Macromol. 2020, 163, 336–347. [Google Scholar] [CrossRef]
- Colobatiu, L.; Gavan, A.; Potarniche, A.V.; Rus, V.; Diaconeasa, Z.; Mocan, A.; Tomuta, I.; Mirel, S.; Mihaiu, M. Evaluation of bioactive compounds-loaded chitosan films as a novel and potential diabetic wound dressing material. React. Funct. Polym. 2019, 145, 104369. [Google Scholar] [CrossRef]
- Rajabi, M.; McConnell, M.; Cabral, J.; Ali, M.A. Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr. Polym. 2021, 260, 117768. [Google Scholar] [CrossRef] [PubMed]
- Colobatiu, L.; Gavan, A.; Mocan, A.; Bogdan, C.; Mirel, S.; Tomuta, I. Development of bioactive compounds-loaded chitosan films by using a QbD approach—A novel and potential wound dressing material. React. Funct. Polym. 2019, 138, 46–54. [Google Scholar] [CrossRef]
- Li, J.; Xie, B.; Xia, K.; Zhao, C.; Li, Y.; Li, D.; Han, J. Facile synthesis and characterization of cross-linked chitosan quaternary ammonium salt membrane for antibacterial coating of piezoelectric sensors. Int. J. Biol. Macromol. 2018, 120, 745–752. [Google Scholar] [CrossRef]
- Ghazaie, M.; Ghiaci, M.; Soleimanian-Zad, S.; Behzadi-Teshnizi, S. Preparing natural biocomposites of N-quaternary chitosan with antibacterial activity to reduce consumption of antibacterial drugs. J. Hazard. Mater. 2019, 371, 224–232. [Google Scholar] [CrossRef]
- Andreica, B.I.; Cheng, X.; Marin, L. Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. Eur. Polym. J. 2020, 139, 110016. [Google Scholar] [CrossRef]
- Hu, F.; Zhou, Z.; Xu, Q.; Fan, C.; Wang, L.; Ren, H.; Xu, S.; Ji, Q.; Chen, X. A novel pH-responsive quaternary ammonium chitosan-liposome nanoparticles for periodontal treatment. Int. J. Biol. Macromol. 2019, 129, 1113–1119. [Google Scholar] [CrossRef]
- Xia, C.; Fu, B.; Zhang, X.; Qin, C.; Jin, J.C. Chitosan quaternary ammonium salt induced mitochondrial membrane permeability transition pore opening study in a spectroscopic perspective. Int. J. Biol. Macromol. 2020, 165, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Pardeshi, C.V.; Agnihotri, V.V.; Patil, K.Y.; Pardeshi, S.R.; Surana, S.J. Mannose-anchored N,N,N-trimethyl chitosan nanoparticles for pulmonary administration of etofylline. Int. J. Biol. Macromol. 2020, 165, 445–459. [Google Scholar] [CrossRef]
- Vasile, B.S.; Oprea, O.; Voicu, G.; Ficai, A.; Andronescu, E.; Teodorescu, A.; Holban, A. Synthesis and characterization of a novel controlled release zinc oxide/gentamicin–chitosan composite with potential applications in wounds care. Int. J. Pharmaceut. 2014, 463, 161–169. [Google Scholar] [CrossRef]
- Nain, A.K. Volumetric and ultrasonic study of l-arginine/l-histidine and gentamicin sulphate in aqueous medium at different temperatures. J. Mol. Liq. 2020, 315, 113736. [Google Scholar] [CrossRef]
- Michalska-Sionkowska, M.; Kaczmarek, B.; Walczak, M.; Sionkowska, A. Antimicrobial activity of new materials based on the blends of collagen/chitosan/hyaluronic acid with gentamicin sulfate addition. Mat. Sci. Eng. C-Mater. 2018, 86, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, N.; Martins, M.; Martins, A.; Fonseca, N.A.; Moreira, J.N.; Reis, R.L.; Neves, N.M. Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater. 2015, 18, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Bayoumi, A.; Sarg, M.T.; Fahmy, T.Y.A.; Mohamed, N.F.; El-Zawawy, W.K. The behavior of natural biomass materials as drug carriers in releasing loaded Gentamicin sulphate. Arab. J. Chem. 2020, 13, 8920–8934. [Google Scholar] [CrossRef]
- Sionkowska, A.; Kaczmarek, B.; Gadzala-Kopciuch, R. Gentamicin release from chitosan and collagen composites. J. Drug Deliv. Sci. Technol. 2016, 35, 353–359. [Google Scholar] [CrossRef]
- Acosta-Ferreira, S.; Castillo, O.S.; Madera-Santana, J.T.; Mendoza-Garcia, D.A.; Nunez-Colin, C.A.; Grijalva-Verdugo, C.; Villa-Lerma, A.G.; Morales-Vargas, A.T.; Rodriguez-Nunez, J.R. Production and physicochemical characterization of chitosan for the harvesting of wild microalgae consortia. Biotechnol. Rep. 2020, 28, e00554. [Google Scholar] [CrossRef]
- Ghaee, A.; Nourmohammadi, J.; Danesh, P. Novel chitosan-sulfonated chitosan-polycaprolactone-calcium phosphate nanocomposite scaffold. Carbohydr. Polym. 2017, 157, 695–703. [Google Scholar] [CrossRef]
- Jiang, R.; Zhu, H.; Yao, J.; Fu, Y.; Guan, Y. Chitosan hydrogel films as a template for mild biosynthesis of CdS quantum dots with highly efficient photocatalytic activity. Appl. Surf. Sci. 2012, 258, 3513–3518. [Google Scholar] [CrossRef]
- Kiti, K.; Suwantong, O. Bilayer wound dressing based on sodium alginate incorporated with curcumin-β-cyclodextrin inclusion complex/chitosan hydrogel. Int. J. Biol. Macromol. 2020, 164, 4113–4124. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.; Khoshfetrat, A.B.; Khatami, N.; Ahmadian, M.; Rahbarghazi, R. Comparative study of collagen and gelatin in chitosan-based hydrogels for effective wound dressing: Physical properties and fibroblastic cell behavior. Biochem. Bioph. Res. Commun. 2019, 518, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Lou, C.; Tian, X.; Deng, H.; Wang, Y.; Jiang, X. Dialdehyde-β-cyclodextrin-crosslinked carboxymethyl chitosan hydrogel for drug release. Carbohydr. Polym. 2020, 231, 115678. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tan, W.; Wei, L.; Chen, Y.; Mi, Y.; Sun, X.; Li, Q.; Dong, F.; Guo, Z. Synthesis of urea-functionalized chitosan derivatives for potential antifungal and antioxidant applications. Carbohydr. Poly. 2019, 215, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Zhang, J.; Zhao, X.; Li, Q.; Dong, F.; Guo, Z. Preparation and physicochemical properties of antioxidant chitosan ascorbate/methylcellulose composite films. Int. J. Biol. Macromol. 2020, 146, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Changez, M.; Burugapalli, K.; Koul, V.; Choudhary, V. The effect of composition of poly(acrylic acid)-gelatin hydrogel on gentamicin sulphate release: In vitro. Biomaterials 2003, 24, 527–536. [Google Scholar] [CrossRef]
- Meißner, R.; Bertol, L.; Rehman, M.A.U.; dos Santos, L.A.L.; Boccaccini, A.R. Bioprinted 3D calcium phosphate scaffolds with gentamicin releasing capability. Ceram. Int. 2019, 45, 7090–7094. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, M.; Woo, M.W.; Li, Y.; Han, W.; Dang, X. High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. Carbohydr. Polym. 2021, 256, 117590. [Google Scholar] [CrossRef]
Film | Thickness (μm) | Density (g/cm3) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|---|
TMCS | 93 ± 4 | 0.107 ± 0.005 | 18.63 ± 0.69 | 23.11 ± 1.84 |
CTMCSG-1 | 125 ± 8 | 0.105 ± 0.007 | 4.71 ± 1.02 | 26.73 ± 1.38 |
CTMCSG-2 | 123 ± 5 | 0.105 ± 0.005 | 18.25 ± 1.78 | 29.06 ± 2.90 |
CTMCSG-3 | 125 ± 5 | 0.107 ± 0.005 | 10.12 ± 0.35 | 35.58 ± 1.56 |
CTMCSG-4 | 124 ± 4 | 0.111 ± 0.004 | 7.44 ± 0.26 | 87.87 ± 2.46 |
CTMCSG-5 | 125 ± 6 | 0.110 ± 0.005 | 5.63 ± 0.37 | 84.92 ± 3.64 |
Film | Water Content (%) | Swelling Degree (%) | Water Vapor Permeability (×10−10·g·m/m2·Pa·s) |
---|---|---|---|
TMCS | 19.58 ± 2.51 | / | 10.20 ± 0.57 |
CTMCSG-1 | 25.11 ± 2.17 | 290.07 ± 17.16 | 8.71 ± 0.31 |
CTMCSG-2 | 27.37 ± 3.65 | 265.66 ± 21.52 | 7.35 ± 0.67 |
CTMCSG-3 | 25.80 ± 3.38 | 253.22 ± 23.12 | 7.07 ± 0.88 |
CTMCSG-4 | 26.31 ± 3.39 | 243.74 ± 11.82 | 6.51 ± 0.28 |
CTMCSG-5 | 26.15 ± 0.96 | 243.28 ± 19.35 | 6.14 ± 0.57 |
Reagent | Product Code | Specification | Reagent | Product Code | Specification |
---|---|---|---|---|---|
NMP | 30121518 | AR, 500 mL | Glycerin | 10010618 | AR, 500 mL |
Ethanol | 100092183 | AR, 500 mL | Iodomethane | 80084117 | AR, 250 mL |
Sodium Hydroxide | 10019762 | AR, 500 g | Sodium iodide | S105953 | AR, 100 g |
Epichlorohydrin | 80058918 | AR, 500 mL | Gentamicin sulfate | G100391 | AR, 25 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Tan, W.; Li, Q.; Liu, X.; Guo, Z. Preparation of Cross-linked Chitosan Quaternary Ammonium Salt Hydrogel Films Loading Drug of Gentamicin Sulfate for Antibacterial Wound Dressing. Mar. Drugs 2021, 19, 479. https://doi.org/10.3390/md19090479
Zhang J, Tan W, Li Q, Liu X, Guo Z. Preparation of Cross-linked Chitosan Quaternary Ammonium Salt Hydrogel Films Loading Drug of Gentamicin Sulfate for Antibacterial Wound Dressing. Marine Drugs. 2021; 19(9):479. https://doi.org/10.3390/md19090479
Chicago/Turabian StyleZhang, Jingjing, Wenqiang Tan, Qing Li, Xiaorui Liu, and Zhanyong Guo. 2021. "Preparation of Cross-linked Chitosan Quaternary Ammonium Salt Hydrogel Films Loading Drug of Gentamicin Sulfate for Antibacterial Wound Dressing" Marine Drugs 19, no. 9: 479. https://doi.org/10.3390/md19090479
APA StyleZhang, J., Tan, W., Li, Q., Liu, X., & Guo, Z. (2021). Preparation of Cross-linked Chitosan Quaternary Ammonium Salt Hydrogel Films Loading Drug of Gentamicin Sulfate for Antibacterial Wound Dressing. Marine Drugs, 19(9), 479. https://doi.org/10.3390/md19090479