Biomedical Compounds from Marine organisms
Abstract
:Introduction
Availability of Marine Natural Products
Some Clues from the Physiological Study of Marine Organisms
Marine Bacteria as a Source of Metabolites
Metabolites from Marine Cyanobacteria
Metabolites from seaweeds
Metabolites from Sponges
Metabolites from Cnidarians
Metabolites from bryozoans
Metabolites from molluscs
Metabolites for tunicates
Metabolites from echinoderms
Metabolites from Fish, Sea Snakes and Marine Mammals
Conclusions
References
- Harvey, A. Strategies for discovering drugs from previously unexplored natural products. Drug Discov Today 2000, 5, 294–300. [Google Scholar]
- McCarthy, P. J.; Pomponi, S.A. A search for new Pharmaceutical Drugs from marine organisms. Marine Biomed. Res. 2004, pp. 1–2. www.at_sea.org/missions/fathoming/biomedical.html.
- Donia, M.; Hamann, M. T. Marine natural products and their potential applications as antiinfective agents. The Lancet 2003, 3, 338–348. [Google Scholar]
- Haefner, B. Drugs from the Deep. Drug Discov. Today 2003, 8, 536–544. [Google Scholar]
- Fuesetani, N. Drugs from the Sea; Fuesetani, M., Ed.; Basel; Karger, 2000; Volume Chapter 1, pp. 1–5. [Google Scholar]
- Joffe, S.; Thomas, R. Phytochemicals: a renewable global resource. Biotech News Information 1989, 1, 697–700. [Google Scholar]
- Faulkner, D. Biomedical uses for natural marine chemicals. J. Oceanus 1992, 35, 29–35. [Google Scholar]
- Wolf, S. G. Drugs from the Sea; Kaul, P. N., Siderman, C. S., Eds.; The University of Oklahoma Press: Norman, 1978; pp. 7–15. [Google Scholar]
- Halvey, S. Microbiology: Applications in Food Biotechnology; Nga, B. H., Lu, Y. K., Eds.; Elsevier Applied Science Press: New York, 1990; pp. 123–134. [Google Scholar]
- Salisbury, F. Doubts about the modern synthetic theory of evolution. Am Biol Teach 1971, 33, 335–336. [Google Scholar]
- Grant, P. T.; Mackie, A. M. Drugs from the sea-facts and fantasy. Nature 1977, 267, 786–788. [Google Scholar]
- Hamilton, S.C.; Farchaus, J.W.; Davis, M.C. DNA polymerases as engines for biotechnology. Biotechniques 2001, 31. [Google Scholar]
- Hunneke, G.; Raffin, J. P.; Ferrari, E.; Jonsson, Z. O.; Deitrich, J.; Hubscher, U. The PCNA from Thermococcus fumicolans functionally interacts with DNA polymerase delta. Biochem. Biophys. Res. Commun 2000, 276, 600–606. [Google Scholar]
- Carte, B. K. Biomedical potential of marine natural products. Bioscience 1996, 46, 271–286. [Google Scholar]
- Hugenholtz, P.; Pace, N. R. Identifying microbial diversity in natural environment: a molecular phylogenetic approach. Trends Biotechnol 1996, 14, 190–197. [Google Scholar]
- Fenical, W. Chemical studies of marine bacteria: developing a new resource. Chem Rev 1993, 1673–1683. [Google Scholar]
- Fenical, W.; Jensen, P. R. Marine Biotechnology; Attaway, D., Zaborsky, O., Eds.; Plenum Press: New York, 1993; Volume 1, pp. 419–457. [Google Scholar]
- Bertoldo, C.; Antranikian, G. Starch hydrolyzing enzymes from thermophilic archea and bacteria. Curr Opin Chem Biol 2002, 6, 151–160. [Google Scholar]
- Gustafson, K.; Roman, M.; Fenical, W. The microlactins, a novel class of antiviral and cytotoxic macrolides from deep-sea marine bacterium. J Am Chem Soc 1989, 111, 7519–7524. [Google Scholar]
- Stierle, A. Montana invests-Building a better Montana; Montana Technology of the University of Montana, 2002; pp. 1–4. www.mcu.Montana.edu/musdata/results.
- Kao, C. Y.; Levinson, S. R. Tetrodotoxin, saxitoxin and the molecular biology of the sodium channel; New York Academy of Sciences: New York, 1986; 497Chapter 1pp. 1–13. [Google Scholar]
- Dechraoui, M. Y.; Naar, J.; Pauillac, S.; Legrand, A. M. Ciguatoxins and brevetoxins, neurotoxic polyether compounds active on sodium channels. Toxin 1999, 37, 125–143. [Google Scholar]
- Auyoung, E. A brief history and overview of Tetrodotoxin (TTX). MCB165-Molecular Neurobiology and Neurochemistry. 1999, pp. 1–2. www.sulcus.berkeley.edu/mcb/165-001/index.html.
- Kodama, M.; Ogata, T.; Sato, S. Bacterial production of saxitoxin. Agric Biol Chem 1988, 52, 1075–1077. [Google Scholar]
- Kodama, M.; Ogata, T.; Sato, T.; Sakamoto, S. Possible association of marine bacteria with paralytic shellfish toxicity of bivalves. Mar Ecol Prog Ser 1990, 61, 203–206. [Google Scholar]
- Simudu, U.; Kita-Tsukamoto, K.; Yasumoto, T.; Yotsu, M. Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int S Syst Bacteriol 1990, 40, 331–336. [Google Scholar]
- Moore, R. E.; Patterson, M. L.; Carmichael, W. W. Biomedical Importance of Marine Organisms; Fautin, D. G., Ed.; California Academy of Sciences: San Francisco, 1988; pp. 143–150. [Google Scholar]
- Beltron, E. C.; Nielan, B. A. Geographical segregation of Neurotoxin-producing Cyanobacterium Anabaena circinalis. App and Environ Microbiol 2000, 66, 4468–4474. [Google Scholar]
- Cardillina, J. H., II; Marner, F. J.; Moore, R. E. Seaweed dermatitis: structure of lyngbyatoxin A. Science 1979, 204, 193–195. [Google Scholar]
- Plavsic, M.; Terzic, S.; Ahel, M.; van den Berg, C. M. G. Folic acid in coastal waters of the Adriatic Sea. Mar Freshw Res 2004, 53, 1245–1252. [Google Scholar]
- Fujiki, H.; Sugimura, T. New classes of tumor promoters: telocin, aplysiatoxin and palytoxin. Adv Cancer Res 1987, 59, 223–264. [Google Scholar]
- Wender, P.A.; Koehler, K.E.; Sharkey, N.A.; Dell’Aquilla, H. L.; Blumberg, P.M. Analysis of phorbol ester pharmocophor on protein kinase C as a guide to the retional design of new classes of anlogas. Proc Natl Acod Sci, USA 1986, 83, 4214–4218. [Google Scholar]
- Abstract Mass-CT97-0156. Marine cyanobacteria as a source for bacterioactive (apoptosis modifying) compounds with potential as cell biology reagents and drugs. Short Popular Version. 2004, pp. 1–2. www.uib.no/med/avd/iac/mast-iii/Abstract.pdf.
- Asolkar, R. N.; Maskey, R. P.; Helmke, E.; Laatsch, H. Marine bacteria. XVI. Chalcomycin B, a new macrolide antibiotic from the marine isolate Streptomyces sp. B7064. J. Antibiot (Tokyo) 2002, 55, 893–898. [Google Scholar]
- Lin, Y.; Li, H; Jiang, G.; Zhou, S.; Vrijmoed, L. L. P.; Jones, E. B. G. A novel g-lactone, eutypoid-A and other metabolites from marine fungus Eutypa sp. (#424) from the South China Sea. Indian J Chem, Sect B: Org Chem Incl Med Chem 2002, 41B, 1542–1547. [Google Scholar]
- Yamada, T.; Iwamoto, C.; Yamagaki, N.; Yamanouchi, T.; Minoura, K.; Yamori, T.; Uehara, Y.; Andoh, T.; Umemura, K.; Numata, A. Leptosins M-N1, cytotoxic metabolites from a Leptosphaeria species separated from a marine alga. Structure determination and biological activities. Tetrahedron 2002, 58, 479–487. [Google Scholar]
- Afiyatullov, S. S.; Kalinovsky, A. I.; Kuznetsova, T. A.; Isakov, V. V.; Pivkin, M. V.; Dmitrenok, P. S.; Elyakov, G. B. New diterpene glycosides of the fungus Acremonium striatisporum isolated from a sea cucumber. J Nat Prod 2002, 65, 641–644. [Google Scholar]
- Abbanat, D.; Leighton, M.; Maiese, W.; Jones, E. B. G.; Pearce, C. J.; Greenstein, M. J. Cell wall-active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256. I. Taxonomy and fermentation. J Antibiot (Tokyo) 1998, 51, 296–302. [Google Scholar]
- Schlingmann, G.; Milne, L.; Carter, G. T. Isolation and identification of antifungal polyesters from the marine fungus Hypoxylon oceanicum LL-15G256. Tetrahedron 2002, 58, 6825–6835. [Google Scholar]
- Proteau, P. J.; Gerwick, W. H.; Garcia-Pichel, F.; Castenholtz, R. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 1993, 49, 825–829. [Google Scholar]
- Stevenson, C. S.; Capper, E. A.; Roshak, A. K.; Marquez, B.; Grace, K; Gerwick, W. H.; Jacobs, R. S.; Marshall, L. A. Scytomenin-a marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflammation Res 2002, 51, 112–118. [Google Scholar]
- Stevenson, C. S.; Capper, E. A.; Roshak, A. K.; Marquez, B.; Eichman, C.; Jackson, J. R.; Mattern, M.; Gerwick, W. H.; Jacobs, R. S.; Marshall, L. A. The Identification and Characterization of the Marine Natural Product Scytonemin as a Novel Antiproliferative Pharmacophore. J Pharmacol Exp Ther 2002, 303, 858–866. [Google Scholar]
- Murakami, M.; Makabe, K.; Yamaguchi, S.; Konosu, S.; Walchi, R. A novel polyether macrolide from the dinoflagellate Goniodoma pseudogoniaulax. Tetrahedron Lett 1988, 29, 1149–1152. [Google Scholar]
- Abe, M.; Inoue, D.; Matsunaga, K.; Ohizumi, Y.; Ueda, H.; Asano, T.; Murakami, M.; Sato, Y. Goniodomin A, an antifungal polyether macrolide, exhibits antiangiogenic activities via inhibition of actin reorganization in endothelial cells. J Cell Physiol 2002, 190, 109–116. [Google Scholar]
- Koehn, F.E.; Longley, R. E.; Reed, J. K. Microcolin A and B, new immunosuppressive peptides from the blue green alga Lyngbya majuscula. J Nat Prod 1992, 55, 613–619. [Google Scholar]
- Gerwick, W.H.; Proteau, P.J.; Nagh, D.G.; Hamel, E.; Blobhin, A.; Slate, D.L. Structure of cruacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majusula. J Org Chem 1994, 59, 1243–1245. [Google Scholar]
- Nagai, H.; Murata, M.; Torigoe, K.; Satake, M.; Yasumoto, T. Gambieric acids, new potent antifungal substance with unprecedented polyether structures from a marine dinoflagellate Gambierdiscus toxicus. J Org Chem Commun 1992, 57, 5448–5453. [Google Scholar]
- Shimizu, Y. Marine Biotechnology; Attaway, D., Zeborsky, O., Eds.; Plenum Press: New York, 1993; Volume I, pp. 391–410. [Google Scholar]
- Cohen, P.; Holmes, C.; Tsukitani, Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci 1990, 15, 98–102. [Google Scholar]
- Anderson, R.J.; Bolton, J. J.; Molloy, F.J.; Rothmann, K.W.G. Commercial seaweeds in southern Africa. In Procedings of the 17th International Seaweed Symposium; Chapman, R.O., Anderson, R.J., Vreeland, V. J., Davison, I.R., Eds.; Oxford University Press; Oxford, 2003; pp. 1–512. [Google Scholar]
- Critchley, A.T.; Gillespie, R.D.; Rotman, K.W.G. Seaweed Resources of the World; Critchley, M., Ohno, A.T., Eds.; Japan International Cooperation Agency: Japan, 1998; pp. 413–425. [Google Scholar]
- Faulkner, D.J. Marine natural products. Nat Prod Rep 2002, 19, 1–48. [Google Scholar]
- Garg, H.S.; Sharma, T.; Bhakuni, D.S.; Pramanik, B.N.; Bose, A.K. An antiviral sphingosine derivative from green alga Ulva fasciata. Tetrahedron lett 1992, 33, 1641–1644. [Google Scholar]
- Gerwick, W.H.; Fenical, W. Ichthyotoxic and cytotoxic metabolites of the tropical brown alga Stypopodium zonale. J Org Chem 1981, 46, 21–27. [Google Scholar]
- Jacobs, R. S.; Culver, P.; Langdon, R; O’Brien, T.; White, S. Some pharmacological observations on marine natural products. Tetrahedron 1985, 41, 981–984. [Google Scholar]
- Ireland, C.; Copp, B.; Foster, M.; McDonald, L.; Radisky, D.; Swersey, J. Marine Biology; Attaway, D., Zeborsky, O., Eds.; Plenum Press: New York, 1993; Volume I, pp. 1–43. [Google Scholar]
- Ali, M. S.; Saleem, M.; Yamdagni, R.; Ali, M. A. Steroid and antibacterial steroidal glycosides from marine green alga Codium iyengarii Borgesen. Nat Prod Lett 2002, 16, 407–413. [Google Scholar]
- Tang, H. -F.; Yi, Y. -H.; Yao, X. -S.; Xu, Q. -Z.; Zhang, S. -Y.; Lin, H. -W. Bioactive steroids from the brown alga Sargassum carpophyllum. J Asian Nat Prod Res 2002, 4, 95–105. [Google Scholar]
- Xu, S. -H.; Ding, L. -S.; Wang, M. -K.; Peng, S.-L.; Liao, X. Studies on the Chemical Constituents of the Algae Sargassum polycystum. Youji Huaxue (Chinese J Org Chem) 2002, 22, 138–140. [Google Scholar]
- Gerwick, W.H.; Bernart, M.W. Marine Biotechnology; Attaway, D., Zaborsky, O., Eds.; Plenum Press: New York, 1993; Volume I, pp. 101–152. [Google Scholar]
- Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine Natural products. Nat Prod Rep 2004, 21, 1–49. [Google Scholar]
- Burres, N.S.; Sazech, S.; Gunavardana, G.P.; Clement, J.J. Antitumor activity and nucleic acid binding properties of dercitin. Cancer Res 1989, 49, 5267–5274. [Google Scholar]
- Fuestani, N.; Sugawara, T.; Matsunago, S. Potent antitumor metabolites from a marine sponge. J Org Chem 1992, 57, 3828–3832. [Google Scholar]
- Perry, N.G.; Blunt, J.W.; Munro, H.H.G. Mycalamide A, and antiviral compound from a New Zealand sponge of the genus Mycale. J Am Chem Soc 1988, 110, 4850–4851. [Google Scholar]
- Sakemi, S.; Ichiba, T.; Kohmoto, S.; Saucy, G. Isolation and structure elucidation of onnamide A, a new bioactive metabolite of a marine sponge. Theonella sp. J Am Chem Soc 1988, 110, 4851–4853. [Google Scholar]
- Burres, N.S.; Clement, J.J. Antitumor activity and mechanism of action of the novel marine natural products mycalamide-A and –B and Onnamide. Cancer Res 1989, 49, 2935–2940. [Google Scholar]
- Pettit, G. R.; Collins, J.C.; Herald, D.L.; Doubek, D.L.; Boyd, M. R.; Schmidt, J.M.; Hooper, D.L.; Tackett, L.P. Isolation and structure of cribostatins1 and 2 from blue marine sponge, Cribrochalina sp. Can J Chem 1992, 70, 1170–1175. [Google Scholar]
- Petitt, G.R.; Cichacz, Z.A.; Gao, F.; Herald, C.L.; Boyd, M.R. Isolation and structure of the remarkable human cancer cell growth inhibitors spongistatins 2 and 3 from an Eastern India Ocean Spongia sp. J Chem Soc (Lond Chem Commun) 1993, 1, 1166–1168. [Google Scholar]
- Judulco, R.; Brauers, G.; Edrata, R.A.; Ebel, R.; Sudarsono; Wray, V.; Proksh, P. New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J Nat Prod 2002, 65, 730–733. [Google Scholar]
- Malmstrom, J.; Christophersen, C.; Barrero, A.F.; Oltra, J.E.; Justica, J.; Rosales, A. Bioactive Metabolites from a Marine-Derived Strain of the Fungus Emericella variecolor. J Nat Prod 2002, 65, 364–367. [Google Scholar]
- Linington, R.G.; Robertson, M.; Gauthier, A.; Finlay, B.B.; van Soest, R.; Anderson, R.J. An antimicrobial glycolipid isolated from the marine sponge Caminus sphaeroconia. Org Lett 2002, 4, 4089–4092. [Google Scholar]
- Aoki, K.; Takahashi, M.; Hashimoto, M.; Okuno, T.; Kurata, K.; Suzuki, M. Structure-activity relationship of neuritogenic spongean acetylene alcohols, lembehynes. Biosci Biotechnol Biochem 2002, 66, 1915–1921. [Google Scholar]
- De Silva, S. D.; Williams, D.E.; Andersen, R. J.; Klix, H.; Holmes, C.F.B.; Allen, T.M. A potent protein phosphatase inhibitor isolated from the Papau New Guinea sponge Theonella swinhoie Gray. Tetrahedron Lett 1992, 33, 1561–1564. [Google Scholar]
- Kato, Y.; Fusetani, N.; Matsunaga, S.; Hashimoto, K. Calculin A, a novel antitumor metabolite from marine sponge Discodermia calyx. J Am Chem Soc 1986, 108, 2780–2781. [Google Scholar]
- Potts, B.C.M.; Faulkner, D.J.; Jacobs, R.S. Phospholipase A2 inhibitors from marine organisms. J Nat Prod 1992, 55, 1701–1717. [Google Scholar]
- Shoji, N.; Umeyama, A.; Shin, K.; Takedo, K.; Ashihara, S. Two unique pentacyclic steroids with Cis C/D ring junction from Xestospongia bergquistia Fromont, powerful inhibitors of histamine release. J Org Chem 1992, 57, 2996–2997. [Google Scholar]
- Chan, G. W.; Mong, S.; Hemling, M.E.; Freyer, A. J.; Offen, P. H.; DeBrosse, C. W.; Sarau, H. M.; Westley, J.W. New leukotrine B4 receptor antagonist: leucettamine A and related imidazole alkaloids from the marine spongeLeucetta microraphis. J Nat Prod 116–121.
- Mynderse, J. S.; Moore, R.E. Isotactic polymethoxy-1-alkenes from the blue-green alga Tolypothrix conglutinata var. chlorata. Phytochemistry 1979, 18, 1181–183. [Google Scholar]
- Sandler, J. S.; Colin, P. L.; Hooper, J. N. A.; Faulkner, D. J. Cytotoxic b-carbolines and cyclic peroxides from the Palauan sponge Plakortis nigra. J Nat Prod 2002, 65, 1258–1261. [Google Scholar]
- Qureshi, A.; Salvá, J.; Harper, M. K.; Faulkner, D. J. New cyclic peroxides from the Philippine sponge Plakinastrella sp. J Nat Prod 1998, 61, 1539–1542. [Google Scholar]
- Jung, M.; Ham, J.; Song, J. First Total Synthesis of Natural 6-Epiplakortolide E. Org Lett 2002, 4, 2763–2765. [Google Scholar]
- Kuramoto, M.; Fujita, T.; Ono, N. Ircinamine, a novel cytotoxic alkaloid from Ircinia sp. Chem Lett 2002, 464–465. [Google Scholar]
- Williams, D. E.; Lassota, P.; Andersen, R. J. Motuporamines A–C, Cytotoxic Alkaloids Isolated from the Marine Sponge Xestospongia exigua (Kirkpatrick). J Org Chem 1998, 63, 4838–4841. [Google Scholar]
- Yousaf, M.; El Sayed, K. A.; Rao, K. V.; Lim, C. W.; Hu, J. -F.; Kelly, M.; Franzblau, S. G.; Zhang, F.; Peraud, O.; Hill, R. T.; Hamann, M. T. 12,34-Oxamanzamines, novel biocatalytic and natural products from manzamine producing Indo-Pacific sponges. Tetrahedron 2002, 58, 7397–7402. [Google Scholar]
- Iwashima, M.; Terada, I.; Iguchi, K.; Yamori, T. New biologically active marine sesquiterpenoid and steroid from the Okinawan sponge of the genus Axinyssa. Chem Pharm Bull 2002, 50, 1286–1289. [Google Scholar]
- Santafé, G.; Paz, V.; Rodríguez, J.; Jiménez, C. Novel cytotoxic oxygenated C29 sterols from the Colombian marine sponge Polymastia tenax. J Nat Prod 2002, 65, 1161–1164. [Google Scholar]
- Vanisree, M.; Subbaraju, G. V. Alcyonacean Metabolites VIII: Antibacterial metabolites from Labophytum crassum of the Indian Ocean. Asian J Chem 2002, 14, 957–960. [Google Scholar]
- Duh, C. -Y.; Chien, S. -C.; Song, P. -Y.; Wang, S. -K.; El-Gamal, A. A. H.; Dai, C. -F. New cadinene sesquiterpenoids from the Formosan soft coral Xenia puerto-galerae. J Nat Prod 2002, 65, 1853–1856. [Google Scholar]
- Palermo, J. A.; Rodríguez Brasco, M. F.; Spagnuolo, C.; Seldes, A. M. Illudalane sesquiterpenoids from the soft coral Alcyonium paessleri: the first natural nitrate esters. J Org Chem 2000, 65, 4482–4486. [Google Scholar]
- Witulski, B.; Zimmermann, A.; Gowans, N. D. First total synthesis of the marine illudalane sesquiterpenoid alcyopterosin E. Chem Commun 2002, 2984–2985. [Google Scholar]
- Wang, G. -H.; Ahmed, A. F.; Kuo, Y. -H.; Sheu, J. -H. Two new subergane-based sesquiterpenes from a Taiwanese gorgonian coral Subergorgia suberosa. J Nat Prod 2002, 65, 1033–1036. [Google Scholar]
- Rudi, A.; Levi, S.; Benayahu, Y.; Kashman, Y. Lemnaflavoside, a new diterpene glycoside from the soft coral Lemnalia flava. J Nat Prod 2002, 65, 1672–1674. [Google Scholar]
- Iwashima, M.; Terada, I.; Okamoto, K.; Iguchi, K. Tricycloclavulone and clavubicyclone, novel prostanoid-related marine oxylipins, isolated from the Okinawan soft coral Clavularia viridis. J Org Chem 2002, 67, 2977–2981. [Google Scholar]
- Mori, K.; Iguchi, K.; Yamada, N.; Yamada, Y.; Inouye, Y. Bioactive marine diterpenoids from Japanese soft coral of Clavularia spp. Chem Pharm Bull 1988, 36, 2840–2852. [Google Scholar]
- Iguchi, K.; Sawai, H.; Nishimura, H.; Fujita, M.; Yamori, T. New dolabellane-type diterpenoids from the Okinawan soft coral of the genus Clavularia. Bull Chem Soc Jpn 2002, 75, 131–136. [Google Scholar]
- Taglialatela-Scafati, O.; Deo-Jangra, U.; Campbell, M.; Roberge, M.; Andersen, R. J. Diterpenoids from Cultured Erythropodium caribaeorum. Org Lett 2002, 4, 4085–4088. [Google Scholar]
- He, X. -X.; Su, J. -Y.; Zeng, L.-M.; Yang, X. -P.; Liang, Y. -J. Studies on the secondary metabolite of the soft coral Lobophytum sp. Huaxue Xuebao (ACTA Chim Sinica) 2002, 60, 334–337. [Google Scholar]
- Alam, N.; Hong, J.; Lee, C. -O.; Choi, J. S.; Im, K. S.; Jung, J. H. Additional cytotoxic diacetylenes from the stony coral Montipora sp. Chem Pharm Bull 2002, 50, 661–662. [Google Scholar]
- Monastyrnaya, M. M.; Zykova, T. A.; Apalikova, O. V.; Shwets, T. V.; Kozlovskaya, E. P. Biologically active polypeptides from the tropical sea anemone Radianthus macrodactylus. Toxicon 2002, 40, 1197–1217. [Google Scholar]
- Loret, E. P.; del Valle, R. M. S.; Mansuelle, P.; Sampieri, F.; Rochat, H. Positively charged amino acid residues located similarly in sea anemone and scorpion toxins. J Biol Chem 1994, 269, 16785–16788. [Google Scholar]
- Bosmans, F.; Aneiros, A.; Tytgat, J. The sea anemone Bunodosoma granulifera contains surprisingly efficacious and potent insect-selective toxins. FEBS Lett 2002, 532, 131–134. [Google Scholar]
- Roussis, V.; Wu, Z.; Fenical, W.; Stobel, S.A.; Van Duyne, D.G.; Clardy, J. New anti-inflammatory pseudopterosins from the marine octocoral Pseudopterogorgia elisabethae. J Org Chem 1990, 55, 4916–4922. [Google Scholar]
- Lilies, G. Gambling on marine biotechnology. Bioscience 1996, 46, 250–253. [Google Scholar]
- Lysek, N.; Rachor, E.; Lindel, T. Isolation and Structure Elucidation of Deformylflustrabromine from the North Sea Bryozoan Flustra foliacea. Z. Naturforsch., C: Biosci 2002, 57, 1056–1061. [Google Scholar]
- Narkowicz, C. K.; Blackman, A. J.; Lacey, E.; Gill, J. H.; Heiland, K. Convolutindole A and convolutamine H, new nematocidal brominated alkaloids from the marine bryozoan Amathia convoluta. J Nat Prod 2002, 65, 938–941. [Google Scholar]
- Jeong, S. -J.; Higuchi, R.; Miyamoto, T.; Ono, M.; Kuwano, M.; Mawatari, S. F. Bryoanthrathiophene, a new antiangiogenic constituent from the bryozoan Watersipora subtorquata (d’Orbigny, 1852). J Nat Prod 2002, 65, 1344–1345. [Google Scholar]
- Blackman, A. J.; Matthews, D. J. Amathamide alkaloids from the marine bryozoan Amathia wilsoni Kirkpatrick. Heterocycles 1985, 23, 2829–2833. [Google Scholar]
- Ramirez Osuna, M.; Aguirre, G.; Somanathan, R.; Molins, E. Asymmetric synthesis of amathamides A and B: novel alkaloids isolated from Amathia wilsoni. Tetrahedron-Asymmet 2002, 13, 2261–2266. [Google Scholar]
- Pettit, G.R. Progress in the Chemistry of Organic Natural Products; Herz, W., Kinby, G.W., Steglich, W., Tamm, C., Eds.; Springer Verlag: Berlin, 1991; Volume 57, pp. 153–195. [Google Scholar]
- Zhang, H.; Shigemori, H.; Ichibashi, M.; Kosaka, T.; Pettit, G.R.; Kamano, Y.; Kobayashi, J. Convolutamides A–F, novel γ-lactam alkaloids from the marine bryozoan Amathia convoluta. Tetrahedron 1994, 50, 10201–10206. [Google Scholar]
- Princep, M.R.; Blunt, J.W.; Munro, M.H.G. New cytotoxic B-carboline alkaloids from the marine bryzoans Cribricellina cribraria. J Nat Prod 1991, 54, 1068–1076. [Google Scholar]
- Holst, P.B.; Anthoni, U.; Christophersen, C.; Neilson, P.N. Marine alkaloids, Two alkaloids, flustramine E and debromoflustramine B, from the marine bryozoan Flustra foliacea. J Nat Prod 1994, 57, 997–1000. [Google Scholar]
- Pickrell, J. “Wonder Drug” snails face threats, Expert warn. National Geographic News. 2003, pp. 1–2. http://news.nationalgeographic.com/news/2003/10/1016_031016_conesnails.html.
- Myers, P.A.; Cruz, L.Z.; Rivier, J.E.; Olivera, B.M. Conus peptides as chemical probes for receptors and ion channels. Chem Rev 1993, 93, 1923–1936. [Google Scholar]
- Pettit, G.R.; Singh, S.B.; Hogan, F.; Lloyd-williams, P.; Herald, C.L.; Burbett, D.D.; Clewlow, P.J. The absolute configuration and synthesis of natural (−)-dolostatin10. J Am Chem Soc 1989, 70, 5463–5465. [Google Scholar]
- Rorsener, J.A.; Scheuer, P.J. Ulapualids A and B, extraordinary antitumor macrolides from nudibranch egg masses. J Am Chem Soc 1986, 108, 846–847. [Google Scholar]
- Morris, S.A.; De Silva, E.D.; Anderson, R.J. Chromodorane diterpenes from the tropical dorid nudibranch Chromocloris cavae. Can J Chem 1990, 69, 768–771. [Google Scholar]
- Holmes, I. Snail toxin could ease chronic pain. Nature Science Update. 29 March 2002. http://www.manandmollusc.net/links_medicine.html.
- Ciavatta, M. L.; Trivellone, E.; Villani, G.; Cimino, G. Membrenones: new polypropionates from the skin of the Mediterranean mollusk Pleurobranchus membranaceus. Tetrahedron Lett 1993, 34, 6791–6794. [Google Scholar]
- Sampson, R. A.; Perkins, M.V. Total Synthesis of (−)-(6S, 7S, 8S, 9R, 10S, 2’S)-Membrenone-A and (−)-(6S, 7S, 8S, 9R, 10S)-Membrenone-B and Structural Assignment of Membrenone-C. Org Lett 2002, 4, 1655–1658. [Google Scholar]
- Paterson, I.; Chen, D. Y. -K.; Franklin, A. S. Total Synthesis of Siphonarin B and Dihydrosiphonarin B. Org Lett 2002, 4, 391–394. [Google Scholar]
- Hochlowski, J. E.; Coll, J. C.; Faulkner, D. J.; Biskupiak, J. E.; Ireland, C. M.; Zheng, Q. -T.; He, C. -H.; Clardy, J. Novel metabolites of four Siphonaria species. J Am Chem Soc 1984, 106, 6748–6750. [Google Scholar]
- Rajaganapathi, J.; Kathiresan, K.; Singh, T. P. Purification of Anti-HIV Protein from Purple Fluid of the Sea Hare Bursatella leachii de Blainville. Mar Biotechnol 2002, 4, 447–453. [Google Scholar]
- Spinella, A.; Zubía, E.; Martinez, E.; Ortea, J.; Cimino, G. Structure and stereochemistry of aplyolides A–E, lactonized dihydroxy fatty acids from the skin of the marine mollusk Aplysia depilans. J Org Chem 1997, 62, 5471–5475. [Google Scholar]
- Spinella, A.; Caruso, T.; Coluccini, C. First total synthesis of natural aplyolides B and D, ichthyotoxic macrolides isolated from the skin of the marine mollusk Aplysia depilans. Tetrahedron Lett 2002, 43, 1681–1683. [Google Scholar]
- Caruso, T.; Spinella, A. First total synthesis of natural aplyolides C and E, ichthyotoxic macrolides isolated from the skin of the marine mollusc Aplysia depilans. Tetrahedron-Asymmet 2002, 13, 2071–2073. [Google Scholar]
- Davidson, B.S. Ascidians: producers of amino acid derived metabolites. Chem Rev 1993, 93, 1771–1791. [Google Scholar]
- Sakai, R.; Stroch, J.C.; Sullins, D.W.; Rinehart, K.L. Seven new didemnins from the marine tunicate Trididemnin solidum. J Am Chem Soc 1995, 117, 3734–3748. [Google Scholar]
- Fujita, M.; Nakao, Y.; Matsunaga, S.; Nishikawa, T.; Fusetani, N. Sodium 1-(12-hydroxy) octadecanyl sulfate, an MMP2 inhibitor, isolated from a tunicate of the family Polyclinidae. J Nat Prod 2002, 65, 1936–1938. [Google Scholar]
- Rezanka, T.; Dembitsky, V. M. Eight-membered cyclic 1,2,3-trithiocane derivatives from Perophora viridis, an Atlantic tunicate. Eur J Org Chem 2002, 2400–2404. [Google Scholar]
- Jang, W. S.; Kim, K. N.; Lee, Y. S.; Nam, M. H.; Lee, I. H. Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate Halocynthia aurantium. FEBS Lett 2002, 521, 81–86. [Google Scholar]
- Lee, I. -H.; Zhao, C.; Nguyen, T.; Menzel, L.; Waring, A. J.; Sherman, M. A.; Lehrer, R. I. Clavaspirin, an antibacterial and haemolytic peptide from Styela clava. J Peptide Res 2001, 58, 445–456. [Google Scholar]
- Wright, A. D.; Goclik, E.; König, G. M.; Kaminsky, R. Lepadins D–F: Antiplasmodial and antitrypanosomal decahydroquinoline derivatives from the tropical marine tunicate Didemnum sp. J Med Chem 2002, 45, 3067–3072. [Google Scholar]
- Urban, S.; Blunt, J. W.; Munro, M. H. G. Coproverdine, a novel, cytotoxic marine alkaloid from a New Zealand ascidian. J Nat Prod 2002, 65, 1371–1373. [Google Scholar]
- Sakai, R.; Rinehart, K.L.; Guan, Y.; Wang, A.H.J. Seven new didemnins from the marine tunicate Tridemnin solidum. Proc Natl Acad Sci. USA 1992, 89, 11456–11460. [Google Scholar]
- Ortega, M. J.; Zubía, E.; Ocaña, J. M.; Naranjo, S.; Salvá, J. New rubrolides from the ascidian Synoicum blochmanni. Tetrahedron 2000, 56, 3963–3967. [Google Scholar]
- Bellina, F.; Anselmi, C.; Rossi, R. Total synthesis of rubrolide M and some of its unnatural congeners. Tetrahedron Lett 2002, 43, 2023–2027. [Google Scholar]
- Rinehart, K.L.; Shield, L.S.; Cohen-Parsonsm, M. Marine Biotechnology; Attaway, D., Zaborsky, O., Eds.; Plenum Press: New York, 1993; Volume II, pp. 309–342. [Google Scholar]
- Kinnel, R.; Scheuer, P. 11 hydroxy-staurosporine: a highlycytotoxic, powerful protein kinase C inhibitor from a tunicate. J Org Chem 1992, 57, 6327–6329. [Google Scholar]
- Carte, B.K.; Chan, G.; Freyer, A.; Hemling, M.E.; Hofmann, G.A.; Mattern, M.R.; Compagone, R.S.; Faulkner, D.J. Pentatheipins and trithianes from two Lissoclinum species and a Eudistoma sp.: inhibitors of protein kinase C. Tetrahedron 1994, 50, 12785–12792. [Google Scholar]
- Horton, P.A.; Longly, R.E.; McConnel, O.J.; Ballas, L.M. Staurosporine aglycone (K252-c) and acryriaflavin A from the marine ascidian Eudistoma sp. Experientia 1994, 50, 843–845. [Google Scholar]
- Foster, M.P.; Mayne, C.L.; Dunkel, R.; Pugmire, R.J.; Grant, D.M.; Kornprobst, J.; Verbist, J.; Biard, J.; Ireland, C.M. Revised structure of bistramide A (bistrane A): application for a program for the analysis of 2D INADEQUATE spectra. J Am Chem Soc 1992, 114, 1110–1111. [Google Scholar]
- Torres, Y. R.; Bugni, T. S.; Berlinck, R. G. S.; Ireland, C. M.; Magalhães, A.; Ferreira, A. G.; da Rocha, R. M. Sebastianines A and B, novel biologically active pyridoacridine alkaloids from the Brazilian ascidian Cystodytes dellechiajei. J Org Chem 2002, 67, 5429–5432. [Google Scholar]
- Suwanborirux, K.; Charupant, K.; Amnuoypol, S.; Pummangura, S.; Kubo, A.; Saito, N. Ecteinascidins 770 and 786 from the Thai tunicate Ecteinascidia thurstoni. J Nat Prod 2002, 65, 935–937. [Google Scholar]
- Yoshida, M.; Murata, M.; Inaba, K.; Morisawa, M. A chemoattractant for ascidian spermatozoa is a sulfated steroid. Proc Natl Acad Sci. U. S. A 2002, 99, 14831–14836. [Google Scholar]
- Kang, H.; Fenical, W. Polycarpine dihydrochloride: a cytotoxic dimeric disulfide alkaloid from the Indian Ocean ascidian Polycarpa clavata. Tetrahedron Lett 1996, 37, 2369–2372. [Google Scholar]
- Abas, S. A.; Hossain, M. B.; van der Helm, D.; Schmitz, F. J.; Laney, M.; Cabuslay, R.; Schatzman, R. C. Alkaloids from the Tunicate Polycarpa aurata from Chuuk Atoll. J Org Chem 1996, 61, 2709–2712. [Google Scholar]
- Popov, A. M.; Novikov, V.L.; Radchenko, O. S.; Elyakov, G. B. The cytotoxic and antitumor activities of the imidazole alkaloid polycarpin from the ascidian Polycarpa aurata and its synthetic analogues. Dokl Biochem Biophys 2002, 385, 213–218. [Google Scholar]
- Dubois, M.A.; Higuchi, R.; Komori, T.; Sasaki, T. Structure of two new oligoglycoside sulfates, pectinoside E and F, and biological activities of 6 new pectinosides. Liegbig’s Annalen der Chemis 1988, 845–850. [Google Scholar]
- Takada, N.; Watanabe, M.; Suenaga, K.; Yamada, K.; Kita, M.; Uemura, D. Isolation and structures of hedathiosulfonic acids A and B, novel thiosulfonic acids from the deep-sea urchin Echinocardium cordatum. Tetrahedron Lett 2001, 42, 6557–6560. [Google Scholar]
- Kita, M.; Watanabe, M.; Takada, N.; Suenaga, K.; Yamada, K.; Uemura, D. Hedathiosulfonic acids A and B, novel thiosulfonic acids from the deep-sea urchin Echinocardium cordatum. Tetrahedron 2002, 58, 6405–6412. [Google Scholar]
- Levina, E. V.; Andriyashchenko, P. V.; Kalinovsky, A. I.; Dmitrenok, P. S.; Stonik, V. A. Steroid Compounds from the Far Eastern Starfish Diplopteraster multiples. Russ J Bioorg Chem 2002, 28, 189–193. [Google Scholar]
- Levina, E. V.; Andriyashchenko, P. V.; Kalinovsky, A. I.; Dmitrenok, P. S.; Stonik, V. A.; Prokof’eva, N. G. Steroid compounds from the starfish Lysastrosoma anthosticta collected in the Sea of Japan. Russ Chem Bull 2002, 51, 535–539. [Google Scholar]
- Qi, J.; Ojika, M.; Sakagami, Y. Linckosides A and B, two new neuritogenic steroid glycosides from the Okinawan starfish Linckia laevigata. Bioorg Med Chem 2002, 10, 1961–1964. [Google Scholar]
- Hegde, V. R.; Chan, T. -M.; Pu, H.; Gullo, V. P.; Patel, M. G.; Das, P.; Wagner, N.; Parameswaran, P. S.; Naik, C. G. Two selective novel triterpene glycosides from sea cucumber, Telenota Ananas: inhibitors of chemokine receptor-5. Bioorg Med Chem Lett 2002, 12, 3203–3205. [Google Scholar]
- Asai, N.; Fusetani, N.; Matsunaga, S.; Sasaki, J. Sex pheromones of the hair crab Erimacrus isenbeckii. Part 1: Isolation and structures of novel ceramides. Tetrahedron 2000, 56, 9895–9899. [Google Scholar]
- Asai, N.; Fusetani, N.; Matsunaga, S. Sex Pheromones of the Hair Crab Erimacrus isenbeckii. II. Synthesis of Ceramides. J Nat Prod 2001, 64, 1210–1215. [Google Scholar]
- Masuda, Y.; Yoshida, M.; Mori, K. Pheromone, synthesis. Part 217. Synthesis of (2S, 2’R, 3S, 4R)-2-(2′-hydroxy-21′-methyldocosanoylamino)-1,3,4-pentadecanetriol, the ceramide sex pheromone of the female hair crab, Erimacrus isenbeckii. Biosci Biotechnol Biochem 2002, 66, 1531–1537. [Google Scholar]
- Peña-Cabrera, E.; Liebeskind, L. S. Squaric Acid Ester-Based Total Synthesis of Echinochrome A. J Org Chem 2002, 67, 1689–1691. [Google Scholar]
- Oliviera, J. S.; Pires Junior, O. R.; Morales, R.A.V.; Bloch Junior, C.; Schwartz, C. A.; Freitas, J. S. Toxicity of Puffer fish-two species (Lagocephalus laevigatus, linaeus 1766 and Sphoeroides spengleri, Bloch 1785) from the southeren Brazilian coast. J Venom Anim Toxins Incl Trop 2003, 9, 76–82. [Google Scholar]
- Moore, K. S.; Wehrli, S.; Roder, H.; Rogers, M.; Forrest, J. N.; McCrimmon, D.; Zasloff, M. Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci U.S.A 1993, 90, 1354–1358. [Google Scholar]
- Sci-Edu. New cancer Drug extracted from marine organism. People’s Daily. 2000, pp. 1–4. www.fpeng.peopledaily.com.cn/200012/05/eng.
- Anonymous. Venom Hunt finds ‘Harmless’ Snakes A Potential Danger. Science Daily. 2003, pp. 1–2. www.sciencedaily.com/release/2003/12.
© 2004 by MDPI Reproduction is permitted for noncommercial purposes.
Share and Cite
Jha, R.K.; Zi-rong, X. Biomedical Compounds from Marine organisms. Mar. Drugs 2004, 2, 123-146. https://doi.org/10.3390/md203123
Jha RK, Zi-rong X. Biomedical Compounds from Marine organisms. Marine Drugs. 2004; 2(3):123-146. https://doi.org/10.3390/md203123
Chicago/Turabian StyleJha, Rajeev Kumar, and Xu Zi-rong. 2004. "Biomedical Compounds from Marine organisms" Marine Drugs 2, no. 3: 123-146. https://doi.org/10.3390/md203123
APA StyleJha, R. K., & Zi-rong, X. (2004). Biomedical Compounds from Marine organisms. Marine Drugs, 2(3), 123-146. https://doi.org/10.3390/md203123