Structural Investigation of Aaptourinamine by a Novel Module-Assembly-Based Calculation
Abstract
:1. Introduction
2. Results
2.1. A Case Study of Spiroreticulatine
2.2. Structural Investigation of Aaptourinamine
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Animal Material
4.3. Extraction and Isolation
4.4. Procedure for the Dooerafa
4.5. Quantum Chemical Calculations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.W.; Vederas, J.C. Drug discovery and natural products: End of an era or an endless frontier? Science 2009, 325, 161–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherlach, K.; Hertweck, C. Mining and unearthing hidden bio-synthetic potential. Nat. Commun. 2021, 12, 3864. [Google Scholar] [CrossRef] [PubMed]
- Mohr, J.T.; Krout, M.R.; Stoltz, B.M. Natural products as inspiration for the development of asymmetric catalysis. Nature 2008, 455, 323–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirschning, A. Classical Methods in Structural Elucidation of Natural Products. By Reinhard W. Hoffmann. Angew. Chem. Int. Ed. 2018, 57, 10419. [Google Scholar] [CrossRef]
- Leão, P.N.; Nakamura, H.; Costa, M.; Pereira, A.R.; Martins, R.; Vasconcelos, V.; Gerwick, W.H.; Balskus, E.P. Biosynthesis-assisted structural elucidation of the bartolosides, chlorinated aromatic glycolipids from cyanobacteria. Angew. Chem. Int. Ed. 2015, 54, 11063–11067. [Google Scholar] [CrossRef] [Green Version]
- Williamson, R.T.; Buevich, A.V.; Martin, G.E.; Parella, T. LR-HSQMBC: A Sensitive NMR Technique to Probe Very Long-Range Heteronuclear Coupling Pathways. J. Org. Chem. 2014, 79, 3887–3894. [Google Scholar] [CrossRef]
- Gallou, F.; MacMillan, D.W.; Overman, L.E.; Paquette, L.A.; Pennington, L.D.; Yang, J. Enantioselective syntheses of authentic sclerophytin A, sclerophytin B, and cladiell-11-ene-3,6,7-triol. Org. Lett. 2001, 3, 135–137. [Google Scholar] [CrossRef]
- Bernardelli, P.; Moradei, O.M.; Friedrich, D.; Yang, J.; Gallou, F.; Dyck, B.P.; Doskotch, R.W.; Lange, T.; Paquette, L.A. Total Asymmetric Synthesis of the Putative Structure of the Cytotoxic Diterpenoid (−)-Sclerophytin A and of the Authentic Natural Sclerophytins A and B. J. Am. Chem. Soc. 2001, 123, 9021–9132. [Google Scholar] [CrossRef]
- Hájíček, J.; Taimr, J.; Buděšínský, M. Revised structure of isoschizogamine. Tetrahedron. Lett. 1998, 39, 505–508. [Google Scholar] [CrossRef]
- Hubbs, J.L.; Heathcock, C.H. Total synthesis of (+/−)-isoschizogamine. Org. Lett. 1999, 1, 1315–1317. [Google Scholar] [CrossRef]
- Cóbar, O.M.; Rodríguez, A.D.; Padilla, O.L.; Sánchez, J.A. The Calyculaglycosides: Dilophol-Type Diterpene Glycosides Exhibiting Antiinflammatory Activity from the Caribbean Gorgonian Eunicea sp. J. Org. Chem. 1997, 62, 7183–7188. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.P.; Rodríguez, A.D.; Padilla, O.L. Calyculaglycosides D and E, novel cembrane glycosides from the Caribbean gorgonian octocoral Eunicea species and structural revision of the aglycon of calyculaglycosides A-C. J. Nat. Prod. 2001, 64, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.C.; Mazzola, E.P.; Reynolds, W.F. The role of computer-assisted structure elucidation (CASE) programs in the structure elucidation of complex natural products. Nat. Prod. Rep. 2019, 36, 919–933. [Google Scholar] [CrossRef] [PubMed]
- Elyashberg, M.; Novitskiy, I.M.; Bates, R.W.; Kutateladze, A.G.; Williams, C.M. Reassignment of Improbable Natural Products Identified through Chemical Principle Screening. Eur. J. Org. Chem. 2022, 34, 81–88. [Google Scholar]
- Lv, T.M.; Chen, D.L.; Liang, J.J.; Bai, M.; Lin, B.; Huang, X.X.; Ma, G.X.; Song, S.J. Structural Revisions of Two Highly Aromatic Naphthoquinone Derived Dimers Based on NMR Analysis, Computer-Assisted Structure Elucidation Methods, and Computations. Org. Lett. 2021, 23, 7231–7235. [Google Scholar] [CrossRef]
- Elyashberg, M.E.; Williams, A.J. Computer-Based Structure Elucidation from Spectral Data: The Art of Solving Problems; Lecture Notes in Chemistry; Springer: Berlin/Heidelberg, Germany, 2015; pp. 13–55. [Google Scholar]
- Kessler, P.; Godejohann, M. Identification of tentative marker in Corvina and Primitivo wines with CMC-se. Magn Reson Chem. 2018, 56, 480–492. [Google Scholar] [CrossRef]
- Tantillo, D.J. Walking in the woods with quantum chemistry- applications of quantum chemical calculations in natural products research. Nat. Prod. Rep. 2013, 30, 1079–1086. [Google Scholar]
- Navarro-Vázquez, A. State of the art and perspectives in the application of quantum chemical prediction of 1H and 13C chemical shifts and scalar couplings for structural elucidation of organic compounds. Magn. Reson. Chem. 2017, 55, 29–32. [Google Scholar] [CrossRef]
- Howarth, A.; Ermanis, K.; Goodman, J.M. DP4-AI automated NMR data analysis: Straight from spectrometer to structure. Chem. Sci. 2020, 11, 4351–4359. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Tang, X.L.; Luo, X.C.; de Voogd, N.J.; Li, P.L.; Li, G.Q. (+)-and (-)-spiroreticulatine, a pair of unusual spiro bisheterocyclic quinolone-imidazole alkaloids from the South China Sea sponge fascaplysinopsis reticulate. Org. Lett. 2015, 17, 3458–3461. [Google Scholar]
- Allinger, N.L.; Yuh, Y.H.; Lii, J.H. Molecular Mxhanics. The MM3 Force Field for Hydrocarbon 3. 1. J. Am. Chem. Soc. 1989, 111, 8551–8566. [Google Scholar] [CrossRef]
- Fang, Y.; Yue, T.; Li, S.; Zhang, Z.; Liu, J.; Zhang, L. Molecular Dynamics Simulations of Self-Healing Topological Copolymers with a Comblike Structure. Macromolecules 2021, 54, 1095–1105. [Google Scholar] [CrossRef]
- MICRONMR. Available online: http://en.nmrdata.com/ (accessed on 21 February 2022).
- Marek, R.; Lycka, A. 15N NMR Spectroscopy in Structural Analysis. Curr. Org. Chem. 2002, 6, 35–66. [Google Scholar] [CrossRef]
- ACS Division of Organic Chemistry. Chemical Data. Available online: https://organicchemistrydata.org/links/#chemicaldata (accessed on 25 March 2022).
- Brastianos, H.C.; Vottero, E.; Patrick, B.O.; Soest, R.V.; Matainaho, T.; Mauk, A.G.; Andersen, R.J. Exiguamine A, an Indoleamine-2,3-dioxygenase (IDO) Inhibitor Isolated from the Marine Sponge Neopetrosia exigua. J. Am. Chem. Soc. 2006, 128, 16046–16047. [Google Scholar] [CrossRef] [PubMed]
- Firn, R. Nature’s Chemicals: The Natural Products that Shaped Our World, 3rd ed.; Oxford University Press: Oxford, UK, 2009; pp. 59–78. [Google Scholar]
- Katritzky, A.R.; Jug, K.; Oniciu, D.C. Quantitative Measures of Aromaticity for Mono-, Bi-, and Tricyclic Penta- and Hexaatomic Heteroaromatic Ring Systems and Their Interrelationships. Chem. Rev. 2001, 101, 1421–1450. [Google Scholar] [CrossRef]
- Watson, M.D.; Fechtenkötter, A.; Müllen, K. Big Is Beautiful—“Aromaticity” Revisited from the Viewpoint of Macromolecular and Supramolecular Benzene Chemistry. Chem. Rev. 2001, 101, 1267–1300. [Google Scholar] [CrossRef]
- Lodewyk, M.W.; Siebert, M.R.; Tantillo, D.J. Computational prediction of 1H and 13C chemical shifts: A useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem. Rev. 2012, 112, 1839–1862. [Google Scholar] [CrossRef]
- Schrödinger. Available online: https://www.schrodinger.com/products/macromodel (accessed on 15 March 2021).
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Shermo: A General Code for Calculating Molecular Thermochemistry Properties. Available online: http://bbs.keinsci.com/thread-17494–1-1.html (accessed on 11 January 2021).
- Jin, T.; Li, P.; Wang, C.; Tang, X.; Cheng, M.; Zong, Y.; Luo, L.; Ou, H.; Liu, K.; Li, G. Racemic Bisindole Alkaloids: Structure, Bioactivity, and Computational Study. Chin. J. Chem. 2021, 39, 2588–2598. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Wu, Z.; Jin, T.; Wang, C.; Li, P. Structural Investigation of Aaptourinamine by a Novel Module-Assembly-Based Calculation. Mar. Drugs 2022, 20, 649. https://doi.org/10.3390/md20100649
Shi X, Wu Z, Jin T, Wang C, Li P. Structural Investigation of Aaptourinamine by a Novel Module-Assembly-Based Calculation. Marine Drugs. 2022; 20(10):649. https://doi.org/10.3390/md20100649
Chicago/Turabian StyleShi, Xing, Zhihui Wu, Tianyun Jin, Cili Wang, and Pinglin Li. 2022. "Structural Investigation of Aaptourinamine by a Novel Module-Assembly-Based Calculation" Marine Drugs 20, no. 10: 649. https://doi.org/10.3390/md20100649
APA StyleShi, X., Wu, Z., Jin, T., Wang, C., & Li, P. (2022). Structural Investigation of Aaptourinamine by a Novel Module-Assembly-Based Calculation. Marine Drugs, 20(10), 649. https://doi.org/10.3390/md20100649