The Antimicrobial Peptide LJ-hep2 from Lateolabrax japonicus Exerting Activities against Multiple Pathogenic Bacteria and Immune Protection In Vivo
Abstract
:1. Introduction
2. Results
2.1. The Chemically Synthesized LJ-hep2(66–86) and Recombinant LJ-hep2 (rLJ-hep2) Obtained from P. pastoris Expression System
2.2. Antimicrobial Activity of LJ-hep2(66–86) and rLJ-hep2
2.3. Killing Kinetics of LJ-hep2(66–86)
2.4. LJ-hep2(66–86) Induces Morphological Changes in Bacteria
2.5. LJ-hep2(66–86) Promotes the Agglutination of Bacteria
2.6. The Antimicrobial Activity of LJ-hep2(66–86) Exhibits Thermal Stability
2.7. LJ-hep2(66–86) Shows No Cytotoxicity
2.8. High Sodium Ion Concentration Impairs the Antimicrobial Activity of LJ-hep2(66–86) against A. hydrophila
2.9. LJ-hep2(66–86) Improves the Survival of O. melastigma in A. hydrophila Infection
3. Discussion
4. Materials and Methods
4.1. Animals, Cell Lines and Microorganisms
4.2. Expression and Purification of Recombinant LJ-hep2 (rLJ-hep2) in the Yeast P. pastoris
4.3. Synthesis of the Mature Peptide LJ-hep2(66–86)
4.4. Antimicrobial Assays
4.5. Time-Killing Kinetics
4.6. Scanning Electron Microscope (SEM) Analysis
4.7. Bacterial Agglutination Assay
4.8. Thermal Stability Analysis
4.9. Cytotoxicity Assay
4.10. Sodium Ion Tolerance Analysis
4.11. Evaluation of the In Vivo Protective Effect of LJ-hep2(66–86) on A. hydrophila-Infected O. melastigma
4.12. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Bartley, D.M. World Aquaculture 2020–A brief overview. In FAO Fisheries and Aquaculture Circular No. 1233; FAO: Rome, Italy, 2022. [Google Scholar]
- De Silva, S.S.; Yuan, D. Regional review on status and trends in aquaculture development in Asia-Pacific–2020. In FAO Fisheries and Aquaculture Circular No. 1232/6; FAO: Rome, Italy, 2022. [Google Scholar]
- Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zeng, X.; Yang, Q.; Qiao, S. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. Int. J. Mol. Sci. 2016, 17, 603. [Google Scholar] [CrossRef] [PubMed]
- Shabir, U.; Ali, S.; Magray, A.R.; Ganai, B.A.; Firdous, P.; Hassan, T.; Nazir, R. Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: A review. Microb. Pathog. 2018, 114, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Masso-Silva, J.A.; Diamond, G. Antimicrobial peptides from fish. Pharmaceuticals 2014, 7, 265–310. [Google Scholar] [CrossRef] [Green Version]
- Krause, A.; Neitz, S.; Mägert, H.J.; Schulz, A.; Forssmann, W.G.; Schulz-Knappe, P.; Adermann, K. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000, 480, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Park, C.H.; Valore, E.V.; Waring, A.J.; Ganz, T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 2001, 276, 7806–7810. [Google Scholar] [CrossRef] [Green Version]
- Barton, J.C.; Acton, R.T. Hepcidin, iron, and bacterial infection. Vitam. Horm. 2019, 110, 223–242. [Google Scholar]
- Shike, H.; Lauth, X.; Westerman, M.E.; Ostland, V.E.; Carlberg, J.M.; Van Olst, J.C.; Shimizu, C.; Bulet, P.; Burns, J.C. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur. J. Biochem. 2002, 269, 2232–2237. [Google Scholar] [CrossRef]
- Padhi, A.; Verghese, B. Evidence for positive Darwinian selection on the hepcidin gene of Perciform and Pleuronectiform fishes. Mol. Divers. 2007, 11, 119–130. [Google Scholar] [CrossRef]
- Hilton, K.B.; Lambert, L.A. Molecular evolution and characterization of hepcidin gene products in vertebrates. Gene 2008, 415, 40–48. [Google Scholar] [CrossRef]
- Wang, K.J.; Cai, J.J.; Cai, L.; Qu, H.D.; Yang, M.; Zhang, M. Cloning and expression of a hepcidin gene from a marine fish (Pseudosciaena crocea) and the antimicrobial activity of its synthetic peptide. Peptides 2009, 30, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Neves, J.V.; Caldas, C.; Vieira, I.; Ramos, M.F.; Rodrigues, P.N. Multiple Hepcidins in a Teleost Fish, Dicentrarchus labrax: Different Hepcidins for Different Roles. J. Immunol. 2015, 195, 2696–2709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valero, Y.; Saraiva-Fraga, M.; Costas, B.; Guardiola, F.A. Antimicrobial peptides from fish: Beyond the fight against pathogens. Rev. Aquac. 2020, 12, 224–253. [Google Scholar] [CrossRef]
- Ren, H.L.; Wang, K.J.; Zhou, H.L.; Yang, M. Cloning and organisation analysis of a hepcidin-like gene and cDNA from Japan sea bass, Lateolabrax japonicus. Fish Shellfish Immunol. 2006, 21, 221–227. [Google Scholar] [CrossRef]
- Chen, J.-G.; Yang, J.-F.; Xiong, J.; Mao, Z.-J.; Wang, H.-L. The Innate Immune Response in Lateolabrax japonicus Induced by Lipopolysaccharide from Glaciecola polaris Strain ARK149 (LMG21854). Agric. Sci. China 2010, 9, 1504–1511. [Google Scholar] [CrossRef]
- Katsarou, A.; Pantopoulos, K. Hepcidin Therapeutics. Pharmaceuticals 2018, 11, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolas, G.; Viatte, L.; Lou, D.Q.; Bennoun, M.; Beaumont, C.; Kahn, A.; Andrews, N.C.; Vaulont, S. Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat. Genet. 2003, 34, 97–101. [Google Scholar] [CrossRef]
- Kovac, S.; Böser, P.; Cui, Y.; Ferring-Appel, D.; Casarrubea, D.; Huang, L.; Fung, E.; Popp, A.; Mueller, B.K.; Hentze, M.W. Anti-hemojuvelin antibody corrects anemia caused by inappropriately high hepcidin levels. Haematologica 2016, 101, e173–e176. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Wang, K.J.; Chen, J.H.; Qu, H.D.; Li, S.J. Genomic organization and tissue-specific expression analysis of hepcidin-like genes from black porgy (Acanthopagrus schlegelii B). Fish Shellfish Immunol. 2007, 23, 1060–1071. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Cheng, C.H.; Hu, P.; Ye, H.; Chen, Z.; Cao, L.; Chen, L.; Shen, Y.; Chen, L. Adaptive evolution of hepcidin genes in antarctic notothenioid fishes. Mol. Biol. Evol. 2008, 25, 1099–1112. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Sarath Babu, V.; Lin, L.; Hu, Y.; Zhang, Y.; Liu, X.; Su, J.; Li, J.; Zhao, L.; Yuan, G. Hepcidin protects grass carp (Ctenopharyngodon idellus) against Flavobacterium columnare infection via regulating iron distribution and immune gene expression. Fish Shellfish Immunol. 2018, 75, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, C.A.; Guzmán, F.; Cárdenas, C.; Marshall, S.H.; Mercado, L. Antimicrobial activity of trout hepcidin. Fish Shellfish Immunol. 2014, 41, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Gagliardo, B.; Faye, A.; Jaouen, M.; Deschemin, J.C.; Canonne-Hergaux, F.; Vaulont, S.; Sari, M.A. Production of biologically active forms of recombinant hepcidin, the iron-regulatory hormone. FEBS J. 2008, 275, 3793–3803. [Google Scholar] [CrossRef] [PubMed]
- Srinivasulu, B.; Syvitski, R.; Seo, J.K.; Mattatall, N.R.; Knickle, L.C.; Douglas, S.E. Expression, purification and structural characterization of recombinant hepcidin, an antimicrobial peptide identified in Japanese flounder, Paralichthys olivaceus. Protein Expr. Purif. 2008, 61, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yuan, Q.; Zhu, Y.; Ma, R. Expression and preparation of recombinant hepcidin in Escherichia coli. Protein Expr. Purif. 2005, 41, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Cai, J.J.; Liu, H.P.; Fan, D.Q.; Peng, H.; Wang, K.J. Recombinant medaka (Oryzias melastigmus) pro-hepcidin: Multifunctional characterization. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2012, 161, 140–147. [Google Scholar] [CrossRef]
- Koliaraki, V.; Marinou, M.; Samiotaki, M.; Panayotou, G.; Pantopoulos, K.; Mamalaki, A. Iron regulatory and bactericidal properties of human recombinant hepcidin expressed in Pichia pastoris. Biochimie 2008, 90, 726–735. [Google Scholar] [CrossRef]
- Qu, H.; Chen, B.; Peng, H.; Wang, K. Molecular cloning, recombinant expression, and antimicrobial activity of EC-hepcidin3, a new four-cysteine hepcidin isoform from Epinephelus coioides. Biosci. Biotechnol. Biochem. 2013, 77, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, C.A.; Santana, P.A.; Guzmán, F.; Marshall, S.; Mercado, L. Detection of the hepcidin prepropeptide and mature peptide in liver of rainbow trout. Dev. Comp. Immunol. 2013, 41, 77–81. [Google Scholar] [CrossRef]
- Silen, J.L.; Agard, D.A. The alpha-lytic protease pro-region does not require a physical linkage to activate the protease domain in vivo. Nature 1989, 341, 462–464. [Google Scholar] [CrossRef]
- Yang, M.; Chen, B.; Cai, J.J.; Peng, H.; Ling, C.; Yuan, J.J.; Wang, K.J. Molecular characterization of hepcidin AS-hepc2 and AS-hepc6 in black porgy (Acanthopagrus schlegelii): Expression pattern responded to bacterial challenge and in vitro antimicrobial activity. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011, 158, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Fatima, H.; Goel, N.; Sinha, R.; Khare, S.K. Recent strategies for inhibiting multidrug-resistant and β-lactamase producing bacteria: A review. Colloids Surf. B Biointerfaces 2021, 205, 111901. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Zhu, X.; Liu, Y.; Chen, F.; Wang, K.-J. A truncated peptide Sp-NPFin from the neuropeptide FII SpNPFII of Scylla paramamosain exhibiting potent antimicrobial activity. Aquaculture 2021, 533, 736145. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, F.; Chen, Y.C.; Peng, H.; Wang, K.J. The Long-Term Effect of a Nine Amino-Acid Antimicrobial Peptide AS-hepc3(48–56) against Pseudomonas aeruginosa with no Detectable Resistance. Front. Cell. Infect. Microbiol. 2021, 11, 752637. [Google Scholar] [CrossRef]
- Getahun, Y.A.; Ali, D.A.; Taye, B.W.; Alemayehu, Y.A. Multidrug-Resistant Microbial Therapy Using Antimicrobial Peptides and the CRISPR/Cas9 System. Vet. Med. 2022, 13, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, L.P.; Li, M.F.; Sun, L. Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection. Fish Shellfish Immunol. 2014, 38, 127–134. [Google Scholar] [CrossRef]
- Mohapatra, A.; Dixit, A.; Garg, L.C.; Sahoo, P.K. Hepcidin gene of Indian major carp, Labeo rohita: Molecular, structural and functional characterization, and antibacterial activity of recombinant hepcidin. Aquaculture 2019, 511, 734218. [Google Scholar] [CrossRef]
- Liu, Y.; Han, X.; Chen, X.; Yu, S.; Chai, Y.; Zhai, T.; Zhu, Q. Molecular characterization and functional analysis of the hepcidin gene from roughskin sculpin (Trachidermus fasciatus). Fish Shellfish Immunol. 2017, 68, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.R.; Liao, L.S.; Wang, R.G.; Jhu, C.S.; Wu, J.L.; Hu, S.Y. Molecular cloning and functional characterization of the hepcidin gene from the convict cichlid (Amatitlania nigrofasciata) and its expression pattern in response to lipopolysaccharide challenge. Fish Physiol. Biochem. 2015, 41, 449–461. [Google Scholar] [CrossRef]
- Katzenback, B.A. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts. Biology 2015, 4, 607–639. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, C.A.; Santana, P.A.; Salinas-Parra, N.; Beltrán, D.; Guzmán, F.; Vega, B.; Acosta, F.; Mercado, L. Immune Modulation Ability of Hepcidin from Teleost Fish. Animals 2022, 12, 1586. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.H. Teleost fish osmoregulation: What have we learned since August Krogh, Homer Smith, and Ancel Keys. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R704–R713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breves, J.P.; Keith, P.L.K.; Hunt, B.L.; Pavlosky, K.K.; Inokuchi, M.; Yamaguchi, Y.; Lerner, D.T.; Seale, A.P.; Grau, E.G. clc-2c is regulated by salinity, prolactin and extracellular osmolality in tilapia gill. J. Mol. Endocrinol. 2017, 59, 391–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imsland, A.K.; Gústavsson, A.; Gunnarsson, S.; Foss, A.; Árnason, J.; Arnarson, I.; Jónsson, A.F.; Smáradóttir, H.; Thorarensen, H. Effects of reduced salinities on growth, feed conversion efficiency and blood physiology of juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 2008, 274, 254–259. [Google Scholar] [CrossRef]
- Hsieh, J.C.; Pan, C.Y.; Chen, J.Y. Tilapia hepcidin (TH)2-3 as a transgene in transgenic fish enhances resistance to Vibrio vulnificus infection and causes variations in immune-related genes after infection by different bacterial species. Fish Shellfish Immunol. 2010, 29, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.Y.; Peng, K.C.; Lin, C.H.; Chen, J.Y. Transgenic expression of tilapia hepcidin 1-5 and shrimp chelonianin in zebrafish and their resistance to bacterial pathogens. Fish Shellfish Immunol. 2011, 31, 275–285. [Google Scholar] [CrossRef]
- Shan, Z.; Zhu, K.; Peng, H.; Chen, B.; Liu, J.; Chen, F.; Ma, X.; Wang, S.; Qiao, K.; Wang, K. The New Antimicrobial Peptide SpHyastatin from the Mud Crab Scylla paramamosain with Multiple Antimicrobial Mechanisms and High Effect on Bacterial Infection. Front. Microbiol. 2016, 7, 1140. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Chen, F.; Li, S.; Peng, H.; Wang, K.J. A Novel Antimicrobial Peptide Sparanegtin Identified in Scylla paramamosain Showing Antimicrobial Activity and Immunoprotective Role In Vitro and Vivo. Int. J. Mol. Sci. 2021, 23, 15. [Google Scholar] [CrossRef]
- Peng, H.; Liu, H.P.; Chen, B.; Hao, H.; Wang, K.J. Optimized production of scygonadin in Pichia pastoris and analysis of its antimicrobial and antiviral activities. Protein Expr. Purif. 2012, 82, 37–44. [Google Scholar] [CrossRef]
Microorganisms | CGMCC No. a | rLJ-hep2 | LJ-hep2(66–86) | ||
---|---|---|---|---|---|
MIC (μM) b | MBC (μM) b | MIC (μM) b | MBC (μM) b | ||
Gram-negative bacteria | |||||
Shigella flexneri | 1.1868 | 1.5–3 | 1.5–3 | 3–6 | 3–6 |
Pseudomonas fluorescens | 1.3202 | 12–24 | >48 | 6–12 | 6–12 |
Pseudomonas stutzeri | 1.1803 | >48 | >48 | 1.5–3 | 3–6 |
Escherichia coli | 1.2389 | >48 | >48 | 6–12 | 6–12 |
Pseudomonas aeruginosa | 1.2421 | >48 | >48 | 6–12 | 6–12 |
Aeromonas hydrophila | 1.2017 | >48 | >48 | 24–48 | 24–48 |
Edwardsiella tarda | _ c | >48 | >48 | 24–48 | 24–48 |
Aeromonas sobria | _ c | >48 | >48 | 24–48 | 24–48 |
Gram-positive bacteria | |||||
Staphylococcus epidermidis | 1.4260 | 1.5–3 | 1.5–3 | 6–12 | 6–12 |
Corynebacterium glutamicum | 1.1886 | 1.5–3 | 6–12 | 3–6 | 3–6 |
Bacillus subtilis | 1.3358 | 24–48 | >48 | 6–12 | 6–12 |
Fungi | |||||
Cryptococcus neoformans | 2.1563 | 12–24 | 12–24 | 12–24 | 24–48 |
Multidrug-Resistant Bacteria | MIC (μM) a | MBC (μM) a |
---|---|---|
Gram-negative bacteria | ||
Acinetobacter baumannii (QZ18050) | 1.5–3 | 3–6 |
Acinetobacter baumannii (QZ18055) | 1.5–3 | 3–6 |
Escherichia coli (QZ18109) | 3–6 | 3–6 |
Escherichia coli (QZ18110) | 3–6 | 6–12 |
Pseudomonas aeruginosa (QZ19124) | 6–12 | 12–24 |
Pseudomonas aeruginosa (QZ19125) | 6–12 | 12–24 |
Klebsiella pneumoniae (QZ18106) | 6–12 | 6–12 |
Klebsiella pneumoniae (QZ18107) | 12–24 | >48 |
Gram-positive bacteria | ||
Enterococcus faecium (QZ18080) | 6–12 | 6–12 |
Enterococcus faecium (QZ18081) | 6–12 | 6–12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, R.; An, Z.; Zhang, W.; Chen, F.; Wang, K.-J. The Antimicrobial Peptide LJ-hep2 from Lateolabrax japonicus Exerting Activities against Multiple Pathogenic Bacteria and Immune Protection In Vivo. Mar. Drugs 2022, 20, 651. https://doi.org/10.3390/md20100651
Gong R, An Z, Zhang W, Chen F, Wang K-J. The Antimicrobial Peptide LJ-hep2 from Lateolabrax japonicus Exerting Activities against Multiple Pathogenic Bacteria and Immune Protection In Vivo. Marine Drugs. 2022; 20(10):651. https://doi.org/10.3390/md20100651
Chicago/Turabian StyleGong, Ruihao, Zhe An, Weibin Zhang, Fangyi Chen, and Ke-Jian Wang. 2022. "The Antimicrobial Peptide LJ-hep2 from Lateolabrax japonicus Exerting Activities against Multiple Pathogenic Bacteria and Immune Protection In Vivo" Marine Drugs 20, no. 10: 651. https://doi.org/10.3390/md20100651
APA StyleGong, R., An, Z., Zhang, W., Chen, F., & Wang, K. -J. (2022). The Antimicrobial Peptide LJ-hep2 from Lateolabrax japonicus Exerting Activities against Multiple Pathogenic Bacteria and Immune Protection In Vivo. Marine Drugs, 20(10), 651. https://doi.org/10.3390/md20100651