Effect of Previous Frozen Storage, Canning Process and Packing Medium on the Fatty Acid Composition of Canned Mackerel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Moisture and Lipid Content of Initial and Canned Mackerel Muscle
2.2. FA Composition of Initial Packing Oils and Initial Mackerel Muscle
2.3. Effect of Canning Procedure on the FA Composition of Canned Mackerel Muscle
2.4. Effect of Packing Medium on the FA Composition of Canned Mackerel Muscle
2.5. Effect of Prior Frozen Storage on the FA Composition of Canned Mackerel Muscle
3. Materials and Methods
3.1. Initial Fish, Frozen Storage and Chemicals
3.2. Canning Process
3.3. Sampling Procedure
3.4. Assessment of Moisture and Lipid Content in Mackerel Muscle
3.5. Analysis of the FA Composition
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilami, S.K.; Sampels, S. Nutritional value of fish: Lipids, proteins, vitamins, and minerals. Rev. Fish. Sci. 2018, 26, 242–253. [Google Scholar]
- Minihane, A.; Armah, C.; Miles, E.; Madden, J.; Clark, A.; Caslake, M.; Calder, P. Consumption of fish oil providing amounts of eicosapentaenoic acid and docosahexaenoic acid that can be obtained from the diet reduces blood pressure in adults with systolic hypertension: A retrospective analysis. J. Nutr. 2016, 146, 516–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, P.; Richter, V.; Singer, K.; Löhlein, I. Analyses and declarations of omega-3 fatty acids in canned seafood may help to quantify their dietary intake. Nutrients 2021, 13, 2970. [Google Scholar] [CrossRef]
- Uauy, R.; Valenzuela, A. Marine oils: The health benefits of n-3 fatty acids. Nutrition 2000, 16, 680–684. [Google Scholar] [CrossRef]
- Komprda, T. Eicosapentaenoic and docosahexaenoic acids as inflammation-modulating and lipid homeostasis influencing nutraceuticals: A review. J. Funct. Foods 2012, 4, 25–38. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharm. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Sikorski, Z.; Kolakowski, E. Endogenous enzyme activity and seafood quality: Influence of chilling, freezing, and other environmental factors. In Seafood Enzymes; Haard, N., Simpson, B., Eds.; Marcel Dekker: New York, NY, USA, 2000; pp. 451–487. [Google Scholar]
- Campos, C.; Gliemmo, M.; Aubourg, S.P.; Barros-Velázquez, J. Novel technologies for the preservation of chilled aquatic food products. In Novel technologies in Food Science. Their Impact on Products, Consumer Trends and Environment; McElhatton, A., do Amaral, P., Eds.; Springer, Science and Business, Inc.: Heidelberg, Germany, 2012; Chapter 13; pp. 299–324. [Google Scholar]
- Aubourg, S.P. Review: Loss of quality during the manufacture of canned fish products. Food Sci. Technol. Int. 2001, 7, 199–215. [Google Scholar] [CrossRef] [Green Version]
- García-Arias, M.T.; Álvarez-Pontes, E.; García-Linares, M.C.; García-Fernández, M.C.; Sánchez-Muniz, F.J. Cooking-freezing-reheating (CFR) of sardine (Sardina pilchardus) fillets. Effect of different cooking and reheating procedures on the proximate and fatty acid compositions. Food Chem. 2003, 83, 349–356. [Google Scholar] [CrossRef]
- Tokur, B.; Korkmaz, K. Novel thermal sterilisation technologies in seafood processing. In Innovative Technologies in Seafood Processing; Özoğul, Y., Ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 303–322. [Google Scholar]
- Horner, W. Canning fish and fish products. In Fish Processing Technology, 2nd ed.; Hall, G., Ed.; Blackie Academic and Professional, Chapman and Hall: London, UK, 1997; pp. 119–159. [Google Scholar]
- Pitarch, J.L.; Vilas, C.; de Prada, C.; Palacín, C.G.; Alonso, A.A. Optimal operation of thermal processing of canned tuna under product variability. J. Food Eng. 2021, 304, 110594. [Google Scholar] [CrossRef]
- FAO Inform. Fishery and Aquaculture Statistics. Commodities, Yearbook 2019; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; p. 41. [Google Scholar]
- Banga, J.; Alonso, A.; Gallardo, J.M.; Pérez-Martín, R. Mathematical modelling and simulation of the thermal processing of anisotropic and non-homogeneous conduction-heated canned foods: Application to canned tuna. J. Food Eng. 1993, 18, 369–387. [Google Scholar] [CrossRef] [Green Version]
- Lukoshkina, M.; Odoeva, G. Kinetics of chemical reactions for prediction of quality of canned fish during storage. App. Bio-chem. Microb. 2003, 39, 321–327. [Google Scholar] [CrossRef]
- Naseri, M.; Rezaei, M. Lipid changes during long-term storage of canned sprat. J. Aquat. Food Prod. Technol. 2012, 21, 48–58. [Google Scholar] [CrossRef]
- Evangelista, W.P.; Silva, T.M.; Guidi, L.R.; Tette, P.A.S.; Byrro, R.M.D.; Santiago-Silva, P.; Fernandes, C.; Gloria, M.B.A. Quality assurance of histamine analysis in fresh and canned fish. Food Chem. 2016, 211, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Lazos, E.S. Freshwater nase (Chondrostoma nasus): Thermally processed as a potential food resource. J. Aquat. Food Prod. Technol. 1997, 6, 45–63. [Google Scholar] [CrossRef]
- Mohan, C.O.; Remya, S.; Ravishankar, C.N.; Vijayan, P.K.; Srinivasa Gopal, T.K. Effect of filling ingredient on the quality of canned yellowfin tuna (Thunnus albacares). Int. J. Food Sci. Technol. 2014, 49, 1557–1564. [Google Scholar] [CrossRef]
- Castrillón, A.; Navarro, P.; García-Arias, M. Tuna protein nutritional quality changes after canning. J. Food Sci. 1996, 61, 1250–1253. [Google Scholar] [CrossRef]
- Gómez-Limia, L.; Franco, I.; Martínez-Suárez, S. Effects of processing step, filling medium and storage on amino acid profiles and protein quality in canned European eels. J. Food Comp. Anal. 2021, 96, 103710. [Google Scholar] [CrossRef]
- Nazari, F.; Goli, M. The effect of replacing oil with water and NaCl with KCl on soybean oil hydrolysis and oxidation in canned skipjack tuna fish at the end of the 18-month shelf life. Food Sci. Biotechnol. 2017, 26, 49–53. [Google Scholar] [CrossRef]
- Lazarini, T.E.M.; Milani, R.F.; Yamashita, D.M.; Saron, E.S.; Morgano, M.A. Canned sardines commercialized in Brazil: Packaging and inorganic contaminants evaluation. Food Pack. Shelf Life 2019, 21, 100372. [Google Scholar] [CrossRef]
- Naseri, M.; Rezaei, M.; Moieni, S.; Hosseini, H.; Eskandari, S. Effects of different filling media on the oxidation and lipid quality of canned silver carp (Hypophthalmichthys molitrix). Int. J. Food Sci. 2011, 46, 1149–1156. [Google Scholar] [CrossRef]
- Barbosa, R.G.; Trigo, M.; Campos, C.A.; Aubourg, S.P. Preservative effect of algae extracts on lipid composition and rancidity development in brine–canned Atlantic chub mackerel (Scomber colias). Eur. J. Lipid Sci. Technol. 2019, 121, 1900129. [Google Scholar] [CrossRef]
- Ruiz-Roso, B.; Cuesta, I.; Pérez, M.; Borrego, E.; Pérez-Olleros, L.; Varela, G. Lipid composition and palatability of canned sardines. Influence of the canning process and storage in olive oil for five years. J. Sci. Food Agric. 1998, 77, 244–250. [Google Scholar] [CrossRef]
- Tarley, C.R.T.; Visentainer, J.V.; Matsushita, M.; de Souza, N.E. Proximate composition, cholesterol and fatty acids profile of canned sardines (Sardinella brasiliensis) in soybean oil and tomato sauce. Food Chem. 2004, 88, 1–6. [Google Scholar] [CrossRef]
- Prego, R.; Fidalgo, L.G.; Saraiva, J.A.; Vázquez, M.; Aubourg, S.P. Impact of prior high-pressure processing on lipid damage and volatile amines formation in mackerel muscle subjected to frozen storage and canning. LWT-Food Sci. Technol. 2021, 135, 109957. [Google Scholar] [CrossRef]
- Reblová, Z.; Aubourg, S.P.; Pokorný, J. The effect of different freshness of raw material on lipid quality and sensory acceptance of canned sardines. Foods 2022, 11, 1987. [Google Scholar] [CrossRef]
- Saito, H.; Yamashiro, R.; Ishihara, K.; Xue, C. Lipids of three highly migratory fishes: Euthynnus affinis, Sarda orientalis, and Elagatis bipinnulata. Biosci. Bitechnol. Biochem. 1999, 63, 2028–2030. [Google Scholar] [CrossRef] [Green Version]
- Aubourg, S.P.; Rodríguez, A.; Gallardo, J.M. Rancidity development during mackerel (Scomber scombrus) frozen storage: Effect of catching season and commercial presentation. Eur. J. Lipid Sci. Technol. 2005, 107, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Pirini, M.; Testi, S.; Ventrella, V.; Pagliarani, A.; Badiani, A. Blue-back fish: Fatty acid profile in selected seasons and retention upon baking. Food Chem. 2010, 123, 306–314. [Google Scholar] [CrossRef]
- Sikorski, Z.; Kolakowska, A. Changes in protein in frozen stored fish. In Seafood Proteins; Sikorski, Z., Sun Pan, B., Shahidi., F., Eds.; Chapman and Hall: New York, NY, USA, 1994; pp. 99–112. [Google Scholar]
- Malga, J.M.; Trigo, M.; Martínez, B.; Aubourg, S.P. Preservative effect on canned mackerel (Scomber colias) lipids by addition of octopus (Octopus vulgaris) cooking liquor in the packaging medium. Molecules 2022, 27, 739. [Google Scholar] [CrossRef]
- García-Arias, M.T.; Sánchez-Muniz, F.J.; Castrillón, A.M.; Navarro, M.P. White tuna canning, total fat, and fatty acid changes during processing and storage. J. Food Comp. Anal. 1994, 7, 119–130. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Medina, I.; Gallardo, J.M.; Pérez-Martín, R. Effect of oil and brine canning and storage on Little Tunny (Euthynnus allettteratus) lipids. Grasas Aceites 1995, 46, 77–84. [Google Scholar] [CrossRef]
- Mohan, C.O.; Remya, S.; Murthy, L.N.; Ravishankar, C.N.; Kumar, K.A. Effect of filling medium on cooking time and quality of canned yellowfin tuna (Thunnus albacares). Food Cont. 2015, 50, 320–327. [Google Scholar] [CrossRef]
- Selmi, S.; Monser, L.; Sadok, S. The influence of local canning process and storage on pelagic fish from Tunisia: Fatty acids profile and quality indicators. J. Food Proc. Preserv. 2008, 32, 443–457. [Google Scholar] [CrossRef]
- Rodríguez, A.; Carriles, N.; Gallardo, J.M.; Aubourg, S.P. Chemical changes during farmed Coho salmon (Oncorhynchus kisutch) canning: Effect of a preliminary chilled storage. Food Chem. 2009, 112, 362–368. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Medina, I. Quality differences assessment in canned sardine (Sardina pilchardus) by fluorescence detection. J. Agric. Food Chem. 1997, 45, 3617–3621. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, R.G.; Trigo, M.; Fett, R.; Aubourg, S.P. Impact of a packing medium with alga Bifurcaria bifurcata extract on canned Atlantic mackerel (Scomber scombrus) quality. J. Sci. Food Agric. 2018, 98, 3462–3467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méndez, L.; Sacchi, R.; Medina, I.; Aubourg, S.P. Nutritional and preservative properties of polyphenol-rich olive oil: Effect on seafood processing and storage. In Lipid Oxidation in Food and Biological Systems; Bravo-Díaz, C., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2022; pp. 455–477. [Google Scholar]
- Gómez-Limia, L.; Cobas, N.; Franco, I.; Martínez-Suárez, S. Fatty acid profiles and lipid quality indices in canned European eels: Effects of processing steps, filling medium and storage. Food Res. Int. 2020, 136, 109601. [Google Scholar] [CrossRef]
- AOAC. Official Methods for Analysis of the Association of Analytical Chemistry, 15th ed.; Association of Official Chemists, Inc.: Arlington, VA, USA, 1990; pp. 931–937. [Google Scholar]
- Bligh, E.; Dyer, W. A rapid method of total extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Herbes, S.E.; Allen, C.P. Lipid quantification of freshwater invertebrates: Method modification for microquantitation. Can. J. Fish. Aquat. Sci. 1983, 40, 1315–1317. [Google Scholar] [CrossRef]
- Christie, W.W. Gas Chromatography of Lipids: A Practical Guide; The Oily Press: Ayr, UK; Scotland, UK, 1989; pp. 87–134. [Google Scholar]
Constituent | Packing Medium | Mackerel Muscle | ||
---|---|---|---|---|
Initial | 0-Canned | 6-Canned | ||
Moisture | Water | 690.4 C (19.1) | 652.6 Ba (13.0) | 596.6 Aa (17.1) |
Brine | 690.4 B (19.1) | 674.1 Ba (21.6) | 620.5 Aa (9.3) | |
Sunflower oil | 690.4 C (19.1) | 659.3 Ba (8.0) | 622.7 Aa (15.5) | |
Refined olive oil | 690.4 B (19.1) | 643.3 Aa (12.2) | 619.8 Aa (20.0) | |
Virgin olive oil | 690.4 C (19.1) | 658.2 Ba (15.5) | 619.0 Aa (17.8) | |
Lipids | Water | 71.1 A (8.5) | 115.2 Bb (14.9) | 153.5 Cb (9.5) |
Brine | 71.1 A (8.5) | 96.6 Bb (14.6) | 156.9 Cb (12.5) | |
Sunflower oil | 71.1 B (8.5) | 51.1 Aa (6.9) | 64.8 ABa (15.8) | |
Refined olive oil | 71.1 A (8.5) | 60.1 Aa (5.5) | 61.3 Aa (10.3) | |
Virgin olive oil | 71.1 A (8.5) | 62.3 Aa (11.0) | 65.8 Aa (13.6) |
FA | Initial Oil-Packing Medium | Initial Mackerel Muscle | ||
---|---|---|---|---|
Sunflower Oil | Refined Olive Oil | Virgin Olive Oil | ||
14:0 | 0.12 (0.01) | 0.05 (0.00) | 0.00 (0.00) | 4.15 (0.45) |
15:0 | 0.00 (0.00) | 0.04 (0.00) | 0.00 (0.00) | 0.62 (0.08) |
16:0 | 7.37 (0.01) | 12.66 (0.04) | 12.51 (0.00) | 22.53 (0.85) |
16:1ω7 | 0.15 (0.00) | 0.79 (0.01) | 0.92 (0.02) | 5.16 (0.79) |
17:0 | 0.06 (0.00) | 0.09 (0.01) | 0.12 (0.01) | 1.06 (0.17) |
18:0 | 4.21 (0.00) | 3.24 (0.03) | 3.33 (0.00) | 5.44 (0.31) |
18:1ω9 | 31.00 (0.01) | 74.54 (0.01) | 74.25 (0.02) | 21.95 (3.69) |
18:1ω7 | 0.79 (0.00) | 2.03 (0.01) | 2.24 (0.01) | 4.89 (0.05) |
18:2ω6 | 55.08 (0.02) | 5.95 (0.01) | 5.99 (0.02) | 1.24 (0.15) |
20:1ω9 | 0.20 (0.02) | 0.28 (0.03) | 0.26 (0.00) | 2.67 (0.25) |
20:2ω6 | 0.06 (0.00) | 0.08 (0.01) | 0.12 (0.04) | 0.37 (0.04) |
20:4ω6 | 0.86 (0.02) | 0.16 (0.01) | 0.15 (0.01) | 1.00 (0.06) |
22:1ω9 | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.47 (0.05) |
20:5ω3 | 0.10 (0.06) | 0.05 (0.04) | 0.04 (0.00) | 8.48 (1.16) |
22:4ω6 | 0.04 (0.00) | 0.09 (0.01) | 0.07 (0.00) | 0.42 (0.08) |
24:1ω9 | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.70 (0.11) |
22:5ω3 | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 1.83 (0.36) |
22:6ω3 | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 17.03 (1.72) |
FA Group/Ratio | Initial Oil-Packing Medium | ||
---|---|---|---|
Sunflower Oil | Refined Olive Oil | Virgin Olive Oil | |
STFA | 11.76 aA (0.03) | 16.06 bB (0.08) | 15.96 bB (0.01) |
MUFA | 32.14 aB (0.02) | 77.63 bC (0.04) | 77.67 bC (0.01) |
PUFA | 56.10 bC (0.01) | 6.31 aA (0.04) | 6.37 aA (0.01) |
PUFA/STFA | 4.77 b (0.01) | 0.39 a (0.00) | 0.40 a (0.00) |
Total ω3 | 0.10 b (0.06) | 0.03 a (0.01) | 0.04 a (0.00) |
Total ω6 | 56.00 b (0.06) | 6.28 a (0.00) | 6.33 a (0.01) |
ω3/ω6 ratio | 0.00 a (0.00) | 0.00 a (0.00) | 0.01 a (0.00) |
FA Group | Packing Medium | Mackerel Muscle | ||
---|---|---|---|---|
Initial | 0-Canned | 6-Canned | ||
STFA | Water | 33.79 B (0.34) | 28.23 Aa (0.56) | 29.89 Aa (2.72) |
Brine | 33.79 B (0.34) | 28.50 Aa (0.56) | 28.32 Aa (0.91) | |
Sunflower oil | 33.79 B (0.34) | 27.79 Aa (0.34) | 28.94 Aa (0.78) | |
Refined olive oil | 33.79 B (0.34) | 27.57 Aa (0.47) | 28.43 Aa (1.35) | |
Virgin olive oil | 33.79 B (0.34) | 29.30 Aa (2.35) | 28.62 Aa (1.06) | |
MUFA | Water | 35.85 A (2.82) | 36.24 Ab (0.87) | 32.59 Aab (3.77) |
Brine | 35.85 A (2.82) | 35.31 Aab (3.89) | 35.96 Ab (1.13) | |
Sunflower oil | 35.85 B (2.82) | 31.33 Aa (1.70) | 31.47 Aa (1.36) | |
Refined olive oil | 35.85 A (2.82) | 37.33 Ab (1.71) | 34.31 Aab (1.72) | |
Virgin olive oil | 35.85 A (2.82) | 35.36 Ab (0.56) | 34.30 Ab (0.70) | |
PUFA | Water | 30.36 A (2.04) | 35.52 Ba (0.46) | 37.51 Bab (2.26) |
Brine | 30.36 A (2.04) | 36.19 Bab (2.76) | 35.72 Ba (1.30) | |
Sunflower oil | 30.36 A (2.04) | 40.88 Bb (1.73) | 39.59 Bb (2.06) | |
Refined olive oil | 30.36 A (2.04) | 35.09 Ba (1.58) | 37.26 Bab (1.46) | |
Virgin olive oil | 30.36 A (2.04) | 35.32 Bab (2.32) | 37.08 Bab (0.54) |
FA Group | Packing Medium | Mackerel Muscle | ||
---|---|---|---|---|
Initial | 0-Canned | 6-Canned | ||
Total ω3 | Water | 27.33 A (3.04) | 32.10 Ba (0.40) | 34.33 Ba (3.85) |
Brine | 27.33 A (3.04) | 33.16 Aab (3.68) | 32.67 Aa (1.19) | |
Sunflower oil | 27.33 A (3.04) | 36.65 Bb (1.76) | 33.45 ABa (3.09) | |
Refined olive oil | 27.33 A (3.04) | 32.09 Ba (1.57) | 33.82 Ba (1.54) | |
Virgin olive oil | 27.33 A (3.04) | 32.13 Ba (1.38) | 33.68 Ba (0.60) | |
EPA | Water | 8.48 A (1.16) | 11.32 Bb (0.67) | 11.73 Ba (1.73) |
Brine | 8.48 A (1.16) | 11.32 Bb (0.81) | 11.14 Ba (1.06) | |
Sunflower oil | 8.48 A (1.16) | 10.61 Aa (1.19) | 11.58 Aa (2.44) | |
Refined olive oil | 8.48 A (1.16) | 9.57 Aab (2.10) | 10.56 Aa (1.32) | |
Virgin olive oil | 8.48 A (1.16) | 8.96 Aa (1.73) | 10.68 Aa (1.50) | |
DHA | Water | 17.03 A (1.72) | 18.54 Aa (0.48) | 19.92 Aa (2.96) |
Brine | 17.03 A (1.72) | 19.31 Aab (3.88) | 18.96 Aa (1.90) | |
Sunflower oil | 17.03 A (1.72) | 23.79 ABb (2.59) | 19.30 Ba (1.86) | |
Refined olive oil | 17.03 A (1.72) | 20.34 Bb (1.09) | 20.98 Ba (1.11) | |
Virgin olive oil | 17.03 A (1.72) | 21.15 Bb (1.57) | 20.75 Ba (1.41) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prego, R.; Trigo, M.; Martínez, B.; Aubourg, S.P. Effect of Previous Frozen Storage, Canning Process and Packing Medium on the Fatty Acid Composition of Canned Mackerel. Mar. Drugs 2022, 20, 666. https://doi.org/10.3390/md20110666
Prego R, Trigo M, Martínez B, Aubourg SP. Effect of Previous Frozen Storage, Canning Process and Packing Medium on the Fatty Acid Composition of Canned Mackerel. Marine Drugs. 2022; 20(11):666. https://doi.org/10.3390/md20110666
Chicago/Turabian StylePrego, Ricardo, Marcos Trigo, Beatriz Martínez, and Santiago P. Aubourg. 2022. "Effect of Previous Frozen Storage, Canning Process and Packing Medium on the Fatty Acid Composition of Canned Mackerel" Marine Drugs 20, no. 11: 666. https://doi.org/10.3390/md20110666
APA StylePrego, R., Trigo, M., Martínez, B., & Aubourg, S. P. (2022). Effect of Previous Frozen Storage, Canning Process and Packing Medium on the Fatty Acid Composition of Canned Mackerel. Marine Drugs, 20(11), 666. https://doi.org/10.3390/md20110666