Antibacterial Mechanism of Chitosan–Gentamicin and Its Effect on the Intestinal Flora of Litopenaeus vannamei Infected with Vibrio parahaemolyticus
Abstract
:1. Introduction
2. Results and Discussions
2.1. Antibacterial Activity and Mechanism of CS-GT
2.1.1. Antibacterial Activity
2.1.2. Cell Membrane Damage
2.2. Intestinal Histopathology
2.3. Intestinal Microbial Analysis
2.3.1. Sequencing Data Analysis
2.3.2. Microbial Diversity
2.3.3. Microbial Flora Structure
3. Materials and Methods
3.1. Materials
3.2. CS-GT Synthesis
3.3. Bacterium Preparation
3.4. Antimicrobial Activity
3.4.1. Determination of Inhibition Zones
3.4.2. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3.4.3. Determination of Inhibition Rate and IC50
3.5. Cell Membrane Damage Assessment
3.5.1. Cell membrane leakage
3.5.2. Morphology Investigation
3.6. Shrimp Infected with V. parahaemolyticus
3.6.1. Intestinal Histopathology
3.6.2. Intestinal Microbial Analysis
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Guo, L.; Yi, C.; Wang, S.; Ru, Y.; Wang, H. Hepatopancreatic transcriptome analysis and humoral immune factor assays in red claw crayfish (Cherax quadricarinatus) provide insight into innate immunomodulation under Vibrio parahaemolyticus infection. Ecotoxicol. Environ. Saf. 2021, 217, 112266. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhu, X.; Zhang, C.; Zhao, Z. LuxQ-LuxU-LuxO pathway regulates biofilm formation by Vibrio parahaemolyticus. Microbiol. Res. 2021, 250, 126791. [Google Scholar] [CrossRef]
- Ming, Z.; Su, Y.C.; DeWitt, C.M.; Waite-Cusic, J. Flow rate of depuration system has minimal impact on Vibrio parahaemolyticus decontamination in Pacific oysters (Crassostrea gigas). J. Food Saf. 2018, 38, e12531. [Google Scholar] [CrossRef]
- Lomelí-Ortega, C.O.; Martínez-Díaz, S.F. Phage therapy against Vibrio parahaemolyticus infection in the whiteleg shrimp (Litopenaeus vannamei) larvae. Aquaculture 2014, 434, 208–211. [Google Scholar] [CrossRef]
- Salama, A.; Hasanin, M.; Hesemann, P. Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups. Carbohydr. Polym. 2020, 241, 116363. [Google Scholar] [CrossRef]
- Abdel-Ghany, H.M.; Salem, M.E.S. Effects of dietary chitosan supplementation on farmed fish; A review. Rev. Aquac. 2019, 12, 438–452. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, L.; Chen, A.; Shang, C.; Lei, M.; He, K.; Luo, S.; Shao, J.; Zeng, Q. Chitosan-stabilized FeS magnetic composites for chromium removal: Characterization, performance, mechanism, and stability. Carbohydr. Polym. 2019, 214, 276–285. [Google Scholar] [CrossRef]
- Liang, F.; Hou, T.; Li, S.; Liao, L.; Li, P.; Li, C. Elastic, super-hydrophobic and biodegradable chitosan sponges fabricated for oil/water separation. J. Environ. Chem. Eng. 2021, 9, 106027. [Google Scholar] [CrossRef]
- Qin, Y.; Li, P.; Guo, Z. Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications. Carbohydr. Polym. 2020, 236, 116002. [Google Scholar] [CrossRef]
- Gaballah, S.T.; El-Nazer, H.A.; Abdel-Monem, R.A.; El-Liethy, M.A.; Hemdan, B.A.; Rabie, S.T. Synthesis of novel chitosan-PVC conjugates encompassing Ag nanoparticles as antibacterial polymers for biomedical applications. Int. J. Biol. Macromol. 2019, 121, 707–717. [Google Scholar] [CrossRef]
- Luan, F.; Li, Q.; Tan, W.; Wei, L.J.; Zhang, J.; Dong, F.; Gu, G.; Guo, Z. The evaluation of antioxidant and antifungal properties of 6-amino-6-deoxychitosan in vitro. Int. J. Biol. Macromol. 2017, 107, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Li, C.; Ouyang, Q.; Zhang, D.; Zhong, Q.; Li, P.; Li, S.; Yang, Z.; Wang, T.; Zhao, Q. Synthesis of gentamicin-grafted-chitosan with improved solubility and antibacterial activity. React. Funct. Polym. 2019, 137, 38–45. [Google Scholar] [CrossRef]
- Wu, S.; Yang, Y.; Wang, S.; Dong, C.; Zhang, X.; Zhang, R.; Yang, L. Dextran and peptide-based pH-sensitive hydrogel boosts healing process in multidrug-resistant bacteria-infected wounds. Carbohydr. Polym. 2022, 278, 118994. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Moghaddam, S.Z.; Thormann, E. Structural investigation of a self-cross-linked chitosan/alginate dialdehyde multilayered film with in situ QCM-D and spectroscopic ellipsometry. ACS Omega 2019, 4, 2019–2029. [Google Scholar] [CrossRef]
- Liang, F.; Sun, C.; Li, S.; Hou, T.; Li, C. Therapeutic effect and immune mechanism of chitosan-gentamicin conjugate on Pacific white shrimp (Litopenaeus vannamei) infected with Vibrio parahaemolyticus. Carbohydr. Polym. 2021, 269, 118334. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Li, C.; Hou, T.; Wen, C.; Kong, S.; Ma, D.; Sun, C.; Li, S. Effects of chitosan–gentamicin conjugate supplement on non-specific immunity, aquaculture water, intestinal histology and microbiota of pacific white shrimp (Litopenaeus vannamei). Mar. Drugs 2020, 18, 419. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Han, Z.; Chen, F.; Lv, A.; Hu, X.; Sun, X.; Qi, H.; Guo, Y. Vibrio parahaemolyticus alters the community composition and function of intestinal microbiota in Pacific white shrimp, Penaeus vannamei. Aquaculture 2021, 544, 737061. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Y.; Jiang, P.; Song, S.; Ai, C. Interaction of sulfated polysaccharides with intestinal Bacteroidales plays an important role in its biological activities. Int. J. Biol. Macromol. 2021, 168, 496–506. [Google Scholar] [CrossRef]
- Zhao, R.; Cheng, N.; Nakata, P.A.; Zhao, L.; Hu, Q. Consumption of polysaccharides from Auricularia auricular modulates the intestinal microbiota in mice. Food Res. Int. 2019, 123, 383–392. [Google Scholar] [CrossRef]
- Li, C.; Niu, Z.; Zou, M.; Liu, S.; Wang, M.; Gu, X.; Lu, H.; Tian, H.; Jha, R. Probiotics, prebiotics, and synbiotics regulate the intestinal microbiota differentially and restore the relative abundance of specific gut microorganisms. J. Dairy Sci. 2020, 103, 5816–5829. [Google Scholar] [CrossRef]
- Ivanov, I.I.; Honda, K. Intestinal commensal microbes as immune modulators. Cell Host Microbe 2012, 12, 496–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.-H.; Zhou, T.-T.; Wei, C.-H.; Lan, W.-Q.; Zhao, Y.; Pan, Y.-J.; Wu, V.C.H. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control. 2018, 94, 155–161. [Google Scholar] [CrossRef]
- Wang, F.; Wei, F.; Song, C.; Jiang, B.; Tian, S.; Yi, J.; Yu, C.; Song, Z.; Sun, L.; Bao, Y.; et al. Dodartia orientalis L. essential oil exerts antibacterial activity by mechanisms of disrupting cell structure and resisting biofilm. Ind. Crops Prod. 2017, 109, 358–366. [Google Scholar] [CrossRef]
- Ontong, J.C.; Paosen, S.; Shankar, S.; Voravuthikunchai, S.P. Eco-friendly synthesis of silver nanoparticles using Senna alata bark extract and its antimicrobial mechanism through enhancement of bacterial membrane degradation. J. Microbiol. Methods 2019, 165, 105692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Y.; Zhang, X.; Zhou, B.; Sun, T.; Li, X. Physicochemical properties and antibacterial mechanism of TP microcapsules/LZM-PVA gradual sustained-release composite coatings. Prog. Org. Coat. 2020, 146, 105740. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.-T.; Zheng, W.; Han, X.-X.; Jiang, Y.-H.; Hu, P.-L.; Tang, Z.-X.; Shi, L.-E. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae. J. Funct. Foods 2017, 38, 273–279. [Google Scholar] [CrossRef]
- Tan, X.; Sun, Z.; Zhou, C.; Huang, Z.; Tan, L.; Xun, P.; Huang, Q.; Lin, H.; Ye, C.; Wang, A. Effects of dietary dandelion extract on intestinal morphology, antioxidant status, immune function and physical barrier function of juvenile golden pompano Trachinotus ovatus. Fish Shellfish. Immunol. 2018, 73, 197–206. [Google Scholar] [CrossRef]
- Amoah, K.; Huang, Q.-C.; Dong, X.-H.; Tan, B.-P.; Zhang, S.; Chi, S.-Y.; Yang, Q.-H.; Liu, H.-Y.; Yang, Y.-Z. Paenibacillus polymyxa improves the growth, immune and antioxidant activity, intestinal health, and disease resistance in Litopenaeus vannamei challenged with Vibrio parahaemolyticus. Aquaculture 2020, 518, 734563. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, W.; Wang, H.; Li, C.; Wang, L.; Li, Y.; Wang, J. Bacillus baekryungensis MS1 regulates the growth, non-specific immune parameters and gut microbiota of the sea cucumber Apostichopus japonicus. Fish Shellfish. Immunol. 2020, 102, 133–139. [Google Scholar] [CrossRef]
- Xie, X.; Xiao, Q.; Xiong, Z.; Yu, C.; Zhou, J.; Fu, Z. Crocin-I ameliorates the disruption of lipid metabolism and dysbiosis of the gut microbiota induced by chronic corticosterone in mice. Food Funct. 2019, 10, 6779–6791. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Wang, X.; Chen, Y.; Wang, Y.; Song, D.; Gu, Q. A natural biopreservative: Antibacterial action and mechanisms of Chinese Litsea mollis Hemsl. extract against Escherichia coli DH5alpha and Salmonella spp. J. Dairy Sci. 2019, 102, 9663–9673. [Google Scholar] [CrossRef] [PubMed]
- Naseer, M.; Ramadan, R.; Xing, J.; Samak, N.A. Facile green synthesis of copper oxide nanoparticles for the eradication of multidrug resistant Klebsiella pneumonia and Helicobacter pylori biofilms. Int. Biodeterior. Biodegrad. 2021, 159, 105201. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, C.; Chen, H.; Wang, N.; Qiao, W. Effective wound dressing based on Poly (vinyl alcohol)/Dextran-aldehyde composite hydrogel. Int. J. Biol. Macromol. 2019, 132, 1098–1105. [Google Scholar] [CrossRef]
Sample | V. parahaemolyticus (mm) | H. pylori (mm) | S. aureus (mm) |
---|---|---|---|
CS | 8.60 ± 0.18 c | 8.14 0.06 c | 7.21 ± 0.05 c |
GT | 23.64 ± 0.19 a | 23.01 ± 0.11 a | 25.14 ± 0.07 a |
CS-GT | 20.22 ± 0.24 b | 17.88 ± 0.75 b | 18.88 ± 0.84 b |
GT-g-CS | 20.61 ± 0.25 b | 18.11 ± 0.06 b | 19.94 ± 0.24 b |
Sample | MIC (μg/mL) | MBC (μg/mL) |
---|---|---|
CS | 320.0 ± 0.00 a | 640.0 ± 0.00 a |
CS-GT | 20.00 ± 0.01 b | 75.00 ± 0.02 b |
GT | 5.00 ± 0.01 c | 20.00 ± 0.00 c |
Group | Observed-Species Index | Good’s Coverage Index | Richness | Diversity | ||
---|---|---|---|---|---|---|
Chao1 | ACE | Shannon | Simpson | |||
Control group | 1441 ± 329 a | 0.9972 ± 0.0018 a | 1516.02 ± 354.21 a | 1499.89 ± 343.49 a | 7.91 ± 0.49 a | 0.8732 ± 0.0225 a |
Only-infected group | 632 ± 100 b | 0.9981 ± 0.0004 a | 624.05 ± 105.93 b | 702.84 ± 99.44 b | 6.07 ± 0.70 b | 0.9537 ± 0.0178 a |
CS-250 | 1215 ± 234 a | 0.9975 ± 0.0004 a | 1267.86 ± 240.90 a | 1249.54 ± 238.34 a | 7.16 ± 0.63 a | 0.9172 ± 0.0124 a |
CS-GT-10 | 876 ± 236 b | 0.9972 ± 0.0004 a | 956.18 ± 155.56 b | 847.92 ± 331.12 b | 5.61 ± 1.36 b | 0.9250 ± 0.0695 a |
CS-GT-50 | 734 ± 198 b | 0.9980 ± 0.0002 a | 773.03 ± 203.32 b | 757.69 ± 184.13 b | 4.56 ± 2.30 b | 0.9404 ± 0.1016 a |
CS-GT-100 | 651 ± 263 b | 0.9981 ± 0.0003 a | 715.73 ± 256.47 b | 716.84 ± 247.79 b | 3.71 ± 0.87 b | 0.9209 ± 0.0615 a |
GT-10 | 611 ± 136 b | 0.9976 ± 0.0007 a | 657.35 ± 143.02 b | 678.33 ± 158.30 b | 4.51 ± 0.46 b | 0.9446 ± 0.0118 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Liang, F.; Li, C.; Hou, T.; Xu, D.-a. Antibacterial Mechanism of Chitosan–Gentamicin and Its Effect on the Intestinal Flora of Litopenaeus vannamei Infected with Vibrio parahaemolyticus. Mar. Drugs 2022, 20, 702. https://doi.org/10.3390/md20110702
Li L, Liang F, Li C, Hou T, Xu D-a. Antibacterial Mechanism of Chitosan–Gentamicin and Its Effect on the Intestinal Flora of Litopenaeus vannamei Infected with Vibrio parahaemolyticus. Marine Drugs. 2022; 20(11):702. https://doi.org/10.3390/md20110702
Chicago/Turabian StyleLi, Lefan, Fengyan Liang, Chengpeng Li, Tingting Hou, and Dong-an Xu. 2022. "Antibacterial Mechanism of Chitosan–Gentamicin and Its Effect on the Intestinal Flora of Litopenaeus vannamei Infected with Vibrio parahaemolyticus" Marine Drugs 20, no. 11: 702. https://doi.org/10.3390/md20110702
APA StyleLi, L., Liang, F., Li, C., Hou, T., & Xu, D. -a. (2022). Antibacterial Mechanism of Chitosan–Gentamicin and Its Effect on the Intestinal Flora of Litopenaeus vannamei Infected with Vibrio parahaemolyticus. Marine Drugs, 20(11), 702. https://doi.org/10.3390/md20110702