Can Growth of Nannochloropsis oculata under Modulated Stress Enhance Its Lipid-Associated Biological Properties?
Abstract
:1. Introduction
2. Results and Discussion
2.1. Lipid Extracts Characterization
2.1.1. Fatty Acid Profiles
2.1.2. Sterol Profiles and Pigment Contents
2.2. Oxygen Radical Absorbance Capacity (L-ORACFL)
2.3. Biological Activities
2.3.1. Metabolic Activity—MTT Assay
2.3.2. Adipolysis Assay
2.3.3. Hepatic Lipid Accumulation
2.3.4. Anti-Inflammatory Activity
3. Materials and Methods
3.1. Microalgae and Growth Conditions
3.2. Lipid Extraction and Characterization
3.2.1. Lipid Extraction
3.2.2. Lipid Characterization
Fatty Acid Profiles
Sterol Profiles
Pigment Content
3.3. Oxygen Radical Absorbance Capacity (ORACFL)
3.4. Biological Activities
3.4.1. Cell Lines Growth Conditions
3.4.2. Extracts Preparation for Cell Culture Assays
3.4.3. MTT Assay
3.4.4. Adipolysis Assay
3.4.5. Hepatic Lipid Accumulation
3.4.6. Anti-Inflammatory Activity
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, X.; Han, Q.; Gao, X.; Gao, G. Conditions Optimising on the Yield of Biomass, Total Lipid, and Valuable Fatty Acids in Two Strains of Skeletonema Menzelii. Food Chem. 2016, 194, 723–732. [Google Scholar] [CrossRef]
- Santhar, D.T.; Haq, M.A.B.; Marudhupandi, T.; Vaseeharan, B.; Rajan, D.K.; Moovendhan, M. Evaluation of Chemical Compositions and Antioxidant Potential of Marine Microalgae of the Genus Nannochloropsis. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Riccio, G.; Lauritano, C. Microalgae with Immunomodulatory Activities. Mar. Drugs 2020, 18, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Marchal, L.; Lebovka, N.; Vorobiev, E.; Grimi, N. Two-Step Procedure for Selective Recovery of Bio-Molecules from Microalga Nannochloropsis oculata Assisted by High Voltage Electrical Discharges. Bioresour. Technol. 2020, 302, 122893. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kwon, Y.M.; Kim, K.W.; Kim, J.Y.H. Exploring the Potential of Nannochloropsis Sp. Extract for Cosmeceutical Applications. Mar. Drugs 2021, 19, 690. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Q. Regulatory Mechanisms of Lipid Biosynthesis in Microalgae. Biol. Rev. 2021, 96, 2373–2391. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.A.V.; Freitas, B.C.B.; Moraes, L.; Zaparoli, M.; Morais, M.G. Progress in the Physicochemical Treatment of Microalgae Biomass for Value-Added Product Recovery. Bioresour. Technol. 2020, 301, 122727. [Google Scholar] [CrossRef] [PubMed]
- Brennan, B.; Regan, F. In-Situ Lipid and Fatty Acid Extraction Methods to Recover Viable Products from Nannochloropsis Sp. Sci. Total Environ. 2020, 748, 142464. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Wu, M.; Fu, Q.; Li, X.; Xu, J. A Two-Stage Model with Nitrogen and Silicon Limitation Enhances Lipid Productivity and Biodiesel Features of the Marine Bloom-Forming Diatom Skeletonema Costatum. Bioresour. Technol. 2019, 289, 121717. [Google Scholar] [CrossRef]
- Pieber, S.; Schober, S.; Mittelbach, M. Pressurized Fluid Extraction of Polyunsaturated Fatty Acids from the Microalga Nannochloropsis oculata. Biomass Bioenergy 2012, 47, 474–482. [Google Scholar] [CrossRef]
- Aussant, J.; Guihéneuf, F.; Stengel, D.B. Impact of Temperature on Fatty Acid Composition and Nutritional Value in Eight Species of Microalgae. Appl. Microbiol. Biotechnol. 2018, 102, 5279–5297. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Keum, Y.S. Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Dietary Sources, Metabolism, and Significance—A Review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Health Benefits of N-3 Polyunsaturated Fatty Acids. Eicosapentaenoic Acid and Docosahexaenoic Acid. In Advances in Food and Nutrition Research, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 65, ISBN 9780124160033. [Google Scholar]
- Crupi, R.; Cuzzocrea, S. Role of EPA in Inflammation: Mechanisms, Effects, and Clinical Relevance. Biomolecules 2022, 12, 242. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.Q.; Wang, L.R.; Zhang, Z.X.; Sun, X.M.; Huang, H. Stresses as First-Line Tools for Enhancing Lipid and Carotenoid Production in Microalgae. Front. Bioeng. Biotechnol. 2020, 8, 610. [Google Scholar] [CrossRef] [PubMed]
- Zanella, L.; Vianello, F. Microalgae of the Genus Nannochloropsis: Chemical Composition and Functional Implications for Human Nutrition. J. Funct. Foods 2020, 68, 103919. [Google Scholar] [CrossRef]
- Sabzi, S.; Shamsaie Mehrgan, M.; Rajabi Islami, H.; Hosseini Shekarabi, S.P. Changes in Biochemical Composition and Fatty Acid Accumulation of Nannochloropsis oculata in Response to Different Iron Concentrations. Biofuels 2021, 12, 1–7. [Google Scholar] [CrossRef]
- Custódio, L.; Soares, F.; Pereira, H.; Rodrigues, M.J.; Barreira, L.; Rauter, A.P.; Alberício, F.; Varela, J. Botryococcus Braunii and Nannochloropsis oculata Extracts Inhibit Cholinesterases and Protect Human Dopaminergic SH-SY5Y Cells from H2O2-Induced Cytotoxicity. J. Appl. Phycol. 2015, 27, 839–848. [Google Scholar] [CrossRef]
- Ali, M.; Watson, I.A. Microwave Treatment of Wetalgal Paste for Enhanced Solvent Extraction of Lipids for Biodiesel Production. Renew. Energy 2015, 76, 470–477. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Fernando, I.P.S.; Samarakoon, K.W.; Lakmal, H.H.C.; Kim, E.A.; Kwon, O.N.; Dilshara, M.G.; Lee, J.B.; Jeon, Y.J. Anti-Inflammatory and Anti-Cancer Activities of Sterol Rich Fraction of Cultured Marine Microalga Nannochloropsis oculata. Algae 2016, 31, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Wali, A.F.; Dhaheri, Y.A.l.; Pillai, J.R.; Mushtaq, A.; Rao, P.G.M.; Rabbani, S.A.; Firdous, A.; Elshikh, M.S.; Al Farraj, D.A. Lc-Ms Phytochemical Screening, in Vitro Antioxidant, Antimicrobial and Anticancer Activity of Microalgae Nannochloropsis oculata Extract. Separations 2020, 7, 54. [Google Scholar] [CrossRef]
- Samarakoon, K.W.; Ko, J.Y.; Shah, M.M.R.; Lee, J.H.; Kang, M.C.; O-Nam, K.; Lee, J.B.; Jeon, Y.J. In Vitro Studies of Anti-Inflammatory and Anticancer Activities of Organic Solvent Extracts from Cultured Marine Microalgae. Algae 2013, 28, 111–119. [Google Scholar] [CrossRef]
- Gacheva, G.V.; Gigova, L.G. Biological Activity of Microalgae Can Be Enhanced by Manipulating the Cultivation Temperature and Irradiance. Cent. Eur. J. Biol. 2014, 9, 1168–1181. [Google Scholar] [CrossRef]
- Shene, C.; Chisti, Y.; Vergara, D.; Burgos-Díaz, C.; Rubilar, M.; Bustamante, M. Production of Eicosapentaenoic Acid by Nannochloropsis oculata: Effects of Carbon Dioxide and Glycerol. J. Biotechnol. 2016, 239, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Baumgardt, F.J.L.; Filho, A.Z.; Brandalize, M.V.; Da Costa, D.C.; Antoniosi Filho, N.R.; Abreu, P.C.O.V.; Corazza, M.L.; Ramos, L.P. Lipid Content and Fatty Acid Profile of Nannochloropsis oculata before and after Extraction with Conventional Solvents and/or Compressed Fluids. J. Supercrit. Fluids 2016, 108, 89–95. [Google Scholar] [CrossRef]
- Schulze, P.S.C.; Pereira, H.G.C.; Santos, T.F.C.; Schueler, L.; Guerra, R.; Barreira, L.A.; Perales, J.A.; Varela, J.C.S. Effect of Light Quality Supplied by Light Emitting Diodes (LEDs) on Growth and Biochemical Profiles of Nannochloropsis oculata and Tetraselmis chuii. Algal Res. 2016, 16, 387–398. [Google Scholar] [CrossRef]
- Renaud, S.M.; Parry, D.L.; Van Thinh, L.; Kuo, C.; Padovan, A.; Sammy, N. Effect of Light Intensity on the Proximate Biochemical and Fatty Acid Composition of Isochrysis Sp. and Nannochloropsis oculata for Use in Tropical Aquaculture. J. Appl. Phycol. 1991, 3, 43–53. [Google Scholar] [CrossRef]
- Hodgson, P.A.; Henderson, R.J.; Sargent, J.R.; Leftley, J.W. Patterns of Variation in the Lipid Class and Fatty Acid Composition of Nannochloropsis oculata (Eustigmatophyceae) during Batch Culture—I. The Growth Cycle. J. Appl. Phycol. 1991, 3, 169–181. [Google Scholar] [CrossRef]
- Tonon, T.; Harvey, D.; Larson, T.R.; Graham, I.A. Long Chain Polyunsaturated Fatty Acid Production and Partitioning to Triacylglycerols in Four Microalgae. Phytochemistry 2002, 61, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.; Freitas, A.C.; Gomes, A.M.; Carvalho, A.P. Modulated Stress to Balance Nannochloropsis oculata Growth and Eicosapentaenoic Acid Production. Appl. Microbiol. Biotechnol. 2022, 106, 4017–4027. [Google Scholar] [CrossRef] [PubMed]
- Gachelin, M.; Boutoute, M.; Carrier, G.; Talec, A.; Pruvost, E.; Guihéneuf, F.; Bernard, O.; Sciandra, A. Enhancing PUFA-Rich Polar Lipids in Tisochrysis Lutea Using Adaptive Laboratory Evolution (ALE) with Oscillating Thermal Stress. Appl. Microbiol. Biotechnol. 2021, 105, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.J.; Cheung, P.C.K. Cold Stress Treatment Enhances Production of Metabolites and Biodiesel Feedstock in Porphyridium Cruentum via Adjustment of Cell Membrane Fluidity. Sci. Total Environ. 2021, 780, 146612. [Google Scholar] [CrossRef] [PubMed]
- Willette, S.; Gill, S.S.; Dungan, B.; Schaub, T.M.; Jarvis, J.M.; St Hilaire, R.; Omar Holguin, F. Alterations in Lipidome and Metabolome Profiles of Nannochloropsis Salina in Response to Reduced Culture Temperature during Sinusoidal Temperature and Light. Algal Res. 2018, 32, 79–92. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- De Alba, M.; Pérez-Andrés, J.M.; Harrison, S.M.; Brunton, N.P.; Burgess, C.M.; Tiwari, B.K. High Pressure Processing on Microbial Inactivation, Quality Parameters and Nutritional Quality Indices of Mackerel Fillets. Innov. Food Sci. Emerg. Technol. 2019, 55, 80–87. [Google Scholar] [CrossRef]
- Matos, Â.P.; Feller, R.; Moecke, E.H.S.; de Oliveira, J.V.; Junior, A.F.; Derner, R.B.; Sant’Anna, E.S. Chemical Characterization of Six Microalgae with Potential Utility for Food Application. JAOCS, J. Am. Oil Chem. Soc. 2016, 93, 963–972. [Google Scholar] [CrossRef]
- Mouahid, A.; Crampon, C.; Toudji, S.A.A.; Badens, E. Supercritical CO2 Extraction of Neutral Lipids from Microalgae: Experiments and Modelling. J. Supercrit. Fluids 2013, 77, 7–16. [Google Scholar] [CrossRef]
- Crampon, C.; Mouahid, A.; Toudji, S.A.A.; Leṕine, O.; Badens, E. Influence of Pretreatment on Supercritical CO2 extraction from Nannochloropsis oculata. J. Supercrit. Fluids 2013, 79, 337–344. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, H.; Yan, X.; Zhou, C.; Zhu, P.; Ma, B. Effect of Unialgal Diets on the Composition of Fatty Acids and Sterols in Juvenile Ark Shell Tegillarca granosa Linnaeus. J. Agric. Food Chem. 2012, 60, 3973–3980. [Google Scholar] [CrossRef]
- Geng, S.; Zhou, C.; Chen, W.; Yu, S.; Huang, W.; Huan, T.; Xu, J.; Yan, X. Fatty Acid and Sterol Composition Reveal Food Selectivity of Juvenile Ark Shell Tegillarca granosa Linnaeus after Feeding with Mixed Microalgae. Aquaculture 2016, 455, 109–117. [Google Scholar] [CrossRef]
- Custódio, L.; Justo, T.; Silvestre, L.; Barradas, A.; Duarte, C.V.; Pereira, H.; Barreira, L.; Rauter, A.P.; Alberício, F.; Varela, J. Microalgae of Different Phyla Display Antioxidant, Metal Chelating and Acetylcholinesterase Inhibitory Activities. Food Chem. 2012, 131, 134–140. [Google Scholar] [CrossRef]
- Dunstan, G.A.; Volkman, J.K.; Barrett, S.M.; Garland, C.D. Changes in the Lipid Composition and Maximisation of the Polyunsaturated Fatty Acid Content of Three Microalgae Grown in Mass Culture. J. Appl. Phycol. 1993, 5, 71–83. [Google Scholar] [CrossRef]
- Randhir, A.; Laird, D.W.; Maker, G.; Trengove, R.; Moheimani, N.R. Microalgae: A Potential Sustainable Commercial Source of Sterols. Algal Res. 2020, 46, 101772. [Google Scholar] [CrossRef]
- Bligh, E.; Dyer, W. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Mouahid, A.; Seengeon, K.; Martino, M.; Crampon, C.; Kramer, A.; Badens, E. Selective Extraction of Neutral Lipids and Pigments from Nannochloropsis salina and Nannochloropsis maritima Using Supercritical CO2 Extraction: Effects of Process Parameters and Pre-Treatment. J. Supercrit. Fluids 2020, 165, 104934. [Google Scholar] [CrossRef]
- Nobre, B.P.; Villalobos, F.; Barragán, B.E.; Oliveira, A.C.; Batista, A.P.; Marques, P.A.S.S.; Mendes, R.L.; Sovová, H.; Palavra, A.F.; Gouveia, L. A Biorefinery from Nannochloropsis Sp. Microalga—Extraction of Oils and Pigments. Production of Biohydrogen from the Leftover Biomass. Bioresour. Technol. 2013, 135, 128–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parniakov, O.; Barba, F.J.; Grimi, N.; Marchal, L.; Jubeau, S.; Lebovka, N.; Vorobiev, E. Pulsed Electric Field Assisted Extraction of Nutritionally Valuable Compounds from Microalgae Nannochloropsis Spp. Using the Binary Mixture of Organic Solvents and Water. Innov. Food Sci. Emerg. Technol. 2015, 27, 79–85. [Google Scholar] [CrossRef]
- Millao, S.; Uquiche, E. Extraction of Oil and Carotenoids from Pelletized Microalgae Using Supercritical Carbon Dioxide. J. Supercrit. Fluids 2016, 116, 223–231. [Google Scholar] [CrossRef]
- Maadane, A.; Merghoub, N.; Ainane, T.; El Arroussi, H.; Benhima, R.; Amzazi, S.; Bakri, Y.; Wahby, I. Antioxidant Activity of Some Moroccan Marine Microalgae: Pufa Profiles, Carotenoids and Phenolic Content. J. Biotechnol. 2015, 215, 13–19. [Google Scholar] [CrossRef]
- Feller, R.; Matos, Â.P.; Mazzutti, S.; Moecke, E.H.S.; Tres, M.V.; Derner, R.B.; Oliveira, J.V.; Junior, A.F. Polyunsaturated Ω-3 and Ω-6 Fatty Acids, Total Carotenoids and Antioxidant Activity of Three Marine Microalgae Extracts Obtained by Supercritical CO2 and Subcritical n-Butane. J. Supercrit. Fluids 2018, 133, 437–443. [Google Scholar] [CrossRef]
- ISO 10993-5; In Vitro Cytotoxicity. International Standard Organization: Geneva, Switzerland, 2009.
- Atasever-Arslan, B.; Yilancioglu, K.; Kalkan, Z.; Timucin, A.C.; Gür, H.; Isik, F.B.; Deniz, E.; Erman, B.; Cetiner, S. Screening of New Antileukemic Agents from Essential Oils of Algae Extracts and Computational Modeling of Their Interactions with Intracellular Signaling Nodes. Eur. J. Pharm. Sci. 2016, 83, 120–131. [Google Scholar] [CrossRef]
- Jung, U.J.; Choi, M.S. Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2014, 15, 6184–6223. [Google Scholar] [CrossRef] [Green Version]
- Schweiger, M.; Eichmann, O.T.; Taschler, U.; Zimmermann, R.; Zechner, R.; Lass, A. Measurement of Lipolysis. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 538, pp. 171–193. ISBN 9780128002803. [Google Scholar]
- Bowen, K.J.; Kris-Etherton, P.M.; Shearer, G.C.; West, S.G.; Reddivari, L.; Jones, P.J.H. Oleic Acid-Derived Oleoylethanolamide: A Nutritional Science Perspective. Prog. Lipid Res. 2017, 67, 1–15. [Google Scholar] [CrossRef]
- Kalupahana, N.S.; Claycombe, K.; Newman, S.J.; Stewart, T.; Siriwardhana, N.; Matthan, N.; Lichtenstein, A.H.; Moustaid-Moussa, N. Eicosapentaenoic Acid Prevents and Reverses Insulin Resistance in High-Fat Diet-Induced Obese Mice via Modulation of Adipose Tissue Inflammation. J. Nutr. 2010, 140, 1915–1922. [Google Scholar] [CrossRef] [Green Version]
- Siriwardhana, N.; Kalupahana, N.S.; Cekanova, M.; Lemieux, M.; Greer, B.; Moustaid-moussa, N. Modulation of Adipose Tissue Inflammation by Bioactive Food Compounds. J. Nutr. Biochem. 2013, 24, 613–623. [Google Scholar] [CrossRef]
- Figueras, M.; Olivan, M.; Busquets, S.; López-Soriano, F.J.; Argilés, J.M. Effects of Eicosapentaenoic Acid (EPA) Treatment on Insulin Sensitivity in an Animal Model of Diabetes: Improvement of the Inflammatory Status. Obesity 2011, 19, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Browning, J.D.; Horton, J.D.; Browning, J.D.; Horton, J.D. Molecular Mediators of Hepatic Steatosis and Liver Injury Find the Latest Version: Molecular Mediators of Hepatic Steatosis and Liver Injury. J. Clin. Investig. 2004, 114, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Zhu, M.; Liu, X.; Chen, X.; Yuan, Y.; Li, L.; Liu, J.; Lu, Y.; Cheng, J.; Chen, Y. Oleic Acid Ameliorates Palmitic Acid Induced Hepatocellular Lipotoxicity by Inhibition of ER Stress and Pyroptosis. Nutr. Metab. 2020, 17, 11. [Google Scholar] [CrossRef] [Green Version]
- Tavares De Almeida, I.; Cortez-Pinto, H.; Fidalgo, G.; Rodrigues, D.; Camilo, M.E. Plasma Total and Free Fatty Acids Composition in Human Non-Alcoholic Steatohepatitis. Clin. Nutr. 2002, 21, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Ricchi, M.; Odoardi, M.R.; Carulli, L.; Anzivino, C.; Ballestri, S.; Pinetti, A.; Fantoni, L.I.; Marra, F.; Bertolotti, M.; Banni, S.; et al. Differential Effect of Oleic and Palmitic Acid on Lipid Accumulation and Apoptosis in Cultured Hepatocytes. J. Gastroenterol. Hepatol. 2009, 24, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Klipsic, D.; Landrock, D.; Martin, G.G.; McIntosh, A.L.; Landrock, K.K.; Mackie, J.T.; Schroeder, F.; Kier, A.B. Impact of SCP-2/SCP-x Gene Ablation and Dietary Cholesterol on Hepatic Lipid Accumulation. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G387–G399. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Zahradka, P.; Cordero-Monroy, L.; Wright, B.; Taylor, C.G. Dietary Docosahexaenoic Acid (DHA) and Eicosapentaenoic Acid (EPA) Operate by Different Mechanisms to Modulate Hepatic Steatosis and Hyperinsulemia in Fa/Fa Zucker Rats. Nutrients 2019, 11, 917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajikawa, S.; Harada, T.; Kawashima, A.; Imada, K.; Mizuguchi, K. Highly Purified Eicosapentaenoic Acid Prevents the Progression of Hepatic Steatosis by Repressing Monounsaturated Fatty Acid Synthesis in High-Fat/High-Sucrose Diet-Fed Mice. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Ahluwalia, N.; Albers, R.; Bosco, N.; Bourdet-Sicard, R.; Haller, D.; Holgate, S.T.; Jönsson, L.S.; Latulippe, M.E.; Marcos, A.; et al. A Consideration of Biomarkers to Be Used for Evaluation of Inflammation in Human Nutritional Studies. Br. J. Nutr. 2013, 109, S1–S34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyer, S.S.; Cheng, G. Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.J.; Luo, S.F.; Lai, J.H. Biological Effects of Interleukin-6: Clinical Applications in Autoimmune Diseases and Cancers. Biochem. Pharmacol. 2015, 97, 16–26. [Google Scholar] [CrossRef]
- Nacer, W.; Baba Ahmed, F.Z.; Merzouk, H.; Benyagoub, O.; Bouanane, S. Evaluation of the Anti-Inflammatory and Antioxidant Effects of the Microalgae Nannochloropsis Gaditana in Streptozotocin-Induced Diabetic Rats. J. Diabetes Metab. Disord. 2020, 19, 1483–1490. [Google Scholar] [CrossRef] [PubMed]
- Revianti, S.; Andriani, D.; Parisihni, K.; Wahjuningsih, E. Widyastuti Effectiveness of Oral Irrigation with an Extract of Green Microalga Nannochloropsis Oculata as an Anti-Inflammatory in Rats Infected with Aggregatibacter Actinomycetemcomitans. Biodiversitas 2020, 21, 2977–2981. [Google Scholar] [CrossRef]
- Abdelghany, M.F.; El-Sawy, H.B.; Abd El-hameed, S.A.A.; Khames, M.K.; Abdel-Latif, H.M.R.; Naiel, M.A.E. Effects of Dietary Nannochloropsis Oculata on Growth Performance, Serum Biochemical Parameters, Immune Responses, and Resistance against Aeromonas Veronii Challenge in Nile Tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020, 107, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Darley, W.M.; Volcani, B.E. Role of Silicon in Diatom Me-Tabolism. A Silicon Requirement for Deoxyribonucleic Acid Synthesis in the Diatom Cylindrotheca Fusiformis Reimann and Lewin. Exp. Cell Res. 1969, 58, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Mitra, M.; Mishra, S. A Comparative Analysis of Different Extraction Solvent Systems on the Extractability of Eicosapentaenoic Acid from the Marine Eustigmatophyte Nannochloropsis Oceanica. Algal Res. 2019, 38, 101387. [Google Scholar] [CrossRef]
- Salta, F.N.; Kalogeropoulos, N.; Karavanou, N.; Andrikopoulos, N.K. Distribution and Retention of Phytosterols in Frying Oils and Fried Potatoes during Repeated Deep and Pan Frying. Eur. Food Res. Technol. 2008, 227, 391–400. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Handb. Food Anal. Chem. 2005, 2, 171–178. [Google Scholar] [CrossRef]
- Poyato, C.; Navarro-Blasco, I.; Calvo, M.I.; Cavero, R.Y.; Astiasarán, I.; Ansorena, D. Oxidative Stability of O/W and W/O/W Emulsions: Effect of Lipid Composition and Antioxidant Polarity. Food Res. Int. 2013, 51, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
Fatty Acid | Ctrl | Str | Fatty Acid | Ctrl | Str |
---|---|---|---|---|---|
C12:0 | 2.32 ± 0.06 a | 1.95 ± 0.01 b | α C18:3 c9c12c15 | 0.57 ± 0.12 a | 0.38 ± 0.01 b |
C14:0 | 16.65 ± 0.39 a | 17.73 ± 0.22 b | C20:0 | 0.98 ± 0.13 a | 0.89 ± 0.01 a |
C14:1 | 0.48 ± 0.01 a | 0.40 ± 0.01 b | C20:1 c9 | 0.18 ± 0.01 a | 0.20 ± 0.01 a |
C15:0 | 3.87 ± 0.18 a | 3.31 ± 0.01 b | C20:2 c11c14 | 1.07 ± 0.01 a | 0.70 ± 0.07 b |
C15:1 | 0.77 ± 0.05 a | 0.62 ± 0.01 b | C20:3 n6 | 1.78 ± 0.02 a | 1.07 ± 0.02 b |
C16:0 | 159.41 ± 3.59 a | 124.13 ± 1.55 b | C20:4 n6 (AA) | 8.93 ± 0.15 a | 13.00 ± 0.12 b |
C16:1 t9 | 2.35 ± 0.04 a | 1.86 ± 0.08 b | C22:0 | 0.22 ± 0.01 a | 0.20 ± 0.02 a |
C16:1 c7 | 0.43 ± 0.03 a | 0.55 ± 0.04 b | C22:1 n11 | 0.13 ± 0.02 a | 0.16 ± 0.02 a |
C16:1 c9 | 158.71 ± 3.53 a | 132.38 ± 1.26 b | C20:5 n3 (EPA) | 45.25 ± 0.91 a | 51.07 ± 0.39 b |
C16:1 c11 | 0.74 ± 0.10 a | 0.48 ± 0.08 b | TFA | 455.54 ± 11.08 a | 398.29 ± 3.58 a |
C17:0 | 1.83 ± 0.16 a | 1.82 ± 0.04 a | ∑SFA | 190.72 ± 4.99 a | 155.26 ± 1.67 b |
C17:1 c10 | 1.53 ± 0.19 a | 1.53 ± 0.09 a | ∑MUFA | 181.64 ± 5.04 a | 158.69 ± 1.29 b |
C18:0 i | 0.54 ± 0.12 a | 0.58 ± 0.08 a | ∑PUFA | 83.18 ± 1.05 a | 84.34 ± 0.61 a |
C18:0 | 4.90 ± 0.36 a | 4.64 ± 0.01 a | ∑ω3 | 45.82 ± 1.03 a | 51.45 ± 0.38 b |
C18:1 t9 | 0.71 ± 0.20 a | 0.60 ± 0.02 a | ∑ω6 | 37.36 ± 0.02 a | 32.89 ± 0.23 b |
C18:1 c9 | 12.70 ± 0.58 a | 17.38 ± 0.12 b | ω6/ω3 | 0.82 ± 0.02 a | 0.64 ± 0.01 b |
C18:1 c11 | 2.91 ± 0.30 a | 2.53 ± 0.04 b | AI | 0.86 ± 0.01 a | 0.81 ± 0.01 b |
C18:2 c9t12 | 0.37 ± 0.07 a | 0.21 ± 0.03 b | TI | 0.73 ± 0.02 a | 0.58 ± 0.02 b |
C18:2 c9c12 | 24.80 ± 0.70 a | 17.51 ± 0.13 b | HH | 0.53 ± 0.02 a | 0.71 ± 0.02 b |
ɣ C18:3 c6c9c12 | 0.41 ± 0.10 a | 0.40 ± 0.01 a |
Sterol | Ctrl | Str |
---|---|---|
Cholesterol | 18.50 ± 0.22 a | 10.04 ± 0.03 b |
Desmosterol | 0.60 ± 0.10 a | 0.56 ± 0.17 a |
Campesterol | 1.06 ± 0.10 a | 0.73 ± 0.10 b |
Stigmasterol | 2.03 ± 0.27 a | 1.68 ± 0.17 a |
β-Sitosterol | 5.55 ± 0.10 a | 5.83 ± 0.48 a |
Total | 27.75 ± 0.14 a | 19.35 ± 0.89 b |
Pigment | ||
ca | 45.95 ± 1.12 a | 60.18 ± 0.89 b |
cb | 1.38 ± 0.06 a | 2.41 ± 0.10 b |
ccar | 27.62 ± 0.98 a | 33.25 ± 1.34 b |
Total | 74.95 ± 3.26 a | 95.84 ± 4.71 b |
Sample | µmolTrolox equivalent/mgextract |
---|---|
Ctrl | 49.84 ± 1.46 a |
Str | 48.54 ± 0.47 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, S.C.; Machado, M.; Freitas, A.C.; Gomes, A.M.; Carvalho, A.P. Can Growth of Nannochloropsis oculata under Modulated Stress Enhance Its Lipid-Associated Biological Properties? Mar. Drugs 2022, 20, 737. https://doi.org/10.3390/md20120737
Sousa SC, Machado M, Freitas AC, Gomes AM, Carvalho AP. Can Growth of Nannochloropsis oculata under Modulated Stress Enhance Its Lipid-Associated Biological Properties? Marine Drugs. 2022; 20(12):737. https://doi.org/10.3390/md20120737
Chicago/Turabian StyleSousa, Sérgio C., Manuela Machado, Ana C. Freitas, Ana M. Gomes, and Ana P. Carvalho. 2022. "Can Growth of Nannochloropsis oculata under Modulated Stress Enhance Its Lipid-Associated Biological Properties?" Marine Drugs 20, no. 12: 737. https://doi.org/10.3390/md20120737
APA StyleSousa, S. C., Machado, M., Freitas, A. C., Gomes, A. M., & Carvalho, A. P. (2022). Can Growth of Nannochloropsis oculata under Modulated Stress Enhance Its Lipid-Associated Biological Properties? Marine Drugs, 20(12), 737. https://doi.org/10.3390/md20120737