Functional Properties of Dunaliella salina and Its Positive Effect on Probiotics
Abstract
:1. Introduction
2. Results
2.1. Bacterial Growth in the Presence of D. salina Biomass
2.2. Cytotoxic Assay
2.3. Adherence
2.4. Immunomodulatory Effect
2.5. Antioxidant Assay
2.6. Hypocholesterolemic Effect
3. Discussion
4. Materials and Methods
4.1. Microorganisms
4.2. Bacterial Growth in the Presence of Dunaliella salina
4.3. DPPH Free-Radical-Scavenging Activity
4.4. Adherence
4.5. Animals and In Vivo Study Design
4.6. In Vitro Cytotoxicity Assay
4.7. Biochemical Parameters
4.8. Immunomodulatory Assay
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sathasivam, R.; Radhakrishnan, R.; Hashem, A.; Abd_Allah, E.F. Microalgae metabolites: A rich source for food and medicine. Saudi. J. Bio. Sci. 2019, 26, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Yücel, H.G.; Karatay, S.E.; Aksu, Z.; Dönmez, G. Lithium (I) biofortified Dunaliella salina as a potential functional nutrition supplement. Algal Res. 2021, 56, 102257. [Google Scholar] [CrossRef]
- Bansal, M.P.; Jaswal, S. Hypercholesterolemia induced oxidative stress is reduced in rats with diets enriched with supplement from Dunaliella salina algae. Am. J. Biomed. Sci. 2009, 1, 196–204. [Google Scholar] [CrossRef]
- Singh, P.; Baranwal, M.; Reddy, S.M. Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress. Pharm. Biol. 2016, 54, 2269–2275. [Google Scholar] [CrossRef] [Green Version]
- da Silva, M.R.O.B.; Moura, Y.A.S.; Converti, A.; Porto, A.L.F.; Marques, D.D.A.V.; Bezerra, R.P. Assessment of the potential of Dunaliella microalgae for different biotechnological applications: A systematic review. Algal Res. 2021, 58, 102396. [Google Scholar] [CrossRef]
- Jayappriyan, K.R.; Rajkumar, R.; Venkatakrishnan, V.; Nagaraj, S.; Rengasamy, R. In vitro anticancer activity of natural β-carotene from Dunaliella salina EU5891199 in PC-3 cells. Biomed. Prev. Nutr. 2013, 3, 99–105. [Google Scholar] [CrossRef]
- de Souza Celente, G.; Rizzetti, T.M.; Sui, Y.; de Souza Schneider, R.D.C. Potential use of microalga Dunaliella salina for bioproducts with industrial relevance. Biomass Bioenergy 2022, 167, 106647. [Google Scholar] [CrossRef]
- Camacho, F.; Macedo, A.; Malcata, F. Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review. Mar. Drugs 2019, 17, 312. [Google Scholar] [CrossRef] [Green Version]
- Sui, Y.; Vlaeminck, S.E. Dunaliella microalgae for nutritional protein: An undervalued asset. Trends Biotechnol. 2020, 38, 10–12. [Google Scholar] [CrossRef]
- Ververis, E.; Ackerl, R.; Azzollini, D.; Colombo, P.A.; de Sesmaisons, A.; Dumas, C.; Gelbmann, W. Novel foods in the European Union: Scientific requirements and challenges of the risk assessment process by the European Food Safety Authority. Int. Food Res. J. 2020, 137, 109515. [Google Scholar] [CrossRef]
- E.F.S.A. EU Novel Food Catalogue (v.1.1); European Food Safety Authority: Parma, Italy, 2020. [Google Scholar]
- Torres-Tiji, Y.; Fields, F.J.; Mayfield, S.P. Microalgae as a future food source. Biotechnol. Adv. 2020, 41, 107536. [Google Scholar] [CrossRef]
- Boricha, A.A.; Shekh, S.L.; Pithva, S.P.; Ambalam, P.S.; Vyas, B.R. In vitro evaluation of probiotic properties of Lactobacillus species of food and human origin. LWT 2019, 106, 201–208. [Google Scholar] [CrossRef]
- Wang, G.; Yu, H.; Feng, X.; Tang, H.; Xiong, Z.; Xia, Y.; Ali, L.; Song, X. Specific bile salt hydrolase genes in Lactobacillus plantarum AR113 and relationship with bile salt resistance. LWT 2021, 145, 111208. [Google Scholar] [CrossRef]
- Rajoka, M.S.R.; Mehwish, H.M.; Siddiq, M.; Haobin, Z.; Zhu, J.; Yan, L.; Shao, D.; Xu, X.; Shi, J. Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT 2017, 84, 271–280. [Google Scholar] [CrossRef]
- Plamada, D.; Vodnar, D.C. Polyphenols—Gut microbiota interrelationship: A transition to a new generation of prebiotics. Nutrients 2021, 14, 137. [Google Scholar] [CrossRef]
- de Jesus Raposo, M.F.; De Morais, A.M.M.B.; De Morais, R.M.S.C. Emergent sources of prebiotics: Seaweeds and microalgae. Mar. Drugs 2016, 14, 27. [Google Scholar] [CrossRef]
- Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G.; et al. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods 2010, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Hyrslova, I.; Krausova, G.; Smolova, J.; Stankova, B.; Branyik, T.; Malinska, H.; Huttl, M.; Kana, A.; Curda, L.; Doskocil, I. Functional properties of chlorella vulgaris, colostrum, and bifidobacteria, and their potential for application in functional foods. Appl. Sci. 2021, 11, 5264. [Google Scholar] [CrossRef]
- Hyrslova, I.; Krausova, G.; Smolova, J.; Stankova, B.; Branyik, T.; Malinska, H.; Huttl, M.; Kana, A.; Doskocil, I.; Curda, L. Prebiotic and immunomodulatory properties of the microalga chlorella vulgaris and its synergistic triglyceride-lowering effect with bifidobacteria. Fermentation 2021, 7, 125. [Google Scholar] [CrossRef]
- Ścieszka, S.; Gorzkiewicz, M.; Klewicka, E. Innovative fermented soya drink with the microalgae Chlorella vulgaris and the probiotic strain Levilactobacillus brevis ŁOCK 0944. LWT 2021, 151, 112131. [Google Scholar] [CrossRef]
- Beheshtipour, H.; Mortazavian, A.M.; Mohammadi, R.; Sohrabvandi, S.; Khosravi-Darani, K. Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Compr. Rev. Food Sci. Food Saf. 2013, 12, 144–154. [Google Scholar] [CrossRef]
- Harari, A.; Harats, D.; Marko, D.; Cohen, H.; Barshack, I.; Kamari, Y.; Gonen, A.; Gerber, Y.; Ben-Amotz, A.; Shaish, A. A 9-cis β-carotene–enriched diet inhibits atherogenesis and fatty liver formation in LDL receptor knockout mice. J. Nutr. 2008, 138, 1923–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlachová, M.; Heczková, M.; Jirsa, M.; Poledne, R.; Kovar, J. The response of hepatic transcriptome to dietary cholesterol in Prague hereditary hypercholesterolemic (PHHC) rat. Physiol. Res. 2014, 63, S429–S437. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, C.; Garg, A.P.; Prakash, D. Prebiotic efficiency of blue green algae on probiotics microorganisms. J. Microbiol. Exp. 2017, 4, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Kent, M.; Welladsen, H.M.; Mangott, A.; Li, Y. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE 2015, 10, e0118985. [Google Scholar] [CrossRef]
- Sui, Y.; Muys, M.; Vermeir, P.; D’Adamo, S.; Vlaeminck, S.E. Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina. Bioresour. Technol. 2019, 275, 145–152. [Google Scholar] [CrossRef]
- Barros de Medeiros, V.P.; da Costa, W.K.A.; da Silva, R.T.; Pimentel, T.C.; Magnani, M. Microalgae as source of functional ingredients in new-generation foods: Challenges, technological effects, biological activity, and regulatory issues. Crit. Rev. Food Sci. Nutr. 2021, 62, 4929–4950. [Google Scholar] [CrossRef]
- Barros de Medeiros, V.P.; de Souza, E.L.; de Albuquerque, T.M.R.; da Costa Sassi, C.F.; dos Santos Lima, M.; Sivieri, K.; Pimentel, T.C.; Magnani, M. Freshwater microalgae biomasses exert a prebiotic effect on human colonic microbiota. Algal Res. 2021, 60, 102547. [Google Scholar] [CrossRef]
- Gibson, G.R.; Probert, H.M.; van Loo, J.A.E.; Roberfroid, M.B. Dietary modulation of human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004, 17, 257–259. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wang, M.; Bäuerl, C.; Cortés-Macías, E.; Calvo-Lerma, J.; Collado, M.C.; Barba, F.J. The impact of liquid-pressurized extracts of Spirulina, Chlorella and Phaedactylum tricornutum on in vitro antioxidant, antiinflammatory and bacterial growth effects and gut microbiota modulation. Food Chem. 2023, 401, 134083. [Google Scholar] [CrossRef]
- Ambrico, A.; Trupo, M.; Magarelli, R.; Balducchi, R.; Ferraro, A.; Hristoforou, E.; Marino, T.; Musmarra, D.; Casella, P.; Molino, A. Effectiveness of Dunaliella salina extracts against Bacillus subtilis and bacterial plant pathogens. Pathogens 2020, 9, 613. [Google Scholar] [CrossRef] [PubMed]
- Mendiola, J.A.; Santoyo, S.; Cifuentes, A.; Reglero, G.; Ibanez, E.; Señoráns, F.J. Antimicrobial activity of sub-and supercritical CO2 extracts of the green alga Dunaliella salina. J. Food Prot. 2008, 71, 2138–2143. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Ibáñez, E.; Cifuentes, A.; Reglero, G.; Santoyo, S. Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. J. Food Prot. 2006, 69, 2471–2477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krausova, G.; Hynstova, I.; Svejstil, R.; Mrvikova, I.; Kadlec, R. Identification of Synbiotics Conducive to Probiotics Adherence to Intestinal Mucosa Using an In Vitro Caco-2 and HT29-MTX Cell Model. Processes 2021, 9, 569. [Google Scholar] [CrossRef]
- Krausova, G.; Hyrslova, I.; Jakubec, M.; Hynstova, I. In vitro evaluation of prebiotics on adherence of lactobacilli. J. Microb. Biochem. Technol. 2016, 8, 6–8. [Google Scholar]
- Altamimi, M.; Abdelhay, O.; Rastall, R.A. Effect of oligosaccharides on the adhesion of gut bacteria to human HT-29 cells. Anaerobe 2016, 39, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Mobasher, M.A.; Najafipour, S.; Ghasemi, Y.; Mohkam, M.; Ebrahimi, M.A.; Mobasher, N. Antibacterial potential of Chlorella vulgaris and Dunaliella salina extracts against Streptococcus mutans. Jundishapur J. Nat. Pharm. Prod. 2018, 13, e13226. [Google Scholar] [CrossRef]
- Eslami, M.; Bahar, A.; Keikha, M.; Karbalaei, M.; Kobyliak, N.M.; Yousefi, B. Probiotics function and modulation of the immune system in allergic diseases. Allergol. Immunopathol. 2020, 48, 771–788. [Google Scholar] [CrossRef]
- Caroprese, M.; Albenzio, M.; Ciliberti, M.G.; Francavilla, M.; Sevi, A. A mixture of phytosterols from Dunaliella tertiolecta affects proliferation of peripheral blood mononuclear cells and cytokine production in sheep. Vet. Immunol. Immunopathol. 2012, 150, 27–35. [Google Scholar] [CrossRef]
- An, H.J.; Rim, H.K.; Lee, J.H.; Seo, M.J.; Hong, J.W.; Kim, N.H.; Myung, N.Y.; Moon, P.D.; Choi, I.Y.; Na, H.J.; et al. Effect of Chlorella vulgaris on immune-enhancement and cytokine production in vivo and in vitro. Food Sci. Biotechnol. 2008, 17, 953–958. [Google Scholar]
- Goyal, M.; Baranwal, M.; Pandey, S.K.; Reddy, M.S. Hetero-polysaccharides secreted from Dunaliella salina exhibit immunomodulatory activity against peripheral blood mononuclear cells and RAW 264.7 macrophages. Indian J. Microbiol. 2019, 59, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Sibi, G.; Rabina, S. Inhibition of pro-inflammatory mediators and cytokines by Chlorella vulgaris extracts. Pharmacogn. Res. 2016, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Zamani, H.; Rastegari, B.; Varamini, M. Antioxidant and anti-cancer activity of Dunaliella salina extract and oral drug delivery potential via nano-based formulations of gum Arabic coated magnetite nanoparticles. J Drug Deliv Sci Technol 2019, 54, 101278. [Google Scholar] [CrossRef]
- Roy, U.K.; Nielsen, B.V.; Milledge, J.J. Antioxidant production in Dunaliella. Appl. Sci. 2021, 11, 3959. [Google Scholar] [CrossRef]
- Tong, L.; Chuang, C.C.; Wu, S.; Zuo, L. Reactive oxygen species in redox cancer therapy. Cancer Lett. 2015, 367, 18–25. [Google Scholar] [CrossRef]
- Taylor, P.; Colman, L.; Bajoon, J. The search for plants with anticancer activity: Pitfalls at the early stages. J. Ethnopharmacol. 2014, 158, 246–254. [Google Scholar] [CrossRef]
- Pontier, C.; Pachot, J.; Botham, R.; Lenfant, B.; Arnaud, P. HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: Role of the mucus layer. J. Pharm. Sci. 2001, 90, 1608–1619. [Google Scholar] [CrossRef]
- Senousy, H.H.; Abd Ellatif, S.; Ali, S. Assessment of the antioxidant and anticancer potential of different isolated strains of cyanobacteria and microalgae from soil and agriculture drain water. Environ. Sci. Pollut. Res. 2020, 27, 18463–18474. [Google Scholar] [CrossRef]
- Gómez-Zorita, S.; González-Arceo, M.; Trepiana, J.; Eseberri, I.; Fernández-Quintela, A.; Milton-Laskibar, I.; Aguirre, L.; González, M.; Portillo, M.P. Anti-obesity effects of macroalgae. Nutrients 2020, 12, 2378. [Google Scholar] [CrossRef]
- Shaish, A.; Horari, A.; Kamari, Y.; Cohen, H.; Schonfeld, G.; Harats, D. Application of Dunaliella in atherosclerosis. In The Alga Dunaliella; CRC Press: Boca Raton, FL, USA, 2019; pp. 475–494. [Google Scholar]
- El-Baz, F.K.; Aly, H.F.; Salama, A.A. Toxicity assessment of the green Dunaliella salina microalgae. Toxicol. Rep. 2019, 6, 850–861. [Google Scholar] [CrossRef]
- Krausova, G.; Hyrslova, I.; Hynstova, I. In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation 2019, 5, 100. [Google Scholar] [CrossRef] [Green Version]
- Musilova, S.; Modrackova, N.; Doskocil, I.; Svejstil, R.; Rada, V. Influence of human milk oligosaccharides on adherence of bifidobacteria and clostridia to cell lines. Acta Microbiol. Immunol. Hung. 2017, 64, 415–422. [Google Scholar] [CrossRef]
- Hyrslova, I.; Kana, A.; Kantorova, V.; Krausova, G.; Mrvikova, I.; Doskocil, I. Selenium accumulation and biotransformation in Streptococcus, Lactococcus, and Enterococcus strains. J. Funct. Foods 2022, 92, 105056. [Google Scholar] [CrossRef]
Bacterial Strains | Cell Counts (log CFU/mL) | pH |
---|---|---|
BB12 | 8.78 ± 0.07 c | 5.21 ± 0.01 a |
Lafti L-26 | 8.70 ± 0.09 c | 5.31 ± 0.00 b |
364 | 9.00 ± 0.04 d | 5.31 ± 0.02 b |
466 | 5.88 ± 0.15 a | 5.36 ± 0.01 c |
562 | 9.00 ± 0.31 c | 5.27 ± 0.04 b |
151 | 8.60 ± 0.11 c | 5.27 ± 0.01 b |
232 | 8.30 ± 0.24 b | 5.19 ± 0.01 a |
219 | 8.74 ± 0.04 c | 5.33 ± 0.05 b |
93 | 8.78 ± 0.07 c | 5.21 ± 0.03 a |
146 | 8.65 ± 0.17 c | 5.33 ± 0.01 b |
Content of D. salina | ||||
---|---|---|---|---|
125 μg/mL | 64 μg/mL | |||
Bacterial strains | Caco-2 | HT-29 | Caco -2 | HT-29 |
219 | −21.1 ± 10.9 | −26.1.0 ± 7.0 | −40.3 ± 9.2 | −15.0 ± 5.5 |
BB12 | −30.7 ± 11.4 | +26.5 ± 15.5 | −25.7 ± 13.5 | +23.7 ± 16.9 |
93 | +1.4 ± 10.3 | +6.0 ± 3.7 | − 9.7 ± 3.9 | −14.6 ± 9.7 |
146 | −15.3 ± 12.1 | −26.1 ± 4.6 | −7.1 ± 12.6 | −28.2 ± 12.5 |
232 | −19.3 ± 6.2 | −3.0 ± 6.5 | −10.6 ± 9.4 | −22.0 ± 7.8 |
364 | −14.9 ± 5.4 | +2.5 ± 9.3 | −8.6 ± 6.0 | −22.2 ± 12.3 |
Lafti L−26 | −34.6 ± 17.2 | −36.2 ± 8.4 | −2.1 ± 7.0 | −53.3 ± 11.3 |
562 | +4.5 ± 9.2 | −21.2 ± 8.4 | +7.0 ± 15.0 | −33.7 ± 6.4 |
151 | −65.0 ± 11.2 | −66.8 ± 1.3 | −14.1 ± 14.2 | −35.8 ± 2.8 |
466 | −22.2 ± 2.9 | −10.1 ± 7.9 | −19.8 ± 12.9 | −17.2 ± 8.9 |
Concentration of D. salina (w/v) | Cytokines (pg/mL) | ||||
---|---|---|---|---|---|
TNF-α | IL-4 | IL-6 | IL-10 | IL-17 | |
0.5% | 51.2 ± 13.5 d | 4.8 ± 1.3 b | 329.6 ± 146.4 d | 4.1 ± 1.8 b | 1.8 ± 0.7 b |
1.0% | 23.02 ± 6.7 c | 6.26 ± 2.5 b | 179.70 ± 114.7 c | 3.5 ± 1.5 b | 1.4 ± 0.8 b |
3.0% | 8.3 ± 6.43 b | 7.32 ± 2.6 b,c | 13.65 ± 5.2 b | 3.6 ± 1.1 b | 4.1 ± 1.8 c |
Control | 4.1 ± 0.8 a | 0.4 ± 0.1 a | 5.1 ± 0.7 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a |
Tested Group | Periods | Biochemical Parameters | ||||||
---|---|---|---|---|---|---|---|---|
TAG Aorta (μmol/g) | TC (mmol/L) | HDL-C (mmol/L) | LDL-C (mmol/L) | TAG (mmol/L) | ALT (ukat/L) | AST (ukat/L) | ||
Group A (control) | 4 weeks | 0.47 ± 0.06 A | 8.62 ± 0.58 A | 0.70 ± 0.08 A | 6.50 ± 0.69 A | 3.16 ± 0.79 A | 1.67 ± 0.12 A | 3.83 ± 0.15 A |
Group B | 0.95 ± 0.49 A | 9.32 ± 0.42 A | 0.72 ± 0.07 A | 7.71 ± 0.58 B | 2.10 ± 0.38 B | 1.78 ± 0.15 A | 3.94 ± 0.66 A | |
Group A (control) | 8 weeks | 1.44 ± 0.15 A | 12.28 ± 1.46 A | 0.71 ± 0.04 A | 9.9 ± 1.84 A | 2.40 ± 0.45 A | 2.15 ± 0.40 A | 4.41 ± 0.45 A |
Group B | 1.47 ± 0.09 A | 8.77 ± 1.28 B | 0.63 ± 0.08 A | 7.1 ± 1.20 B | 2.02 ± 0.48 A | 1.75 ± 0.18 A | 3.71 ± 0.61 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyrslova, I.; Krausova, G.; Mrvikova, I.; Stankova, B.; Branyik, T.; Malinska, H.; Huttl, M.; Kana, A.; Doskocil, I. Functional Properties of Dunaliella salina and Its Positive Effect on Probiotics. Mar. Drugs 2022, 20, 781. https://doi.org/10.3390/md20120781
Hyrslova I, Krausova G, Mrvikova I, Stankova B, Branyik T, Malinska H, Huttl M, Kana A, Doskocil I. Functional Properties of Dunaliella salina and Its Positive Effect on Probiotics. Marine Drugs. 2022; 20(12):781. https://doi.org/10.3390/md20120781
Chicago/Turabian StyleHyrslova, Ivana, Gabriela Krausova, Iva Mrvikova, Barbora Stankova, Tomas Branyik, Hana Malinska, Martina Huttl, Antonin Kana, and Ivo Doskocil. 2022. "Functional Properties of Dunaliella salina and Its Positive Effect on Probiotics" Marine Drugs 20, no. 12: 781. https://doi.org/10.3390/md20120781
APA StyleHyrslova, I., Krausova, G., Mrvikova, I., Stankova, B., Branyik, T., Malinska, H., Huttl, M., Kana, A., & Doskocil, I. (2022). Functional Properties of Dunaliella salina and Its Positive Effect on Probiotics. Marine Drugs, 20(12), 781. https://doi.org/10.3390/md20120781