Algal-Derived Halogenated Sesquiterpenes from Laurencia dendroidea as Lead Compounds in Schistosomiasis Environmental Control
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of Isolated Sesquiterpenes for Antischistosomal and Molluscicidal Activities
2.2. Bioguided Fractionation of Laurencia dendroidea Led to Elatol
3. Materials and Methods
3.1. General Procedures
3.2. Algae Sampling
3.3. Extract Preparation and Chromatographyc Analyses
3.4. Biomonitored Fractioning
3.5. Sesquiternene Purification and Identification
3.6. Molluscicidal Activity
3.7. Cercaricidal Activity
3.8. SchistosomicidalActivity in Adult Worms
3.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Research Priorities for Helminth Infections: Technical Report of the TDR Disease Reference Groupon Helminth Infections; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- World Health Organization. Schistosomiasis (Bilharzia). Available online: https://www.who.int/health-topics/schistosomiasis#tab=tab_1 (accessed on 8 March 2021).
- Gryseels, B.; Polman, K.; Clerinx, J.; Kestens, L. Human schistosomiasis. Lancet 2006, 368, 1106–1118. [Google Scholar] [CrossRef]
- Lombardo, F.C.; Pasche, V.; Panic, G.; Endriss, Y.; Keiser, J. Life cycle maintenance and drug-sensitivity assays for early drug discovery in Schistosoma mansoni. Nat. Protoc. 2019, 14, 461–481. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Laboratory and Field Testing of Molluscicides for Control of Schistosomiasis; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- World Health Organization. Executive Summary. Ending the Neglect to Attain the Sustainable Development Goals: A Road Map for Neglected Tropical Diseases 2021–2030. Available online: https://www.who.int/publications/i/item/WHO-UCN-NTD-2020.01 (accessed on 28 January 2020).
- Utzinger, J.; Raso, G.; Brooker, S.; de Savigny, D.; Tanner, M.; Ornbjerg, N.; Singer, B.H.; N’Goran, E.K. Schistosomiasis and neglected tropical diseases: Towards integrated and sustainable control and a word of caution. Parasitology 2009, 136, 1859–1874. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Schistosomiasis Elimination: Refocusing on Snail Control to Sustain Progress. Available online: https://www.who.int/news/item/25-03-2020-schistosomiasis-elimination-refocusing-on-snail-control-to-sustain-progress (accessed on 5 March 2021).
- Stein, E.M.; Machado, L.P.; Roffato, H.K.; Miyasato, P.A.; Nakano, E.; Colepicolo, P.; Andreguetti, D.X. Antischistosomal activity from Brazilian marine algae. Rev. Bras. Farmacogn. 2015, 25, 663–667. [Google Scholar] [CrossRef] [Green Version]
- Stein, E.M.; Taju, S.G.; Miyasato, P.A.; de Freitas, R.P.; Tallarico, L.D.; dos Santos, G.S.; Luiz, G.L.F.; Rofatto, H.K.; da Silva, F.N.V.; Colepicolo, P.; et al. The Prospective Use of Brazilian Marine Macroalgae in Schistosomiasis Control. Mar. Drugs 2021, 19, 234. [Google Scholar] [CrossRef]
- Vairappan, C.S. Potent antibacterial activity of halogenated metabolites from Malaysian red algae, Laurencia majuscula (Rhodomelaceae, Ceramiales). Biomol. Eng. 2003, 20, 255–259. [Google Scholar] [CrossRef]
- Ventura, T.L.B.; Machado, F.L.D.; de Araujo, M.H.; Gestinari, L.M.D.; Kaiser, C.R.; Esteves, F.D.; Lasunskaia, E.B.; Soares, A.R.; Muzitano, M.F. Nitric Oxide Production Inhibition and Anti-Mycobacterial Activity of Extracts and Halogenated Sesquiterpenes from the Brazilian Red Alga Laurencia Dendroidea J. Agardh. Pharmacogn. Mag. 2015, 11, S611–S618. [Google Scholar] [CrossRef] [Green Version]
- Machado, F.L.D.; Pacienza-Lima, W.; Rossi-Bergmann, B.; Gestinari, L.M.D.; Fujii, M.T.; de Paula, J.C.; Costa, S.S.; Lopes, N.P.; Kaiser, C.R.; Soares, A.R. Antileishmanial Sesquiterpenes from the Brazilian Red Alga Laurencia dendroidea. Planta Med. 2011, 77, 733–735. [Google Scholar] [CrossRef] [Green Version]
- Salvador-Neto, O.; Gomes, S.A.; Soares, A.R.; Machado, F.L.D.; Samuels, R.I.; da Fonseca, R.N.; Souza-Menezes, J.; Moraes, J.L.D.; Campos, E.; Mury, F.B.; et al. Larvicidal Potential of the Halogenated Sesquiterpene (+)- Obtusol, Isolated from the Alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the Dengue Vector Mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae). Mar. Drugs 2016, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Bianco, E.M.; Pires, L.; Santos, G.K.N.; Dutra, K.A.; Reis, T.N.V.; Vasconcelos, E.; Cocentino, A.L.M.; Navarro, D. Larvicidal activity of seaweeds from northeastern Brazil and of a halogenated sesquiterpene against the dengue mosquito (Aedes aegypti). Ind. Crops Prod. 2013, 43, 270–275. [Google Scholar] [CrossRef]
- Falkenberg, M.; Nakano, E.; Zambotti-Villela, L.; Zatelli, G.A.; Philippus, A.C.; Imamura, K.B.; Velasquez, A.M.A.; Freitas, R.P.; Tallarico, L.D.; Colepicolo, P.; et al. Bioactive compounds against neglected diseases isolated from macroalgae: A review. J. Appl. Phycol. 2019, 31, 797–823. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.D.; Goclik, E.; Konig, G.M. Three new sesquiterpenes from the red alga Laurencia perforata. J. Nat. Prod. 2003, 66, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Wessels, M.; Konig, G.M.; Wright, A.D. New natural product isolation and comparison of the secondary metabolite content of three distinct samples of the sea hare Aplysia dactylomela from Tenerife. J. Nat. Prod. 2000, 63, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Davyt, D.; Fernandez, R.; Suescun, L.; Mombru, A.W.; Saldana, J.; Dominguez, L.; Coll, J.; Fujii, M.T.; Manta, E. New sesquiterpene derivatives from the red alga Laurencia scoparia. Isolation, structure determination, and anthelmintic activity. J. Nat. Prod. 2001, 64, 1552–1555. [Google Scholar] [CrossRef]
- dos Santos, A.F.; Fonseca, S.A.; Cesar, F.A.; Pessoa de Azevedo Albuquerque, M.C.; Santana, J.V.; Goulart Santana, A.E. A penta-substituted pyridine alkaloid from the rhizome of Jatropha elliptica (Pohl) Muell. Arg. is active against Schistosoma mansoni and Biomphalaria glabrata. Parasitol. Res. 2014, 113, 1077–1084. [Google Scholar] [CrossRef] [Green Version]
- Manilal, A.; Thajuddin, N.; Selvin, J.; Idhayadhulla, A.; Kumar, R.; Sujith, S. In vitro Mosquito Larvicidal Activity of Marine Algae Against the Human Vectors, Culex quinquefasciatus (Say) and Aedes aegypti (Linnaeus) (Diptera: Culicidae). Int. J. Zool. Res. 2011, 7, 272–278. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Field Use of Molluscicides in Schistosomiasis Control Programmes: An Operational Manual for Programme Managers; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- World Health Organization. Sustaining the Drive to Overcome the Global Impact of Neglected Tropical Diseases: Second WHO Report Onneglected Diseases; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Waksmundzka-Hajnos, M.; Sherma, J.; Kowalska, T. Thin Layer Chromatography in Phytochemistry (Chromatographic Science Series), 1st ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2008; p. 896. [Google Scholar]
- König, G.; Wright, A. Laurencia rigida: Chemical investigations of its antifouling dichloromethane extract. J. Nat. Prod. 1997, 60, 967–970. [Google Scholar] [CrossRef]
- Lhullier, C.; Donnangelo, A.; Caro, M.; Palermo, J.A.; Horta, P.A.; Falkenberg, M.; Schenkel, E.P. Isolation of elatol from Laurencia microcladia and its palatability to the sea urchin Echinometra lucunter. Biochem. Syst. Ecol. 2009, 37, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Coll, J.C.; Wright, A.D. Tropical marine algae III. New sesquiterpenes from Laurencia majuscula (Rhodophyta, Rhodophyceae, Ceramiales, Rhodomelaceae). Aust. J. Chem. 1989, 42, 1591–1603. [Google Scholar] [CrossRef]
- Juagdan, E.; Kalidindi, R.; Scheuer, P. ChemInform Abstract: Two New Chamigranes from a Hawaiian Red Alga, Laurencia cartilaginea. Cheminform 2010, 28. [Google Scholar] [CrossRef]
- Guella, G.; Chiasera, G.; Mancini, I.; Pietra, F. Conformational analysis of marine polyhalogenated beta-chamigrenes through temperature-dependent NMR spectra. Helv. Chim. Acta 1991, 74, 774–786. [Google Scholar] [CrossRef]
- Guella, G.; Mancini, I.; Pietra, F. C15 Acetogenins and Terpenes of the Dictyoceratid Sponge Spongia Zimocca of Il Rogiolo: A Case of Seaweed-Metabolite Transfer to, and Elaboration within, a Sponge? Comp. Biochem. Physiol. Part B Comp. Biochem. 1992, 103, 1019–1023. [Google Scholar] [CrossRef]
- Guella, G.; Öztunç, A.; Mancini, I.; Pietra, F. Stereochemical Features of Sesquiterpene Metabolites as a Distinctive Trait of Red Seaweeds in the Genus Laurencia. Tetrahedron Lett. 1997, 38, 8261–8264. [Google Scholar] [CrossRef]
- Guella, G.; Mancini, I.; Chiasera, G.; Pietra, F. Rogiolol acetate: A novel β-chamigrene-type sesquiterpene isolated from a marine sponge. Helv. Chim. Acta 1990, 73, 1612–1620. [Google Scholar] [CrossRef]
- Aitchison, J.; Kay, J.W.; Lauder, I.J. Statistical Concepts and Applications in Clinical Medicine; The Blackburn Press: New York, NY, USA, 2005. [Google Scholar]
Models Tested | (−)-Elatol | Rogiolol | Obtusol |
---|---|---|---|
S. mansoni worms | |||
Viability | − | +++ | + |
Reproduction | +++ | +++ | +++ |
S. mansoni cercariae | +++ | +++ | +++ |
B. glabrata embryos | +++ | +++ | +++ |
Concentration (µg mL−1) | Inhibition * of Cercariae after Fixed Times in min | ||||
---|---|---|---|---|---|
5 | 15 | 30 | 60 | 120 | |
Dechlorinated water | − | − | − | − | − |
Dechlorinated water with DMSO 1% | − | − | − | − | − |
3.13 | + | + | + | + | + |
6.25 | ++ | + | + | + | + |
12.5 | +++ | +++ | +++ | +++ | +++ |
25 | +++ | +++ | +++ | +++ | +++ |
50 | +++ | +++ | +++ | +++ | +++ |
100 | +++ | +++ | +++ | +++ | +++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, G.S.; Miyasato, P.A.; Stein, E.M.; Colepicolo, P.; Wright, A.D.; Pereira, C.A.d.B.; Falkenberg, M.; Nakano, E. Algal-Derived Halogenated Sesquiterpenes from Laurencia dendroidea as Lead Compounds in Schistosomiasis Environmental Control. Mar. Drugs 2022, 20, 111. https://doi.org/10.3390/md20020111
dos Santos GS, Miyasato PA, Stein EM, Colepicolo P, Wright AD, Pereira CAdB, Falkenberg M, Nakano E. Algal-Derived Halogenated Sesquiterpenes from Laurencia dendroidea as Lead Compounds in Schistosomiasis Environmental Control. Marine Drugs. 2022; 20(2):111. https://doi.org/10.3390/md20020111
Chicago/Turabian Styledos Santos, Guilherme Senna, Patrícia Aoki Miyasato, Erika Mattos Stein, Pio Colepicolo, Anthony D. Wright, Carlos Alberto de Bragança Pereira, Miriam Falkenberg, and Eliana Nakano. 2022. "Algal-Derived Halogenated Sesquiterpenes from Laurencia dendroidea as Lead Compounds in Schistosomiasis Environmental Control" Marine Drugs 20, no. 2: 111. https://doi.org/10.3390/md20020111
APA Styledos Santos, G. S., Miyasato, P. A., Stein, E. M., Colepicolo, P., Wright, A. D., Pereira, C. A. d. B., Falkenberg, M., & Nakano, E. (2022). Algal-Derived Halogenated Sesquiterpenes from Laurencia dendroidea as Lead Compounds in Schistosomiasis Environmental Control. Marine Drugs, 20(2), 111. https://doi.org/10.3390/md20020111