New Secondary Metabolites from the Marine-Derived Fungus Talaromyces mangshanicus BTBU20211089
Abstract
:1. Introduction
2. Results
2.1. Structure Elucidation
2.2. Biological Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Microbial Material, Fermentation, Extraction and Purification
- Talaromanloid A (1): Light-yellow powder; [α + 43.0 (c 0.1, MeOH); CD (c 5.0 × 10−5, CH3OH), λmax(∆ε) 259 nm (+9.14) and 290 nm (−2.20); 1H and 13C NMR data, Table 1; HRESIMS m/z 393.1481 [M + H]+ (calcd for C19H25N2O5S, 393.1479).
- Talaromydene (2): Light-yellow powder; [α −67.0 (c 0.1, MeOH); CD (c 5.0 × 10−5, CH3OH), λmax(∆ε) 256 nm (−4.88); 1H and 13C NMR data, Table 1; HRESIMS m/z 404.1701 [M + H]+ (calcd for C21H26NO7, 404.1704).
- 10-Hydroxydemethyltalaromydine (3): Colorless powder; 1H and 13C NMR data, Table 2; HRESIMS m/z 226.0716 [M + H]+ (calcd for C10H12NO5, 226.0710).
- 11. -hydroxydemethyltalaromydine (4): Colorless powder; 1H and 13C NMR data, Table 2; HRESIMS m/z 226.0716 [M + H]+ (calcd for C10H12NO5, 226.0710).
- Talaromylectone (5): Colorless powder; 1H and 13C NMR data, Table 2; HRESIMS m/z 226.0715 [M + H]+ (calcd for C10H12NO5, 226.0710).
- Ditalaromylectone A (6): Light-yellow powder; [α +6.0 (c 0.1, MeOH); 1H and 13C NMR data, Table 3; HRESIMS m/z 417.1287 [M + H]+ (calcd for C20H21N2O8, 417.1292).
- Ditalaromylectone B (7): Light-yellow powder; [α 0.0 (c 0.1, MeOH); 1H and 13C NMR data, Table 3; HRESIMS m/z 417.1289 [M + H]+ (calcd for C20H21N2O8, 417.1292).
3.3. ECD Computation Method
3.4. Biological Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2021, 38, 362–413. [Google Scholar] [CrossRef] [PubMed]
- McNeill, J.B.F.; Buck, W.R.; Demoulin, V.; Greuter, W.; Hawksworth, D.L.H.P.; Knapp, S.; Marhold, K.; Prado, J.; Smith, G.F.; Wiersem, J.H. International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne Code); Regnum Vegetabile 154; Koeltz Scientific Books: Koenigstein, Germany, 2012. [Google Scholar]
- Ma, M.Z.; Yi, W.W.; Qin, L.; Lian, X.Y.; Zhang, Z.Z. Talaromydien a and talaroisocoumarin A, new metabolites from the marine-sourced fungus Talaromyces sp. ZZ1616. Nat. Prod. Res. 2020, 36, 460–465. [Google Scholar] [CrossRef]
- Liang, X.; Huang, Z.H.; Shen, W.B.; Lu, X.H.; Zhang, X.X.; Ma, X.; Qi, S.H. Talaromyoxaones A and B: Unusual oxaphenalenone spirolactones as phosphatase inhibitors from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. J. Org. Chem. 2021, 86, 12831–12839. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.H.; Liang, X.; Li, C.J.; Gu, Q.; Ma, X.; Qi, S.H. Talaromynoids A-I, highly oxygenated meroterpenoids from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517 and their lipid accumulation inhibitory activities. J. Nat. Prod. 2021, 84, 2727–2737. [Google Scholar] [CrossRef]
- Wu, B.; Ohlendorf, B.; Oesker, V.; Wiese, J.; Malien, S.; Schmaljohann, R.; Imhoff, J.F. Acetylcholinesterase inhibitors from a marine fungus Talaromyces sp strain LF458. Mar. Biotechnol. 2015, 17, 110–119. [Google Scholar] [CrossRef]
- Lan, D.; Wu, B. Chemistry and bioactivities of secondary metabolites from the genus Talaromyces. Chem. Biodivers 2020, 17, e2000229. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Trincone, A. Bioactive compounds produced by strains of Penicillium and Talaromyces of marine origin. Mar. Drugs 2016, 14, 37. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Han, J.; Lin, R.; Polyak, S.W.; Song, F. Two new piperazine-triones from a marine-derived Streptomycetes sp. strain SMS636. Mar. Drugs 2019, 17, 186. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Han, J.; Wang, Y.; Lin, R.; Yang, H.; Li, J.; Wei, S.; Polyak, S.W.; Song, F. Two New Spiro-Heterocyclic gamma-Lactams from A Marine-Derived Aspergillus fumigatus Strain CUGBMF170049. Mar. Drugs 2019, 17, 289. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Lin, R.; Yang, N.; Jia, J.; Wei, S.; Han, J.; Li, J.; Bi, H.; Xu, X. Antibacterial secondary metabolites from marine-derived fungus Aspergillus sp. IMCASMF180035. Antibiotics 2021, 10, 377. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, J.; Zhang, K.; Wei, S.; Lin, R.; Polyak, S.W.; Yang, N.; Song, F. New isocoumarin analogues from the marine-derived fungus Paraphoma sp. CUGBMF180003. Mar. Drugs 2021, 19, 313. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Duan, R.G.; Zou, J.H.; Chen, R.D.; Chen, X.G.; Dai, J.G. Meroterpenoids and isoberkedienolactone from endophytic fungus Penicillium sp. associated with Dysosma versipellis. Acta Pharm. Sin. 2014, 49, 913–920. [Google Scholar]
- Miao, F.; Yang, R.; Chen, D.D.; Wang, Y.; Qin, B.F.; Yang, X.J.; Zhou, L. Isolation, identification and antimicrobial activities of two secondary metabolites of Talaromyces verruculosus. Molecules 2012, 17, 14091–14098. [Google Scholar] [CrossRef] [Green Version]
- Ui, H.; Shiomi, K.; Yamaguchi, Y.; Masuma, R.; Nagamitsu, T.; Takano, D.; Sunazuka, T.; Namikoshi, M.; Omura, S. Nafuredin, a novel inhibitor of NADH-fumarate reductase, produced by Aspergillus niger FT-0554. J. Antibiot. 2001, 54, 234–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Wu, Y.Y.; Zhang, T.Y.; Zhang, M.Y.; Peng, F.; Lin, B.; Zhang, Y.X. New antimicrobial compounds produced by endophytic Penicillium janthinellum isolated from Panax notoginseng as potential inhibitors of FtsZ. Fitoterapia 2018, 131, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.C.; Entwistle, R.; Guo, C.J.; Ahuja, M.; Szewczyk, E.; Hung, J.H.; Chiang, Y.M.; Oakley, B.R.; Wan, C.C. Two separate Gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans. J. Am. Chem. Soc. 2012, 134, 4709–4720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.-X.; Bao, L.; Yang, X.-L.; Guo, H.; Yang, R.-N.; Ren, B.; Zhang, L.-X.; Dai, H.-Q.; Guo, L.-D.; Liu, H.-W. Polyketides with antimicrobial activity from the solid culture of an endolichenic fungus Ulocladium sp. Fitoterapia 2012, 83, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Soledade, M.; Pedras, C.; Abrams, S.R. Phomalirazine, a novel toxin from the phytopathogenic fungus Phoma lingam. J. Am. Chem. Soc. 1989, 1, 1904–1905. [Google Scholar]
- Riko, R.; Nakamura, H.; Shindo, K. Studies on pyranonigrins–isolation of pyranonigrin E and biosynthetic studies on pyranonigrin A. J. Antibiot. 2014, 67, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis us-ing maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Position | 1 | 2 | ||
---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 158.0, C | 169.9, C | ||
2 | 136.0, C | 44.7, CH | 2.90, t (8.5) | |
3 | 25.1, CH2 | 2.34, m | ||
4 | 165.7, C | 129.7, CH | 6.05, m | |
5 | 72.2, C | 123.1, CH | 5.82, dd (10.0, 1.5) | |
6 | 45.5, CH | 3.20, m | ||
7 | 42.6, CH2 | 3.37, d (14.5) 2.86, d (14.5) | 57.9, C | 5.05, s |
8 | 81.6, C | 140.8, C | ||
9 | 190.8, C | 115.0, CH2 | 5.05, s 4.68, s | |
10 | 116.9, C | 19.6, CH3 | 1.84, s | |
11 | 42.7, C | 80.3, CH | 4.47, ddd (10.0, 4.0, 4.0) | |
12 | 90.7, CH | 4.42, q (7.0) | 27.7, CH2 | 2.56, m |
13 | 127.6, C | |||
14 | 171.1, C | 168.5, C | ||
15 | 21.6, CH2 | 3.02, dd (19.5, 6.0) 2.47, overlap | 146.7, CH | 6.77, t (7.5) |
16 | 50.9 | 4.18, dd (6.0, 1.0) | 21.9, CH2 | 2.13, dq (7.5, 7.5) |
17 | 102.8, CH2 | 5.57, d (1.0) 5.08, d (1.0) | 13.1, CH3 | 0.98, t (7.5) |
18 | 30.7, CH3 | 3.19, s | 176.5, C | |
19 | 29.5, CH3 | 2.83, s | 137.9, CH | 7.70, dd (14.0, 11.0) |
20 | 20.2, CH3 | 1.01, s | 101.6, CH | 5.49, d (14.0) |
21 | 24.8, CH3 | 1.29, s | 168.5, C | |
22 | 13.9, CH3 | 1.28, s (5.5) | ||
NH | 10.26, d (11.0) |
Position | 3 | 4 | 5 | |||
---|---|---|---|---|---|---|
δC, Type | δH, (J in Hz) | δC, Type | δH, (J in Hz) | δC, Type | δH, (J in Hz) | |
2 | 166.5, C | 167.4, C | 164.7, C | |||
3 | 117.8, C | 117.2, C | 121.9, C | |||
4 | 33.6, CH2 | 3.40, br s | 32.9, CH2 | 3.41, br d, 1.0 | 30.7, CH2 | 3.29, br q (2.0) |
5 | 172.5, C | 172.5, C | 168.6, C | |||
6 | 131.3, CH | 7.55, d (14.5) | 131.3, CH | 7.57, d (15.0) | 137.8, CH | 7.81, br d (8.5) |
7 | 109.2, CH | 6.73, d (14.5) | 109.0, CH | 6.74, d (15.0) | 102.3, CH | 5.56, d (14.0) |
8 | 167.8, C | 167.8, C | 168.2, C | |||
9 | 156.2, C | 154.3, C | 136.6, C | |||
10 | 60.0, CH2 | 4.66, s | 15.5, CH3 | 2.27, s | 16.0, CH3 | 1.88, s |
11 | 18.1, CH3 | 1.91, s | 63.4, CH2 | 4.05, s | 71.2, CH2 | 4.83, br s |
NH | 10.59, br s |
Position | 6 | 7 | ||
---|---|---|---|---|
δC, Type | δH, mult (J in Hz) | δC, Type | δH, mult (J in Hz) | |
2 | 166.8, C | 166.5, C | ||
3 | 122.1, C | 119.0, C | ||
4 | 42.1, CH | 3.83, dd (10.0, 6.5) | 49.9, CH | 3.70, s |
5 | 173.7, C | 173.3, C | ||
6 | 131.0, CH | 7.53, d (15.0) | 130.7, CH | 7.57, d (15.0) |
7 | 109.6, CH | 6.70, d (15.0) | 110.0, CH | 6.77, d (15.0) |
8 | 167.7, C | 167.5, C | ||
9 | 153.7, C | 155.6, C | ||
10 | 21.1, CH3 | 2.30, s | 21.2, CH3 | 2.31, s |
11 | 23.8, CH3 | 2.03, s | 37.8, CH2 | 3.07, dd (19.5, 7.5) 2.71, dd (19.5, 11.0) |
2′ | 166.3, C | 174.5, C | ||
3′ | 121.2, C | 52.0, CH | 2.90, d (8.5) | |
4′ | 33.8, CH2 | 3.46, s | 36.7, CH | 3.62, m |
5′ | 172.0, C | 175.9, C | ||
6′ | 131.0, CH | 7.51, d (15.0) | 130.7, CH | 7.46, d (15.0) |
7′ | 109.6, CH | 6.61, d (15.0) | 109.8, CH | 6.70, d (15.0) |
8′ | 166.7, C | 167.5, C | ||
9′ | 150.5, C | 39.1, C | ||
10′ | 35.4, CH2 | 3.31, dd (13.0, 10.0) 3.01, dd (13.0, 6.5) | 20.4, CH3 | 1.31, s |
11′ | 22.5, CH3 | 1.95, s | 22.1, CH3 | 1.06, s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Zhang, X.; Lin, R.; Yang, H.; Song, F.; Xu, X.; Wang, L. New Secondary Metabolites from the Marine-Derived Fungus Talaromyces mangshanicus BTBU20211089. Mar. Drugs 2022, 20, 79. https://doi.org/10.3390/md20020079
Zhang K, Zhang X, Lin R, Yang H, Song F, Xu X, Wang L. New Secondary Metabolites from the Marine-Derived Fungus Talaromyces mangshanicus BTBU20211089. Marine Drugs. 2022; 20(2):79. https://doi.org/10.3390/md20020079
Chicago/Turabian StyleZhang, Kai, Xinwan Zhang, Rui Lin, Haijin Yang, Fuhang Song, Xiuli Xu, and Long Wang. 2022. "New Secondary Metabolites from the Marine-Derived Fungus Talaromyces mangshanicus BTBU20211089" Marine Drugs 20, no. 2: 79. https://doi.org/10.3390/md20020079
APA StyleZhang, K., Zhang, X., Lin, R., Yang, H., Song, F., Xu, X., & Wang, L. (2022). New Secondary Metabolites from the Marine-Derived Fungus Talaromyces mangshanicus BTBU20211089. Marine Drugs, 20(2), 79. https://doi.org/10.3390/md20020079