Regulatory Effects of Functional Soluble Dietary Fiber from Saccharina japonica Byproduct on the Liver of Obese Mice with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of SDF
2.2. Effects of SDF on the Liver in db/db Mice
2.3. Effects of SDF on Histopathology
2.4. Effects of SDF on PI3K/AKT Insulin Signaling Pathway
2.5. Metabolomic Analysis
2.5.1. Quality Control
2.5.2. Multivariate and Univariate Data Analysis
2.5.3. Differential Metabolites Analysis
2.5.4. KEGG Pathway Analysis
3. Materials and Methods
3.1. Reagents and Materials
3.2. Methods
3.2.1. Preparation of SDF from S. japonica Byproduct
3.2.2. Characterization of SDF
3.2.3. Animal Treatments and Sample Collection
3.2.4. The Serum ALT, Serum AST, Liver Glycogen Detection and Histological Morphology Examinations
3.2.5. Gene Expression Analysis by qRT-PCR
3.2.6. Metabolomics Analysis
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Dietz, W.H.; Solomon, L.S.; Pronk, N.; Ziegenhorn, S.K.; Standish, M.; Longjohn, M.M.; Fukuzawa, D.D.; Eneli, I.U.; Loy, L.; Muth, N.D. An Integrated Framework for The Prevention and Treatment of Obesity and its Related Chronic Diseases. Health Aff. 2015, 34, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
- Suresh, V.; Reddy, A. Dysregulation of nitric oxide synthases during early and late pathophysiological conditions of diabetes mellitus leads to amassing of microvascular impediment. J. Diabetes Metab. Disord. 2021, 20, 989–1002. [Google Scholar] [CrossRef]
- Tolman, K.G.; Fonseca, V.; Dalpiaz, A.; Tan, M.H. Spectrum of Liver Disease in Type 2 Diabetes and Management of Patients with Diabetes and Liver Disease. Diabetes Care 2007, 30, 734–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Softic, S.; Kahn, C.R. Fatty liver disease: Is it nonalcoholic fatty liver disease or obesity-associated fatty liver disease? Eur. J. Gastroenterol. Hepatol. 2019, 31, 143. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, M.G.; Jiang, C.H.; Sheng, X.P.; Yang, H.M.; Liu, Y.; Yao, X.M.; Zhang, J.; Yin, Z.Q. Triterpenic acids-enriched fraction from Cyclocarya paliurus attenuates insulin resistance and hepatic steatosis via PI3K/Akt/GSK3β pathway. Phytomedicine 2020, 66, 153130. [Google Scholar] [CrossRef] [PubMed]
- Watt, M.J.; Miotto, P.M.; William, D.N.; Montgomery, M.K. The Liver as an Endocrine Organ—Linking NAFLD and Insulin Resistance. Endocr. Rev. 2019, 40, 1367–1693. [Google Scholar] [CrossRef]
- Desai, S.M.; Sanap, A.P.; Bhonde, R.R. Treat liver to beat diabetes. Med. Hypotheses 2020, 144, 110034. [Google Scholar] [CrossRef]
- Kolanowski, J. A Risk-Benefit Assessment of Anti-Obesity Drugs. Drug Saf. 1999, 20, 119–131. [Google Scholar] [CrossRef]
- Bertinat, R.; Westermeier, F.; Gatica, R.; Nualart, F. Sodium tungstate: Is it a safe option for a chronic disease setting, such as diabetes? J. Cell. Physiol. 2019, 234, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wang, Y.; Xu, D.S.; Ruan, K.F.; Feng, Y.; Wang, S. Hypoglycemic effects of MDG-1, a polysaccharide derived from Ophiopogon japonicas, in the ob/ob mouse model of type 2 diabetes mellitus. Int. J. Biol. Macromol. 2011, 49, 657–662. [Google Scholar] [CrossRef]
- Deng, P.; Wang, L.; Chen, C.; Hu, B.; Zhou, P. Isolation and characterization of a hyperbranched proteoglycan from Ganoderma Lucidum for anti-diabetes. Carbohydr. Polym. 2015, 117, 106–114. [Google Scholar] [CrossRef]
- Wu, T.R.; Lin, C.S.; Chang, C.J.; Lin, T.L.; Lai, H.C. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut 2018, 68, 2017–315458. [Google Scholar] [CrossRef]
- Huang, X.J.; Liu, G.H.; Guo, J.; Su, Z.Q. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef] [Green Version]
- Li, N.X.; Zhang, Q.; Jiang, S.S.; Du, S.; Zhang, W.; Li, Y.; Sun, C.; Niu, Y. Mangiferin supplementation improves serum lipid profiles in overweight patients with hyperlipidemia: A double-blind randomized controlled trial. Reproduction 2015, 5, 10344. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.H. Effect of Banana Powder on Insulin Resistance of Type II Diabetes Mellitus and its Mechanism; South China Agricultural University: Guangzhou, China, 2016. [Google Scholar]
- Liu, Y.; Dong, M.; Yang, Z.; Pan, S. Anti-diabetic effect of citrus pectin in diabetic rats and potential mechanism via PI3K/Akt signaling pathway. Int. J. Biol. Macromol. 2016, 89, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.W.; Jiang, J.L.; Zou, J.J.; Yang, M.Y.; Jia, L. Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials. J. Funct. Foods 2019, 64, 103630. [Google Scholar] [CrossRef]
- Delzenne, N.M.; Olivares, M.; Neyrinck, A.M.; Beaumont, M.; Kamp, J. Nutritional interest of dietary fiber and prebiotics in obesity: Lessons from the MyNewGut consortium. Clin. Nutr. 2019, 39, 414–424. [Google Scholar] [CrossRef] [Green Version]
- Makki, K.; Deehan, E.C.; Walter, J.; Bckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milosevic, I.; Vujovic, A.; Barac, A.; Djelic, M.; Korac, M.; Aleksandra, R.S.; Gmizic, L.; Stevanovic, O.; Djordjevic, V.; Lekic, N. Gut-Liver Axis, Gut Microbiota, and Its Modulation in the Management of Liver Diseases: A Review of the Literature. Int. J. Mol. Sci. 2019, 20, 395. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.M.; Zha, X.Q.; Zhang, W.N.; Liu, J.; Pan, L.H.; Luo, J.P. Laminaria japonica polysaccharide prevents high-fat-diet-induced insulin resistance in mice via regulating gut microbiota. Food Funct. 2021, 12, 5260–5273. [Google Scholar] [CrossRef]
- Rajauri, G.; Ravindran, R.; Garcia-Vaquero, M.; Rai, D.K.; Sweeney, T.; O’Dohertya, J. Molecular characteristics and antioxidant activity of laminarin extracted from the seaweed species Laminaria hyperborea, using hydrothermal-assisted extraction and a multi-step purification procedure. Food Hydrocoll. 2020, 112, 106332. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, X.Y.; Cao, Y.J.; Zheng, T.T.; Cheng, W.J.; Chen, L.J.; Lv, X.C.; Ni, L.; Rao, P.F.; Liang, P. The beneficial effects of Lactobacillus brevis FZU0713-fermented Laminaria japonica on lipid metabolism and intestinal microbiota in hyperlipidemic rats fed with a high-fat diet. Food Funct. 2021, 16, 7145–7160. [Google Scholar] [CrossRef]
- Zhang, L. Study on Lipid-Reducing Effect and Mechanism of Kelp Dietary Fiber; Qingdao University of Science and Technology: Qingdao, China, 2020. [Google Scholar]
- Szymanska, C.; Monika, Z.; Artur, C. FT-IR and FT-Raman characterization of non-cellulosic polysaccharides fractions isolated from plant cell wall. Carbohydr. Polym. 2016, 154, 48–54. [Google Scholar]
- Chen, H.; Zhao, C.; Li, J.; Hussain, S.; Yan, S.; Wang, Q. Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root. LWT 2018, 93, 204–211. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Wang, Z.; Hao, Y.; Wang, J. Physicochemical and functional properties of soluble dietary fiber from different colored quinoa varieties (Chenopodium quinoa Willd). J. Cereal Sci. 2020, 95, 103045. [Google Scholar] [CrossRef]
- Liu, C.M.; Liang, R.H.; Dai, T.T.; Ye, J.P.; Zeng, Z.C.; Luo, S.J.; Chen, J. Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch. Food Hydrocoll. 2016, 57, 55–61. [Google Scholar] [CrossRef]
- Lin, Y.N.; Wang, H.C.; Rao, W.; Cui, Y.W.; Dai, Z.Y.; Shen, Q. Structural characteristics of dietary fiber (Vigna radiata L. hull) and its inhibitory effect on phospholipid digestion as an additive in fish floss – ScienceDirect. Food Control. 2019, 98, 74–81. [Google Scholar] [CrossRef]
- Chen, X.-L.; Han, Y.-D.; Wang, H. Relations of hepatic steatosis with liver functions, inflammations, glucolipid metabolism in chronic hepatitis B patients. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5640–5646. [Google Scholar] [CrossRef]
- Gasa, R.; Fabregat, M.E.; Gomis, R. The Role of Glucose and Its Metabolism in the Regulation of Glucokinase Expression in Isolated Human Pancreatic Islets. Biochem. Biophys. Res. Commun. 2000, 268, 491–495. [Google Scholar] [CrossRef]
- Watanabe, M.; Tozzi, R.; Risi, R.; Tuccinardi, D.; Mariani, S.; Basciani, S.; Spera, G.; Lubrano, C.; Gnessi, L. Beneficial Effects of the Ketogenic Diet on Nonalcoholic Fatty Liver Disease: A Comprehensive Review of the Literature; Wiley-Blackwell Online Open: Hoboken, NJ, USA, 2020; Volume 21, p. 11. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, L.; Xu, J.; You, N.; Wang, L.; Shi, J. Study on the new strategy and key techniques for accurate prevention and treatment of nonalcoholic steatohepatitis based on intestinal target bacteria. Medicine 2020, 99, e22867. [Google Scholar] [CrossRef] [PubMed]
- Finlay, D.K. Regulation of glucose metabolism in T cells: New insight into the role of Phosphoinositide 3-kinases. Front. Immunol. 2012, 3, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.Y.; Shi, C.X.; Gao, R.; Sun, H.J.; Zhu, G.Q. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin. Sci. 2015, 129, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.X.; Lou, K.; Chen, L.J.; Liu, S.D.; Pang, S.G. Lipocalin-2: A role in hepatic gluconeogenesis via AMP-activated protein kinase (AMPK). J. Endocrinol. Investig. 2021, 44, 1753–1765. [Google Scholar] [CrossRef]
- Dagnelie, P.C.; Leij-Halfwerk, S.; Epidemiology, D.O.; University, M.; Maastricht, M.; Netherlands, T. Magnetic resonance spectroscopy to study hepatic metabolism in diffuse liver diseases, diabetes and cancer. World J. Gastroenterol. 2010, 16, 1577–1586. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, K.; Zhang, D.; Duan, H.; Liu, Y.; Guo, M. Metabolite accumulation and metabolic network in developing roots of Rehmannia glutinosa reveals its root developmental mechanism and quality. Sci. Rep. 2018, 8, 14127–14138. [Google Scholar] [CrossRef] [PubMed]
- Gaman, A.M.; Epingeac, M.E.; Diaconu, C.C.; Gaman, M. Oxidative stress levels are increased in type 2 diabetes mellitus and obesity. J. Hypertens. 2019, 37, e265. [Google Scholar] [CrossRef]
- Saltiel, A.R.; Olefsky, J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 2017, 127, 1–4. [Google Scholar] [CrossRef]
- Zhao, Y.; Sedighi, R.; Wang, P.; Chen, H.; Zhu, Y.; Sang, S. Carnosic Acid as a Major Bioactive Component in Rosemary Extract Ameliorates High-Fat-Diet-Induced Obesity and Metabolic Syndrome in Mice. J. Agric. Food Chem. 2015, 63, 4843. [Google Scholar] [CrossRef]
- Moestue, S.A.; Giskeodegard, G.F.; Cao, M.D.; Bathen, T.F.; Gribbestad, I.S. Glycerophosphocholine (GPC) is a poorly understood biomarker in breast cancer. Proc. Natl. Acad. Sci. USA 2012, 109, E2506; author reply E2507. [Google Scholar] [CrossRef] [Green Version]
- Syme, C.; Czajkowski, S.; Shin, J.; Abrahamowicz, M.; Leonard, G.; Perron, M.; Richer, L.; Veillette, S.; Gaudet, D.; Strug, L. Glycerophosphocholine Metabolites and Cardiovascular Disease Risk Factors in Adolescents: A Cohort Study. Circulation 2016, 143, 1629–1636. [Google Scholar] [CrossRef]
- Zhao, G.; Fang, H.; Wu, C.; Li, P.; Peng, Y. Betaine in Inflammation: Mechanistic Aspects and Applications. Front. Immunol. 2018, 9, 1070–1117. [Google Scholar] [CrossRef] [Green Version]
- Patra, R.C.; Swarup, D.; Dwivedi, S.K. Antioxidant effects of α tocopherol, ascorbic acid and l-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology 2001, 162, 81–88. [Google Scholar] [CrossRef]
- Martínez, Y.; Li, X.; Liu, G.; Bin, P.; Yan, W.; Más, D.; Valdivié, M.; Hu, C.; Ren, W.; Yin, Y. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 2017, 49, 2091–2098. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.; Bergeron, R.; Shulman, G.I.; Young, L.H. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am. J. Physiol. 1999, 277, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Deaciuc, I.; Zhou, Z.; Song, M.; Chen, T.; Hill, D.; Mcclain, C.J. Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G894. [Google Scholar] [CrossRef]
- Mihai, C.; Knud, E.; Knudsen, H.; Callesen, S. Obesity Development in a Miniature Yucatan Pig Model: A Multi-compartmental Metabolomics Study on Cloned and Normal Pigs Fed Restricted or Ad Libitum High-Energy Diets. J. Proteome Res. 2018, 18, 30–47. [Google Scholar] [CrossRef]
- Diepen, J.V.; Jansen, P.A.; Ballak, D.B.; Hijmans, A.; Rutjes, F.; Tack, C.J.; Netea, M.G.; Schalkwijk, J.; Stienstra, R. Genetic and pharmacological inhibition of vanin-1 activity in animal models of type 2 diabetes. Sci. Rep. 2016, 6, 21906–21914. [Google Scholar] [CrossRef]
- Leonardi, R.; Jackowski, S. Biosynthesis of Pantothenic Acid and Coenzyme A. Ecosal Plus 2007, 2, e265. [Google Scholar] [CrossRef] [Green Version]
- Marc, P.; Murthy, M. Glycerolipid Metabolism and Signaling in Health and Disease. Endocr. Rev. 2008, 29, 647–676. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Pan, M.; Nie, H.; Zheng, C.; Yang, Q. Lipidomic Analysis of the Protective Effects of Shenling Baizhu San on Non-Alcoholic Fatty Liver Disease in Rats. Molecules 2019, 24, 3943. [Google Scholar] [CrossRef] [Green Version]
- Jiao, S.; Nie, M.; Song, H.; Xu, D.; You, F. Physiological responses to cold and starvation stresses in the liver of yellow drum (C) revealed by LC-MS metabolomics. Sci. Total Environ. 2020, 715, 136940. [Google Scholar] [CrossRef]
- Wu, G.; Fang, Y.Z.; Sheng, Y.; Lupton, J.R.; Turner, N.D. Glutathione Metabolism and Its Implications for Health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da, M.; Wang, F.; Zou, Z.; Xiao, G.; Chen, H.; Yang, H. Metabolic regulations of a decoction of Hedyotis diffusa in acute liver injury of mouse models. Chin. Med. 2017, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contaifer, D.; Buckley, L.F.; Wohlford, G.; Kumar, N.G.; Wijesinghe, D. Metabolic Modulation Predicts Heart Failure Tests Performance. PLoS ONE 2019, e0218153. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.U. ABC Transporters as Therapeutic Targets for Liver Fibrosis; University of Groningen: Groningen, The Netherlands, 2014. [Google Scholar]
- Nicolaou, M.; Andress, E.J.; Zolnerciks, J.K.; Dixon, P.H.; Williamson, C.; Linton, K.J. Canalicular ABC transporters and liver disease. J. Pathol. 2011, 226, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.N.; Hu, W.S.; Xie, Y.H.; Li, Y.H.; Guo, L.B.; Jin, W.B. Antioxidant Research of Persimmon Extraction in Ionizing Radiatio Mice. Adv. Mater. Res. 2012, 343–344, 1198–1206. [Google Scholar] [CrossRef]
- Gu, C.; Li, P.P.; Liu, W.; Zhou, Y.; Tan, W.S. The role of insulin in transdifferentiated hepatocyte proliferation and function in serum-free medium. J. Cell. Mol. Med. 2019, 23, 4165–4178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Xie, C.; Zhai, Z.; Deng, Z.Y.; Zheng, R. Uridine attenuates obesity, ameliorates hepatic lipid accumulation and modifies the gut microbiota composition in mice fed with a high-fat diet. Food Funct. 2021, 12, 1829–1840. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wang, X.; He, Y.; Cao, J.; Wang, K.; Lin, H.; Qu, C.; Miao, J. Regulatory Effects of Functional Soluble Dietary Fiber from Saccharina japonica Byproduct on the Liver of Obese Mice with Type 2 Diabetes Mellitus. Mar. Drugs 2022, 20, 91. https://doi.org/10.3390/md20020091
Zhang L, Wang X, He Y, Cao J, Wang K, Lin H, Qu C, Miao J. Regulatory Effects of Functional Soluble Dietary Fiber from Saccharina japonica Byproduct on the Liver of Obese Mice with Type 2 Diabetes Mellitus. Marine Drugs. 2022; 20(2):91. https://doi.org/10.3390/md20020091
Chicago/Turabian StyleZhang, Liping, Xixi Wang, Yingying He, Junhan Cao, Kai Wang, Huan Lin, Changfeng Qu, and Jinlai Miao. 2022. "Regulatory Effects of Functional Soluble Dietary Fiber from Saccharina japonica Byproduct on the Liver of Obese Mice with Type 2 Diabetes Mellitus" Marine Drugs 20, no. 2: 91. https://doi.org/10.3390/md20020091
APA StyleZhang, L., Wang, X., He, Y., Cao, J., Wang, K., Lin, H., Qu, C., & Miao, J. (2022). Regulatory Effects of Functional Soluble Dietary Fiber from Saccharina japonica Byproduct on the Liver of Obese Mice with Type 2 Diabetes Mellitus. Marine Drugs, 20(2), 91. https://doi.org/10.3390/md20020091