Comparative Assessment of Nitrogen Concentration Effect on Microalgal Growth and Biochemical Characteristics of Two Chlorella Strains Cultivated in Digestate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nutrients and COD Consumption
2.2. Microalgal Growth under Different Initial Concentrations of Ammonium Nitrogen
2.3. Pigments
2.4. Biomass Composition
2.5. Fatty Acid (FA) Content and Composition Profile
3. Materials and Methods
3.1. Anaerobic Digestion Effluent
3.2. Chlorella Strains and Cultivation Conditions
3.3. Photobioreactors and Experimental Conditions
3.4. Digestate Pretreatment through Ammonia Stripping
3.5. Analytical Methods
3.5.1. Biomass Growth
3.5.2. Microalgal Pigments
3.5.3. Nutrients and COD Analysis
3.5.4. Biomass Composition
3.5.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Bioenergy Association. Global Bioenergy Statistics 2020; World Bioenergy Association: Stockholm, Sweden, 2020. [Google Scholar]
- Korbag, I.; Omer, S.M.S.; Boghazala, H.; Abusasiyah, M.A.A. Recent Advances of Biogas Production and Future Perspective; IntechOpen: London, UK, 2020; ISBN 1839626690. [Google Scholar]
- Vaneeckhaute, C.; Lebuf, V.; Michels, E.; Belia, E.; Vanrolleghem, P.A.; Tack, F.M.G.; Meers, E. Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification. Waste Biomass Valorization 2017, 8, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Tambone, F.; Orzi, V.; D’Imporzano, G.; Adani, F. Solid and Liquid Fractionation of Digestate: Mass Balance, Chemical Characterization, and Agronomic and Environmental Value. Bioresour. Technol. 2017, 243, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Logan, M.; Visvanathan, C. Management Strategies for Anaerobic Digestate of Organic Fraction of Municipal Solid Waste: Current Status and Future Prospects. Waste Manag. Res. 2019, 37, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Z.; Zheng, T.; Dai, Q.; Chen, J. Sulfide and Arsenic Compounds Removal from Liquid Digestate by Ferric Coagulation and Toxicity Evaluation. Water Environ. Res. 2019, 91, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Tigini, V.; Franchino, M.; Bona, F.; Varese, G.C. Is Digestate Safe? A Study on Its Ecotoxicity and Environmental Risk on a Pig Manure. Sci. Total Environ. 2016, 551–552, 127–132. [Google Scholar] [CrossRef]
- Dahlin, J.; Nelles, M.; Herbes, C. Biogas Digestate Management: Evaluating the Attitudes and Perceptions of German Gardeners towards Digestate-Based Soil Amendments. Resour. Conserv. Recycl. 2017, 118, 27–38. [Google Scholar] [CrossRef]
- Yang, S.; Xu, J.; Wang, Z.M.; Bao, L.J.; Zeng, E.Y. Cultivation of Oleaginous Microalgae for Removal of Nutrients and Heavy Metals from Biogas Digestates. J. Clean. Prod. 2017, 164, 793–803. [Google Scholar] [CrossRef]
- Bule, M.H.; Ahmed, I.; Maqbool, F.; Bilal, M.; Iqbal, H.M.N. Microalgae as a Source of High-Value Bioactive Compounds. Front. Biosci. Sch. 2018, 10, 197–216. [Google Scholar] [CrossRef] [Green Version]
- Markou, G.; Wang, L.; Ye, J.; Unc, A. Cultivation of Microalgae on Anaerobically Digested Agro-Industrial Wastes and by-Products. In Application of Microalgae in Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 147–172. [Google Scholar]
- Kim, J.; Yoo, G.; Lee, H.; Lim, J.; Kim, K.; Kim, C.W.; Park, M.S.; Yang, J.W. Methods of Downstream Processing for the Production of Biodiesel from Microalgae. Biotechnol. Adv. 2013, 31, 862–876. [Google Scholar] [CrossRef]
- Ho, S.H.; Chen, C.Y.; Chang, J.S. Effect of Light Intensity and Nitrogen Starvation on CO 2 Fixation and Lipid/Carbohydrate Production of an Indigenous Microalga Scenedesmus Obliquus CNW-N. Bioresour. Technol. 2012, 113, 244–252. [Google Scholar] [CrossRef]
- Ejike, C.E.C.C.; Collins, S.A.; Balasuriya, N.; Swanson, A.K.; Mason, B.; Udenigwe, C.C. Prospects of Microalgae Proteins in Producing Peptide-Based Functional Foods for Promoting Cardiovascular Health. Trends Food Sci. Technol. 2017, 59, 30–36. [Google Scholar] [CrossRef]
- Zhu, L.; Yan, C.; Li, Z. Microalgal Cultivation with Biogas Slurry for Biofuel Production. Bioresour. Technol. 2016, 220, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Xia, A.; Murphy, J.D. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems. Trends Biotechnol. 2016, 34, 264–275. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Hu, H.Y.; Wu, Y.H.; Zhuang, L.L.; Xu, X.Q.; Wang, X.X.; Dao, G.H. Promising Solutions to Solve the Bottlenecks in the Large-Scale Cultivation of Microalgae for Biomass/Bioenergy Production. Renew. Sustain. Energy Rev. 2016, 60, 1602–1614. [Google Scholar] [CrossRef]
- Källqvist, T.; Svenson, A. Assessment of Ammonia Toxicity in Tests with the Microalga, Nephroselmis Pyriformis, Chlorophyta. Water Res. 2003, 37, 477–484. [Google Scholar] [CrossRef]
- Praveen, P.; Guo, Y.; Kang, H.; Lefebvre, C.; Loh, K.C. Enhancing Microalgae Cultivation in Anaerobic Digestate through Nitrification. Chem. Eng. J. 2018, 354, 905–912. [Google Scholar] [CrossRef]
- Collos, Y.; Harrison, P.J. Acclimation and Toxicity of High Ammonium Concentrations to Unicellular Algae. Mar. Pollut. Bull. 2014, 80, 8–23. [Google Scholar] [CrossRef]
- Chuka-ogwude, D.; Ogbonna, J.; Borowitzka, M.A.; Moheimani, N.R. Screening, Acclimation and Ammonia Tolerance of Microalgae Grown in Food Waste Digestate. J. Appl. Phycol. 2020, 32, 3775–3785. [Google Scholar] [CrossRef]
- Ayre, J.M.; Moheimani, N.R.; Borowitzka, M.A. Growth of Microalgae on Undiluted Anaerobic Digestate of Piggery Effluent with High Ammonium Concentrations. Algal Res. 2017, 24, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, F.; Silkina, A.; Fuentes-Grünewald, C.; Wood, E.E.; Ndovela, V.L.S.; Oatley-Radcliffe, D.L.; Lovitt, R.W.; Llewellyn, C.A. Valorising Nutrient-Rich Digestate: Dilution, Settlement and Membrane Filtration Processing for Optimisation as a Waste-Based Media for Microalgal Cultivation. Waste Manag. 2020, 118, 197–208. [Google Scholar] [CrossRef]
- Shi, L.; Simplicio, W.S.; Wu, G.; Hu, Z.; Hu, H.; Zhan, X. Nutrient Recovery from Digestate of Anaerobic Digestion of Livestock Manure: A Review. Curr. Pollut. Rep. 2018, 4, 74–83. [Google Scholar] [CrossRef]
- Zhang, L.; Lee, Y.W.; Jahng, D. Ammonia Stripping for Enhanced Biomethanization of Piggery Wastewater. J. Hazard. Mater. 2012, 199–200, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Sigurnjak, I.; Brienza, C.; Snauwaert, E.; De Dobbelaere, A.; De Mey, J.; Vaneeckhaute, C.; Michels, E.; Schoumans, O.; Adani, F.; Meers, E. Production and Performance of Bio-Based Mineral Fertilizers from Agricultural Waste Using Ammonia (Stripping-)Scrubbing Technology. Waste Manag. 2019, 89, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.S.; Abbas, A.A.; Chen, Y.P.; Liu, Z.P.; Fang, F.; Chen, P. Treatment of Landfill Leachate Using a Combined Stripping, Fenton, SBR, and Coagulation Process. J. Hazard. Mater. 2010, 178, 699–705. [Google Scholar] [CrossRef]
- Guštin, S.; Marinšek-Logar, R. Effect of PH, Temperature and Air Flow Rate on the Continuous Ammonia Stripping of the Anaerobic Digestion Effluent. Process Saf. Environ. Prot. 2011, 89, 61–66. [Google Scholar] [CrossRef]
- Lei, X.; Sugiura, N.; Feng, C.; Maekawa, T. Pretreatment of Anaerobic Digestion Effluent with Ammonia Stripping and Biogas Purification. J. Hazard. Mater. 2007, 145, 391–397. [Google Scholar] [CrossRef]
- Bonmatí, A.; Flotats, X. Air Stripping of Ammonia from Pig Slurry: Characterisation and Feasibility as a Pre- or Post-Treatment to Mesophilic Anaerobic Digestion. Waste Manag. 2003, 23, 261–272. [Google Scholar] [CrossRef]
- Ashour, M.; Elshobary, M.E.; El-Shenody, R.; Kamil, A.W.; Abomohra, A.E.F. Evaluation of a Native Oleaginous Marine Microalga Nannochloropsis Oceanica for Dual Use in Biodiesel Production and Aquaculture Feed. Biomass Bioenergy 2019, 120, 439–447. [Google Scholar] [CrossRef]
- Zaki, M.A.; Ashour, M.; Heneash, A.M.M.; Mabrouk, M.M.; Alprol, A.E.; Khairy, H.M.; Nour, A.M.; Mansour, A.T.; Hassanien, H.A.; Gaber, A.; et al. Potential Applications of Native Cyanobacterium Isolate (Arthrospira Platensis NIOF17/003) for Biodiesel Production and Utilization of Its Byproduct in Marine Rotifer (Brachionus Plicatilis) Production. Sustainability 2021, 13, 1769. [Google Scholar] [CrossRef]
- Abeliovich, A.; Azov, Y. Toxicity of Ammonia to Algae in Sewage Oxidation Ponds. Appl. Environ. Microbiol. 1976, 31, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Wu, X.; Zou, G.; Zhou, T.; Liu, Y.; Ruan, R. Cultivation of Chlorella Vulgaris in Manure-Free Piggery Wastewater with High-Strength Ammonium for Nutrients Removal and Biomass Production: Effect of Ammonium Concentration, Carbon/Nitrogen Ratio and PH. Bioresour. Technol. 2019, 273, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Kinnunen, V.; Praveenkumar, R.; Lakaniemi, A.M.; Rintala, J.A. Comparison of Scenedesmus Acuminatus and Chlorella Vulgaris Cultivation in Liquid Digestates from Anaerobic Digestion of Pulp and Paper Industry and Municipal Wastewater Treatment Sludge. J. Appl. Phycol. 2017, 29, 2845–2856. [Google Scholar] [CrossRef]
- Franchino, M.; Tigini, V.; Varese, G.C.; Mussat Sartor, R.; Bona, F. Microalgae Treatment Removes Nutrients and Reduces Ecotoxicity of Diluted Piggery Digestate. Sci. Total Environ. 2016, 569–570, 40–45. [Google Scholar] [CrossRef]
- Zhu, S.; Feng, S.; Xu, Z.; Qin, L.; Shang, C.; Feng, P.; Wang, Z.; Yuan, Z. Cultivation of Chlorella Vulgaris on Unsterilized Dairy-Derived Liquid Digestate for Simultaneous Biofuels Feedstock Production and Pollutant Removal. Bioresour. Technol. 2019, 285, 121353. [Google Scholar] [CrossRef] [PubMed]
- Koutra, E.; Grammatikopoulos, G.; Kornaros, M. Selection of Microalgae Intended for Valorization of Digestate from Agro-Waste Mixtures. Waste Manag. 2018, 73, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Koutra, E.; Mastropetros, S.G.; Ali, S.S.; Tsigkou, K.; Kornaros, M. Assessing the Potential of Chlorella Vulgaris for Valorization of Liquid Digestates from Agro-Industrial and Municipal Organic Wastes in a Biorefinery Approach. J. Clean. Prod. 2021, 280, 124352. [Google Scholar] [CrossRef]
- Marcilhac, C.; Sialve, B.; Pourcher, A.M.; Ziebal, C.; Bernet, N.; Béline, F. Digestate Color and Light Intensity Affect Nutrient Removal and Competition Phenomena in a Microalgal-Bacterial Ecosystem. Water Res. 2014, 64, 278–287. [Google Scholar] [CrossRef]
- Ge, S.; Qiu, S.; Tremblay, D.; Viner, K.; Champagne, P.; Jessop, P.G. Centrate Wastewater Treatment with Chlorella Vulgaris: Simultaneous Enhancement of Nutrient Removal, Biomass and Lipid Production. Chem. Eng. J. 2018, 342, 310–320. [Google Scholar] [CrossRef]
- Seyfabadi, J.; Ramezanpour, Z.; Khoeyi, Z.A. Protein, Fatty Acid, and Pigment Content of Chlorella Vulgaris under Different Light Regimes. J. Appl. Phycol. 2011, 23, 721–726. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Mickan, B.S.; Moheimani, N.R. Chlorella Sp. Growth under Batch and Fed-Batch Conditions with Effluent Recycling When Treating the Effluent of Food Waste Anaerobic Digestate. J. Appl. Phycol. 2019, 31, 3545–3556. [Google Scholar] [CrossRef]
- Daneshvar, E.; Antikainen, L.; Koutra, E.; Kornaros, M.; Bhatnagar, A. Investigation on the Feasibility of Chlorella Vulgaris Cultivation in a Mixture of Pulp and Aquaculture Effluents: Treatment of Wastewater and Lipid Extraction. Bioresour. Technol. 2018, 255, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Michelon, W.; Da Silva, M.L.B.; Mezzari, M.P.; Pirolli, M.; Prandini, J.M.; Soares, H.M. Effects of Nitrogen and Phosphorus on Biochemical Composition of Microalgae Polyculture Harvested from Phycoremediation of Piggery Wastewater Digestate. Appl. Biochem. Biotechnol. 2016, 178, 1407–1419. [Google Scholar] [CrossRef] [PubMed]
- Koutra, E.; Economou, C.N.; Tsafrakidou, P.; Kornaros, M. Bio-Based Products from Microalgae Cultivated in Digestates. Trends Biotechnol. 2018, 36, 819–833. [Google Scholar] [CrossRef]
- Tan, X.B.; Lam, M.K.; Uemura, Y.; Lim, J.W.; Wong, C.Y.; Ramli, A.; Kiew, P.L.; Lee, K.T. Semi-Continuous Cultivation of Chlorella Vulgaris Using Chicken Compost as Nutrients Source: Growth Optimization Study and Fatty Acid Composition Analysis. Energy Convers. Manag. 2018, 164, 363–373. [Google Scholar] [CrossRef]
- Yusof, Y.A.M.; Basari, J.M.H.; Mukti, N.A.; Sabuddin, R.; Muda, A.R.; Sulaiman, S.; Makpol, S.; Ngah, W.Z.W. Fatty Acids Composition of Microalgae Chlorella Vulgaris Can Be Modulated by Varying Carbon Dioxide Concentration in Outdoor Culture. African J. Biotechnol. 2011, 10, 13536–13542. [Google Scholar] [CrossRef]
- Tsigkou, K.; Tsafrakidou, P.; Zagklis, D.; Panagiotouros, A.; Sionakidis, D.; Zontos, D.M.; Zafiri, C.; Kornaros, M. Used Disposable Nappies and Expired Food Products Co-Digestion: A Pilot-Scale System Assessment. Renew. Energy 2021, 165, 109–117. [Google Scholar] [CrossRef]
- Tsigkou, K.; Zagklis, D.; Tsafrakidou, P.; Zafiri, C.; Kornaros, M. Composting of Anaerobic Sludge from the Co-Digestion of Used Disposable Nappies and Expired Food Products. Waste Manag. 2020, 118, 655–666. [Google Scholar] [CrossRef]
- Amouri, M. Enhancing Microalgae Cultivation Using Biowastes as Growth Media for High Added-Value Co-Products Generation. Res. Sq. 2021, 1–13. [Google Scholar] [CrossRef]
- Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for Examination of Water and Wastewater, 20th ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 1999. [Google Scholar]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Bhuyar, P.; Yusoff, M.M.; Rahim, M.H.A.; Sundararaju, S.; Maniam, G.P.; Govindan, N. Effect of Plant Hormones on the Production of Biomass and Lipid Extraction for Biodiesel Production from Microalgae Chlorella sp. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 671–674. [Google Scholar] [CrossRef]
- Tsigkou, K.; Kornaros, M. Development of a High-Rate Anaerobic Thermophilic Upflow Packed Bed Reactor for Efficient Bioconversion of Diluted Three-Phase Olive Mill Wastewater into Methane. Fuel 2022, 310, 122263. [Google Scholar] [CrossRef]
- Batista, A.P.; Gouveia, L.; Bandarra, N.M.; Franco, J.M.; Raymundo, A. Comparison of Microalgal Biomass Profiles as Novel Functional Ingredient for Food Products. Algal Res. 2013, 2, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.B. Factors for Converting Percentages of Nitrogen in Foods and Feeds into Percentages of Protein; US Department of Agriculture: Washington, DC, USA, 1931. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Levine, R.B.; Costanza-Robinson, M.S.; Spatafora, G.A. Neochloris Oleoabundans Grown on Anaerobically Digested Dairy Manure for Concomitant Nutrient Removal and Biodiesel Feedstock Production. Biomass Bioenergy 2011, 35, 40–49. [Google Scholar] [CrossRef]
C. vulgaris (211-11b) | Chlorella sp. (Local Isolate) | ||||||||
---|---|---|---|---|---|---|---|---|---|
(mg L−1) | 500 mg L−1 NH4-N | 250 mg L−1 NH4-N | 150 mg L−1 NH4-N | 25 mg L−1 NH4-N | 500 mg L−1 NH4-N | 330 mg L−1 NH4-N | 150 mg L−1 NH4-N | 25 mg L−1 NH4-N | |
COD | Initial conc. | 3195.7 ± 112.9 | 2616.5 ± 39.5 | 2783.7 ± 120.2 | 1510.0 ± 5.0 | 3493.6 ± 20.5 | 2837.0 ± 72.8 | 2297.0 ± 63.6 | 1176.1 ± 46.9 |
Removal (%) | 90.8 ± 4.8 a | 82.2 ± 3.5 a | 86.5 ± 5.7 a | 57.5 ± 0.3 b | 89.6 ± 1.2 a | 84.6 ± 3.4 a | 85.2 ± 4.2 a | 58.2 ± 4.8 b | |
NH4-N | Initial conc. | 499.0 ± 1.4 | 247.0 ± 1.4 | 145.0 ± 4.1 | 23.7 ± 0.4 | 487.0 ± 5.7 | 324.0 ± 9.9 | 147.8 ± 9.5 | 24.7 ± 0.3 |
Removal (%) | 19.7 ± 0.8 e | 39.1 ± 3.0 d | 67.2 ± 5.4 b,c | 96.2 ± 2.7 a | 39.7 ± 2.3 d | 50.5 ± 3.6 c,d | 81.9 ± 11.1 a,b | 98.4 ± 1.7 a | |
TP | Initial conc. | 9.2 ± 0.5 | 7.8 ± 0.3 | 7.7 ± 0.2 | 12.6 ± 0.1 | 12.9 ± 1.0 | 11.1 ± 1.4 | 10.0 ± 0.9 | 10.1 ± 1.0 |
Removal (%) | 88.0 ± 9.9 | 100.0 ± 8.6 a | 93.5 ± 3.6 a | 65.9 ± 2.4 a | 92.2 ± 10.5 a | 89.2 ± 17.6 a | 91 ± 12.9 a | 88.1 ± 13.2 a |
C. vulgaris (211-11b) | Chlorella sp. (Local Isolate) | |||||||
---|---|---|---|---|---|---|---|---|
500 mg L−1 NH4-N | 250 mg L−1 NH4-N | 150 mg L−1 NH4-N | 25 mg L−1 NH4-N | 500 mg L−1 NH4-N | 250 mg L−1 NH4-N | 150 mg L−1 NH4-N | 25 mg L−1 NH4-N | |
Biomass Conc. (g L−1) | 0.63 ± 0.04 c | 0.69 ± 0.05 c | 0.86 ± 0.06 b,c | 1.02 ± 0.14 a,b,c | 1.07 ± 0.06 a,b,c | 1.34 ± 0.18 a,b | 1.38 ± 0.2 a | 1.43 ± 0.10 a |
μmax (day−1) | 0.23 ± 0.00 a,b | 0.24 ± 0.02 a,b | 0.19 ± 0.08 a,b | 0.15 ± 0.01 a,b | 0.26 ± 0.03 a | 0.25 ± 0.00 a,b | 0.24 ± 0.00 a,b | 0.13 ± 0.02 b |
Productivity (g L−1 d−1) | 0.08 ± 0.00 a,b | 0.10 ± 0.01 a,b | 0.07 ± 0.02 b | 0.07 ± 0.00 b | 0.12 ± 0.00 a,b | 0.13 ± 0.03 a | 0.10 ± 0.00 a,b | 0.08 ± 0.00 a,b |
C. vulgaris (211-11b) | Chlorella sp. (Local Isolate) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
500 mg L−1 NH4-N | 250 mg L−1 NH4-N | 150 mg L−1 NH4-N | 25 mg L−1 NH4-N | 500 mg L−1 NH4-N | 250 mg L−1 NH4-N | 150 mg L−1 NH4-N | 25 mg L−1 NH4-N | |||||||||
(mg L−1) | Ca+b | Crt | Ca+b | Crt | Ca+b | Crt | Ca+b | Crt | Ca+b | Crt | Ca+b | Crt | Ca+b | Crt | Ca+b | Crt |
Day 12 | 21.5 ± 2.9 c,d | 3.7 ± 0.4 C | 30.4 ± 0.0 b,c | 5.1 ± 0.1 A,B,C | 19.3 ± 0.3 d | 5.1 ± 0.2 A,B,C | 19.5 ± 2.8 c,d | 3.7 ± 0.5 C | 45.2 ± 7.4 a | 7.4 ± 1.1 A | 33.5 ± 0.1 b | 4.8 ± 0.2 A,B,C | 39.4 ± 0.5 a,b | 7.3 ± 1.7 A,B | 21.2 ± 0.0 c,d | 4.3 ± 0.0 B,C |
Day 24 | 26.5 ± 3.6 c,d,e | 3.7 ± 0.2 D,E | 38.5 ± 1.8 b,c | 5.2 ± 0.3 C,D | 33.2 ± 3.8 c,d | 7.6 ± 1.2 B | 16.6 ± 0.5 e | 2.8 ± 0.5 E | 65.1 ± 6.0 a | 11.1 ± 0.4 A | 52.7 ± 4.6 a,b | 6.4 ± 0.8 B,C | 57.8 ± 3.7 a | 12.7 ± 0.1 A | 19.1 ± 1.1 d,e | 4.3 ± 0.1 C,D,E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastropetros, S.G.; Koutra, E.; Amouri, M.; Aziza, M.; Ali, S.S.; Kornaros, M. Comparative Assessment of Nitrogen Concentration Effect on Microalgal Growth and Biochemical Characteristics of Two Chlorella Strains Cultivated in Digestate. Mar. Drugs 2022, 20, 415. https://doi.org/10.3390/md20070415
Mastropetros SG, Koutra E, Amouri M, Aziza M, Ali SS, Kornaros M. Comparative Assessment of Nitrogen Concentration Effect on Microalgal Growth and Biochemical Characteristics of Two Chlorella Strains Cultivated in Digestate. Marine Drugs. 2022; 20(7):415. https://doi.org/10.3390/md20070415
Chicago/Turabian StyleMastropetros, Savvas Giannis, Eleni Koutra, Mohammed Amouri, Majda Aziza, Sameh Samir Ali, and Michael Kornaros. 2022. "Comparative Assessment of Nitrogen Concentration Effect on Microalgal Growth and Biochemical Characteristics of Two Chlorella Strains Cultivated in Digestate" Marine Drugs 20, no. 7: 415. https://doi.org/10.3390/md20070415
APA StyleMastropetros, S. G., Koutra, E., Amouri, M., Aziza, M., Ali, S. S., & Kornaros, M. (2022). Comparative Assessment of Nitrogen Concentration Effect on Microalgal Growth and Biochemical Characteristics of Two Chlorella Strains Cultivated in Digestate. Marine Drugs, 20(7), 415. https://doi.org/10.3390/md20070415