In Vitro Antioxidant and Antiaging Activities of Collagen and Its Hydrolysate from Mackerel Scad Skin (Decapterus macarellus)
Abstract
:1. Introduction
2. Results
2.1. Characterization of Pepsin-Soluble Collagen (PSC) and Hydrolyzed Collagen (HC)
2.2. SEM, SDS-PAGE, and FTIR Analysis
2.3. pH Solubility of Hydrolyzed Collagen
2.4. Antioxidant Activity of Pepsin-Soluble Collagen and Hydrolyzed Collagen
2.5. Antiglycation Activity of Pepsin-Soluble Collagen and Hydrolyzed Collagen
2.6. Antityrosinase Activity of Pepsin-Soluble Collagen and Hydrolyzed Collagen
3. Discussion
4. Materials and Methods
4.1. Pretreatment
4.2. Pepsin-Soluble Collagen (PSC) Extraction
4.3. Hydrolyzed Collagen (HC) Extraction
4.4. Scanning Electron Microscopy
4.5. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
4.6. Fourier Transform Infrared Spectroscopy (FTIR)
4.7. HC Solubility Test
4.8. DPPH Scavenging Activity
4.9. Antiglycation Activity
4.10. Antityrosinase Activity
4.11. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 2 March 2022).
- Adioetomo, S.M.; Mujahid, G. UNFPA Indonesia Monograph Series: No.1—Indonesia on the Threshold of Population Ageing; UNFPA Indonesia: Jakarta, Indonesia, 2014; pp. 1–2. [Google Scholar]
- Gorni, D.; Finco, A. Oxidative stress in elderly population: A prevention screening study. Aging Med. 2020, 3, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Russel-Goldman, E.; Murphy, G.F. The Pathobiology of Skin Aging. Am. J. Pathol. 2020, 190, 1356–1369. [Google Scholar] [CrossRef]
- Coppola, D.; Oliviero, M.; Vitale, G.A.; Lauritano, C.; D’Ambra, I.; Iannace, S.; Pascale, D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar. Drugs 2020, 18, 214. [Google Scholar] [CrossRef] [PubMed]
- Ardhani, F.A.K.; Safithri, M.; Tarman, K.; Setyaningsih, I. Antioxidant activity of collagen from skin of parang-parang fish (Chirocentrus dorab) using DPPH and CUPRAC methods. IOP Conf. Ser. Earth Environ. Sci. 2019, 214, 012032. [Google Scholar] [CrossRef]
- Nurilmala, M.; Hizbullah, H.H.; Karnia, E.; Kusumaningtyas, E.; Ochiai, Y. Characterization and Antioxidant Activity of Collagen, Gelatin, and the Derived Peptides from Yellowfin Tuna (Thunnus albacares) Skin. Mar. Drugs 2020, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, Y.-M.; Chi, C.-F.; Luo, H.-Y.; Deng, S.-G.; Ma, J.-Y. Isolation and Characterization of Collagen and Antioxidant Collagen Peptides from Scales of Croceine Croaker (Pseudosciaena crocea). Mar. Drugs 2013, 11, 4641–4661. [Google Scholar] [CrossRef]
- Jin, H.-X.; Xu, H.-P.; Li, Y.; Zhang, Q.-W.; Xie, H. Preparation and Evaluation of Peptides with Potential Antioxidant Activity by Microwave Assisted Enzymatic Hydrolysis of Collagen from Sea Cucumber Acaudina molpadioides Obtained from Zhejiang Province in China. Mar. Drugs 2019, 17, 169. [Google Scholar] [CrossRef]
- Dom, N.S.M.; Yahaya, N.; Adam, Z.; Rahman, N.M.A.; Hamid, M. Antiglycation and Antioxidant Properties of Ficus deltoidea Varieties. Hindawi Evid. -Based Complementary Altern. Med. 2020, 2020, 637432. [Google Scholar] [CrossRef]
- Nurilmala, M.; Pertiwi, R.M.; Nurhayati, T.; Fauzi, S.; Batubara, I.; Ochiai, Y. Characterization of Collagen and Its Hydrolysate from Yellowfin Tuna Thunnus albacares Skin and Their Potencies as Antioxidant and Antiglycation Agents. Fish Sci. 2019, 85, 591–599. [Google Scholar] [CrossRef]
- Lee, S.-E.; Kim, M.-J.; Hillman, P.F.; Oh, D.-C.; Fenical, W.; Nam, S.-J.; Lim, K.-M. Deoxyvasicinone with AntiMelanogenic Activity from Marine Derived Streptomyces sp. CNQ-617. Mar. Drugs 2022, 20, 155. [Google Scholar] [CrossRef]
- Aziz, N.A.A.; Salim, N.; Zarei, M.; Saari, N.; Yusoff, F.M. Extraction, Anti-tyrosinase, and Antioxidant Activities of the Collagen Hydrolysate Derived from Rhopilema hispidum. Prep. Biochem. Biotechnol. 2020, 51, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fauzi, S. Yellowfin Tuna Fish Skin Collagen Hydrolyzate (Thunnus albacares) as Anti-Aging. Master’s Thesis, Bogor Agricultural University, Bogor, Indonesia, 2018. [Google Scholar]
- Costa, M.P.V.; Cruz, D.R.S.; Monteiro, L.S.; Evora, K.S.M.; Cardoso, L.G. Reproductive biology of the mackerel scad Decapterus macarellus from Cabo Verde and the implications for its fishery management. Afr. J. Mar. Sci. 2020, 42, 35–42. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Song, P.; Liu, S.; Liu, P.; Liu, C.; Lin, L.; Li, Y. Reidentification of Decapterus macarellus and D. macrosoma (Carangidae) reveals inconsistencies with current morphological taxonomy in China. ZooKeys 2020, 995, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Pattikawa, J.A.; Ongkers, O.T.S.; Tetelepta, J.M.S.; Uneputty, P.A.; Amirudin, A. Some biological aspects of mackerel scad (Decapterus macarellus) in Ambon Island waters, Indonesia. Int. J. Fish. Aquat. Stud. 2018, 6, 171–175. [Google Scholar]
- Sulaiman, A.W.; Sarbon, N.M. Characterization of Acid Soluble Collagen (ASC) and Pepsin Soluble Collagen (PSC) Extracted from Shortfin Scad (Decapterus macrosoma) Waste. Food Res. 2020, 4, 2272–2280. [Google Scholar] [CrossRef]
- Noorzai, S.; Verbeek, C.J. Collagen: From Waste to Gold. In Biotechnological Applications of Biomass; Basso, T.P., Basso, T.O., Basso, L.C., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Felician, F.F.; Yu, R.; Li, M.Z.; Li, C.J.; Chen, H.Q.; Jiang, Y.; Tang, T.; Qi, W.Y.; Xu, H.M. The wound healing potential of collagen peptides derived from the jellyfish Rhopilema esculentum. Chin. J. Traumatol.—Engl. Ed. 2019, 22, 12–20. [Google Scholar] [CrossRef]
- Asserin, J.; Lati, E.; Shioya, T.; Prawitt, J. The effect of oral collagen peptide supplementation on skin moisture and the dermal collagen network: Evidence from an ex vivo model and randomized, placebo-controlled clinical trials. J. Cosmet. Dermatol. 2015, 14, 291–301. [Google Scholar] [CrossRef]
- Rothamel, D.; Benner, M.; Fienitz, T.; Happe, A.; Kreppel, M.; Nickenig, H.; Zöller, J. Biodegradation Pattern and Tissue Integration of Native and Cross-Linked Porcine Collagen Soft Tissue Augmentation Matrices—An Experimental Study In The Rat. Head Face Med. 2014, 10, 10. [Google Scholar] [CrossRef]
- Moraes, P.R.S.; Martins, S.; Amaro, V.C.; Guzzi, P.A.M.; Lima, R.; Gaspar, A.M.M. Bacterial Cellulose/Collagen Hydrogel for Wound Healing. Mater. Res. 2016, 19, 106–116. [Google Scholar] [CrossRef]
- Sotelo, C.G.; Comesaña, M.B.; Ariza, P.R.; Ricardo, I. Characterization of Collagen from Different Discarded Fish Species of the West Coast of the Iberian Peninsula. J. Aquat. Food Prod. Technol. 2016, 25, 388–399. [Google Scholar] [CrossRef]
- How to Detect Small Peptides by SDS-PAGE. Available online: https://www.lifetein.com/Detect_Small_peptide.html (accessed on 31 March 2022).
- Seixas, M.J.; Martins, E.; Reis, R.L.; Silva, T.H. Extraction and Characterization of Collagen from Elasmobranch Byproducts for Potential Biomaterial Use. Mar. Drugs 2020, 18, 617. [Google Scholar] [CrossRef]
- Gao, L.; Wang, Z.; Zheng, L.; Zhang, C.; Zhang, D. The characterization of acid and pepsin soluble collagen from ovine bones (Ujumuqin sheep). J. Integr. Agric. 2018, 17, 704–711. [Google Scholar] [CrossRef]
- Wu, G.P.; Wang, X.M.; Lin, L.P.; Chen, S.H.; Wu, Q.Q. Isolation and characterization of pepsin -solubilized collagen from the skin of black carp (Mylopharyngdon piceus). Adv. Biosci. Biotechnol. 2014, 5, 642–650. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, H.; Yang, F. Physicochemical, antioxidant properties of giant croaker (Nibea japonica) swim bladders collagen and wound healing evaluation. Int. J. Biol. Macromol. 2019, 138, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-B.; Zhao, Y.-Q.; Wang, Y.-M.; Chi, C.-F.; Wang, B. Eight Collagen Peptides from Hydrolysate Fraction of Spanish Mackerel Skins: Isolation, Identification, and In Vitro Antioxidant Activity Evaluation. Mar. Drugs 2019, 17, 224. [Google Scholar] [CrossRef]
- Molyneux, P. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
- Abbas, G.; Al-Harrasi, A.S.; Hussain, H.; Hussain, J.; Rashid, R.; Choudhary, M.I. Antiglycation therapy: Discovery of promising antiglycation agents for the management of diabetic complications. Pharm. Biol. 2016, 54, 198–206. [Google Scholar] [CrossRef]
- Chilukuri, H.; Kulkarni, M.J.; Fernandes, M. Revisiting amino acids and peptides as anti-glycation agents. MedChemComm 2018, 9, 614–624. [Google Scholar] [CrossRef]
- Safithri, M.; Setyaningsih, I.; Tarman, K.; Suptijah, P.; Yuhendri, V.M.; Meydia, M. The potency of Stichopus hermanii Collagen as Tyrosinase Inhibitor. JPHPI 2018, 21, 295–303. [Google Scholar] [CrossRef]
- Zhuang, Y.; Sun, L.; Zhao, X.; Wang, J.; Hou, H.; Li, B. Antioxidant and melanogenesis-inhibitory activities of collagen peptide from jellyfish (Rhopilema esculentum). J. Sci. Food Agric. 2009, 89, 1722–1727. [Google Scholar] [CrossRef]
- Hou, H.; Zhao, X.; Li, B.; Zhaohui, Z.; Zhuang, Y. Inhibition of melanogenic activity by gelatin and polypeptides from pacific cod skin in b16 melanoma cells. J. Food Biochem. 2011, 35, 1099–1116. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [PubMed]
- National Standardization Agency of Indonesia. Collagen from Fish Scales or Skin as Intermediate Product (SNI 8076:2020); BSN: Jakarta, Indonesia, 2020. [Google Scholar]
- Nagase, H.; Murphy, G. Metalloproteinases, Matrix. In Encyclopedia of Biological Chemistry; Elsevier: Amsterdam, The Netherlands, 2013; pp. 90–97. [Google Scholar] [CrossRef]
- Yu, Z.; Visse, R.; Inouye, M.; Nagase, H.; Brodsky, B. Defining requirements for collagenase cleavage in collagen type III using a bacterial collagen system. J. Biol. Chem. 2012, 287, 22988–22997. [Google Scholar] [CrossRef] [PubMed]
- Jridi, M.; Lassoued, I.; Nasri, R.; Ayadi, M.; Souissi, N. Characterization and Potential Use of Cuttlefish Skin Gelatin Hydrolysates Prepared by Different Microbial Proteases. BioMed Res. Int. 2014, 2014, 461728. [Google Scholar] [CrossRef]
- Gallego, M.; Mora, L.; Toldrá, F. Characterisation of the Anti-oxidant Peptide AEEEYPDL and Its Quantification in Spanish dry-cured ham. Food Chem. 2018, 258, 8–15. [Google Scholar] [CrossRef]
- Mendis, E.; Rajapakse, N.; Byun, H.G.; Kim, S.K. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 2005, 77, 2166–2178. [Google Scholar] [CrossRef]
- Alemán, A.; Giménez, B.; Montero, P.; Gómez-Guillén, M.C. Antioxidant activity of several marine skin gelatins. LWT—Food Sci. Technol. 2011, 44, 407–413. [Google Scholar] [CrossRef]
- Zou, T.B.; He, T.P.; Li, H.B.; Tang, H.W.; Xia, E.Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Chen, J.; Cui, C.; Zhao, H.; Wang, H.; Zhao, M.; Wang, W.; Dong, K. The Effect of High Solid Concentrations on Enzymatic Hydrolysis of Soya Bean Protein Isolate and Antioxidant Activity of the Resulting Hydrolysates. Int. J. Food Sci. Technol. 2018, 53, 954–961. [Google Scholar] [CrossRef]
- Wattanasiritham, L.; Theerakulkait, C.; Wickramasekara, S.; Maier, C.S.; Stevens, J.F. Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein. Food Chem. 2016, 192, 156–162. [Google Scholar] [CrossRef]
- Chi, C.F.; Hu, F.Y.; Wang, B.; Li, Z.R.; Luo, H.Y. Influence of Amino Acid Compositions and Peptide Profiles on Antioxidant Capacities of Two Protein Hydrolysates from Skipjack Tuna (Katsuwonus pelamis) Dark Muscle. Mar. Drugs 2015, 13, 2580–2601. [Google Scholar] [CrossRef] [PubMed]
- Je, J.; Park, P.J.; Kim, S. Antioxidant activity of peptide isolated from Alaska Pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res. Int. 2005, 38, 45–50. [Google Scholar] [CrossRef]
- Ketnawa, S.; Martínez-Alvarez, O.; Benjakul, S.; Rawdkuen, S. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion. Food Chem. 2016, 192, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Azizah, N.; Ochiai, Y.; Nurilmala, M. Collagen Peptides from Pangasius Fish Skin as Antioxidants. IOP Conf. Ser. Earth Environ. Sci. 2020, 404, 012055. [Google Scholar] [CrossRef]
- Kim, S.; Wijesekara, I. Marine-derived Peptides: Development and Health Prospects. Mar. Proteins Pept. 2013, 1, 1–3. [Google Scholar]
- Abuine, R.; Rathnayake, A.; Byun, H.-G. Biological activity of peptides purified from fish skin hydrolysates. Fish. Aquat. Sci. 2019, 22, 10. [Google Scholar] [CrossRef]
- Hidayati, A.; Santoso, J.; Desniar. Aktivitas Antioksidan Hidrolisat Protein Miofibril Belut (Synbranchus bengalensis) yang Dihidrolisis Dengan Enzim Papain. J. Teknol. Ind. Pertan. 2019, 29, 3. [Google Scholar] [CrossRef]
- Wang, K.; Pramod, S.N.; Lin, H.; Chen, G.; Li, Z. Process Optimization for Preparation of Hyaluronidase Inhibitory Hydrolysates with Anti-allergic Potential from Salmo salar Processing By-products. ACS Food Sci. Technol. 2021, 1, 1262–1273. [Google Scholar] [CrossRef]
- Upata, M.; Siriwoharn, T.; Makkhun, S.; Yarnpakdee, S.; Regenstein, J.M.; Wangtueai, S. Tyrosinase Inhibitory and Antioxidant Activity of Enzymatic Protein Hydrolysate from Jellyfish (Lobonema smithii). Foods 2022, 11, 615. [Google Scholar] [CrossRef]
- Zhuang, Y.; Sun, L. Anti-Melanogenic Activities of Collagen Peptides from Jellyfish (Stomolophus meleagris). Adv. Mater. Res. 2011, 343–344, 505–512. [Google Scholar] [CrossRef]
- Gang, Y.; Eom, T.-Y.; Marasinghe, S.D.; Lee, Y.; Jo, E.; Oh, C. Optimising the DPPH Assay for Cell-Free Marine Microorganism Supernatants. Mar. Drugs 2021, 19, 256. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Khan, I.; Wahid, A. Antiglycation and antioxidation properties of Juglans regia and Calendula officinalis: Possible role in reducing diabetic complications and slowing down ageing. J. Tradit. Chin. Med. 2012, 32, 411–414. [Google Scholar] [CrossRef]
Peak | Wavenumber (cm−1) | Reference (cm−1) | Note [26,27] |
---|---|---|---|
Amide A | 3405.47 | 3440–3300 | N–H stretching |
Amide B | 2927.10 | 3080–2889 | CH2 asymmetrical stretch |
Amide I | 1658.85 | 1700–1600 | C=O stretching |
Amide II | 1545.05 | 1580–1500 | N–H bending |
Amide III | 1239.32 | 1350–1200 | N–H bending and C–N stretching |
Sample | IC50 (ppm) | Category [31] |
---|---|---|
Ascorbic Acid | 8.61 ± 0.26 | Very Strong (IC50 < 50 ppm) |
PSC | 148.55 ± 3.14 | Average (100 < IC50 < 150 ppm) |
HC | 34.966 ± 0.518 | Very Strong (IC50 < 50 ppm) |
Sample | IC50 (ppm) |
---|---|
Aminoguanidine | 42.78 ± 0.54 |
PSC | 239.29 ± 15.67 |
HC | 68.43 ± 0.44 |
Sample | IC50 (ppm) |
---|---|
Kojic Acid | 66.06 ± 0.63 |
PSC | 234.66 ± 0.185 |
HC | 79.35 ± 0.5 |
Materials | Solution A (Glycation Control) (µL) | Solution B (Control Blank) (µL) | Solution C (Sample) (µL) | Solution D (Sample Blank) (µL) |
---|---|---|---|---|
BSA | 500 | 500 | 500 | 500 |
PBS | 100 | 500 | - | 400 |
Glucose | 400 | - | 400 | - |
PSC/HC/Aminoguanidine | - | - | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herawati, E.; Akhsanitaqwim, Y.; Agnesia, P.; Listyawati, S.; Pangastuti, A.; Ratriyanto, A. In Vitro Antioxidant and Antiaging Activities of Collagen and Its Hydrolysate from Mackerel Scad Skin (Decapterus macarellus). Mar. Drugs 2022, 20, 516. https://doi.org/10.3390/md20080516
Herawati E, Akhsanitaqwim Y, Agnesia P, Listyawati S, Pangastuti A, Ratriyanto A. In Vitro Antioxidant and Antiaging Activities of Collagen and Its Hydrolysate from Mackerel Scad Skin (Decapterus macarellus). Marine Drugs. 2022; 20(8):516. https://doi.org/10.3390/md20080516
Chicago/Turabian StyleHerawati, Elisa, Yochidamai Akhsanitaqwim, Pipin Agnesia, Shanti Listyawati, Artini Pangastuti, and Adi Ratriyanto. 2022. "In Vitro Antioxidant and Antiaging Activities of Collagen and Its Hydrolysate from Mackerel Scad Skin (Decapterus macarellus)" Marine Drugs 20, no. 8: 516. https://doi.org/10.3390/md20080516
APA StyleHerawati, E., Akhsanitaqwim, Y., Agnesia, P., Listyawati, S., Pangastuti, A., & Ratriyanto, A. (2022). In Vitro Antioxidant and Antiaging Activities of Collagen and Its Hydrolysate from Mackerel Scad Skin (Decapterus macarellus). Marine Drugs, 20(8), 516. https://doi.org/10.3390/md20080516