Taxonomic Distribution and Molecular Evolution of Mytilectins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Taxonomic Distribution of Mytilecins
2.1.1. Phylum Porifera
2.1.2. Phylum Cnidaria
2.1.3. Phylum Mollusca, Class Bivalvia
2.1.4. Other Mollusca
2.1.5. Other Lophotrochozoa
2.1.6. Ecdysozoa
2.1.7. Phylum Echinodermata
2.1.8. Other Deuterostomes
2.2. Structural Features of Mytilectins
2.3. Gene Architecture Strongly Supports a Monophyletic Origin for all Mytilectins
2.4. Phylogeny of Mytilectins
2.5. Optimization of Mytilectin-Specific Hidden Markov Models
2.6. On the Occurrence of the β-Trefoil/Aerolysin-like Pore-Forming Domain Combination in Non-Metazoan Phyla: Convergent Evolution or Shared Ancestry?
3. Materials and Methods
3.1. Retrieval of Mytilectin Sequences from Public Databases
3.2. Protein Sequence Analysis
3.3. Phylogenetic Analysis
3.4. Creation and Validation of Mytilectin-Specific Profile HMMs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kaltner, H.; Stierstorfer, B. Animal Lectins as Cell Adhesion Molecules. Acta Anat. 1998, 161, 162–179. [Google Scholar] [CrossRef] [PubMed]
- Sharon, N.; Lis, H. Lectins as Cell Recognition Molecules. Science 1989, 246, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Nauta, A.J.; Castellano, G.; Xu, W.; Woltman, A.M.; Borrias, M.C.; Daha, M.R.; van Kooten, C.; Roos, A. Opsonization with C1q and Mannose-Binding Lectin Targets Apoptotic Cells to Dendritic Cells. J. Immunol. 2004, 173, 3044–3050. [Google Scholar] [CrossRef]
- Maki, J.S.; Mitchell, R. Involvement of Lectins in the Settlement and Metamorphosis of Marine Invertebrate Larvae. Bull. Mar. Sci. 1985, 37, 675–683. [Google Scholar]
- Emmanuelle, P.E.; Mickael, P.; Evan, W.; Shumway, S.E.; Bassem, A. Lectins Associated with the Feeding Organs of the Oyster Crassostrea virginica Can Mediate Particle Selection. Biol. Bull. 2009, 217, 130–141. [Google Scholar]
- Stuart, L.M.; Paquette, N.; Boyer, L. Effector-Triggered versus Pattern-Triggered Immunity: How Animals Sense Pathogens. Nat. Rev. Immunol. 2013, 13, 199–206. [Google Scholar] [CrossRef]
- Gerdol, M.; Venier, P.; Pallavicini, A. The Genome of the Pacific Oyster Crassostrea gigas Brings New Insights on the Massive Expansion of the C1q Gene Family in Bivalvia. Dev. Comp. Immunol. 2015, 49, 59–71. [Google Scholar] [CrossRef]
- Jiang, S.-Y.; Ma, Z.; Ramachandran, S. Evolutionary History and Stress Regulation of the Lectin Superfamily in Higher Plants. BMC Evol. Biol. 2010, 10, 79. [Google Scholar] [CrossRef]
- Hofberger, J.A.; Nsibo, D.L.; Govers, F.; Bouwmeester, K.; Schranz, M.E. A Complex Interplay of Tandem- and Whole-Genome Duplication Drives Expansion of the L-Type Lectin Receptor Kinase Gene Family in the Brassicaceae. Genome Biol. Evol. 2015, 7, 720–734. [Google Scholar] [CrossRef]
- Saco, A.; Suárez, H.; Novoa, B.; Figueras, A. A Genomic and Transcriptomic Analysis of the C-Type Lectin Gene Family Reveals Highly Expanded and Diversified Repertoires in Bivalves. Mar. Drugs 2023, 21, 254. [Google Scholar] [CrossRef]
- Yang, Y.; Labbé, J.; Muchero, W.; Yang, X.; Jawdy, S.S.; Kennedy, M.; Johnson, J.; Sreedasyam, A.; Schmutz, J.; Tuskan, G.A.; et al. Genome-Wide Analysis of Lectin Receptor-like Kinases in Populus. BMC Genom. 2016, 17, 699. [Google Scholar] [CrossRef]
- Rutenber, E.; Ready, M.; Robertus, J.D. Structure and Evolution of Ricin B Chain. Nature 1987, 326, 624–626. [Google Scholar] [CrossRef]
- Cummings, R.D.; Schnaar, R.; Ozeki, Y. R-Type Lectins. In Essentials of Glycobiology, 4th ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2022; Chapter 31. [Google Scholar]
- Kawsar, S.M.A.; Takeuchi, T.; Kasai, K.; Fujii, Y.; Matsumoto, R.; Yasumitsu, H.; Ozeki, Y. Glycan-Binding Profile of a D-Galactose Binding Lectin Purified from the Annelid, Perinereis nuntia ver. vallata. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2009, 152, 382–389. [Google Scholar] [CrossRef]
- Hirabayashi, J.; Dutta, S.K.; Kasai, K. Novel Galactose-Binding Proteins in Annelida. Characterization of 29-kDa Tandem Repeat-Type Lectins from the Earthworm Lumbricus Terrestris. J. Biol. Chem. 1998, 273, 14450–14460. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Gerdol, M.; Kawsar, S.M.A.; Hasan, I.; Spazzali, F.; Yoshida, T.; Ogawa, Y.; Rajia, S.; Kamata, K.; Koide, Y.; et al. A GM1b/Asialo-GM1 Oligosaccharide-Binding R-Type Lectin from Purplish Bifurcate Mussels Mytilisepta virgata and Its Effect on MAP Kinases. FEBS J. 2020, 287, 2612–2630. [Google Scholar] [CrossRef] [PubMed]
- Gerdol, M. First Insights into the Repertoire of Secretory Lectins in Rotifers. Mar. Drugs 2022, 20, 130. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Dohmae, N.; Takio, K.; Kawsar, S.M.A.; Matsumoto, R.; Hasan, I.; Koide, Y.; Kanaly, R.A.; Yasumitsu, H.; Ogawa, Y.; et al. A Lectin from the Mussel Mytilus galloprovincialis Has a Highly Novel Primary Structure and Induces Glycan-Mediated Cytotoxicity of Globotriaosylceramide-Expressing Lymphoma Cells. J. Biol. Chem. 2012, 287, 44772–44783. [Google Scholar] [CrossRef] [PubMed]
- Belogortseva, N.I.; Molchanova, V.I.; Kurika, A.V.; Skobun, A.S.; Glazkova, V.E. Isolation and Characterization of New GalNAc/Gal-Specific Lectin from the Sea Mussel Crenomytilus grayanus. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1998, 119, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Chikalovets, I.V.; Kovalchuk, S.N.; Litovchenko, A.P.; Molchanova, V.I.; Pivkin, M.V.; Chernikov, O.V. A New Gal/GalNAc-Specific Lectin from the Mussel Mytilus trossulus: Structure, Tissue Specificity, Antimicrobial and Antifungal Activity. Fish. Shellfish. Immunol. 2016, 50, 27–33. [Google Scholar] [CrossRef]
- García-Maldonado, E.; Cano-Sánchez, P.; Hernández-Santoyo, A. Molecular and Functional Characterization of a Glycosylated Galactose-Binding Lectin from Mytilus californianus. Fish. Shellfish. Immunol. 2017, 66, 564–574. [Google Scholar] [CrossRef]
- Golotin, V.A.; Filshtein, A.P.; Chikalovets, I.V.; Yu, K.N.; Molchanova, V.I.; Chernikov, O.V. Expression and Purification of a New Lectin from Mussel Mytilus trossulus. Protein Expr. Purif. 2019, 154, 62–65. [Google Scholar] [CrossRef]
- Kovalchuk, S.N.; Chikalovets, I.V.; Chernikov, O.V.; Molchanova, V.I.; Li, W.; Rasskazov, V.A.; Lukyanov, P.A. CDNA Cloning and Structural Characterization of a Lectin from the Mussel Crenomytilus grayanus with a Unique Amino Acid Sequence and Antibacterial Activity. Fish. Shellfish. Immunol. 2013, 35, 1320–1324. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.-H.; Chien, C.-T.H.; Wu, H.-Y.; Huang, K.-F.; Wang, I.; Ho, M.-R.; Tu, I.-F.; Lee, I.-M.; Li, W.; Shih, Y.-L.; et al. A Multivalent Marine Lectin from Crenomytilus grayanus Possesses Anti-Cancer Activity through Recognizing Globotriose Gb3. J. Am. Chem. Soc. 2016, 138, 4787–4795. [Google Scholar] [CrossRef] [PubMed]
- Hasan, I.; Asaduzzaman, A.K.M.; Swarna, R.R.; Fujii, Y.; Ozeki, Y.; Uddin, M.B.; Kabir, S.R. MytiLec-1 Shows Glycan-Dependent Toxicity against Brine Shrimp Artemia and Induces Apoptotic Death of Ehrlich Ascites Carcinoma Cells In Vivo. Mar. Drugs 2019, 17, 502. [Google Scholar] [CrossRef] [PubMed]
- Hasan, I.; Sugawara, S.; Fujii, Y.; Koide, Y.; Terada, D.; Iimura, N.; Fujiwara, T.; Takahashi, K.G.; Kojima, N.; Rajia, S.; et al. MytiLec, a Mussel R-Type Lectin, Interacts with Surface Glycan Gb3 on Burkitt’s Lymphoma Cells to Trigger Apoptosis through Multiple Pathways. Mar. Drugs 2015, 13, 7377–7389. [Google Scholar] [CrossRef] [PubMed]
- Chernikov, O.V.; Wong, W.-T.; Li, L.-H.; Chikalovets, I.V.; Molchanova, V.I.; Wu, S.-H.; Liao, J.-H.; Hua, K.-F. A GalNAc/Gal-Specific Lectin from the Sea Mussel Crenomytilus grayanus Modulates Immune Response in Macrophages and in Mice. Sci. Rep. 2017, 7, 6315. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, S.N.; Buinovskaya, N.S.; Likhatskaya, G.N.; Rasskazov, V.A.; Son, O.M.; Tekutyeva, L.A.; Balabanova, L.A. Mutagenesis Studies and Structure-Function Relationships for GalNAc/Gal-Specific Lectin from the Sea Mussel Crenomytilus grayanus. Mar. Drugs 2018, 16, 471. [Google Scholar] [CrossRef]
- Kovalchuk, S.N.; Golotin, V.A.; Balabanova, L.A.; Buinovskaya, N.S.; Likhatskaya, G.N.; Rasskazov, V.A. Carbohydrate-Binding Motifs in a Novel Type Lectin from the Sea Mussel Crenomytilus grayanus: Homology Modeling Study and Site-Specific Mutagenesis. Fish. Shellfish. Immunol. 2015, 47, 565–571. [Google Scholar] [CrossRef]
- Terada, D.; Voet, A.R.D.; Noguchi, H.; Kamata, K.; Ohki, M.; Addy, C.; Fujii, Y.; Yamamoto, D.; Ozeki, Y.; Tame, J.R.H.; et al. Computational Design of a Symmetrical β-Trefoil Lectin with Cancer Cell Binding Activity. Sci. Rep. 2017, 7, 5943. [Google Scholar] [CrossRef]
- Mancheño, J.M.; Tateno, H.; Sher, D.; Goldstein, I.J. Laetiporus Sulphureus Lectin and Aerolysin Protein Family. Adv. Exp. Med. Biol. 2010, 677, 67–80. [Google Scholar] [CrossRef]
- Jia, N.; Liu, N.; Cheng, W.; Jiang, Y.-L.; Sun, H.; Chen, L.-L.; Peng, J.; Zhang, Y.; Ding, Y.-H.; Zhang, Z.-H.; et al. Structural Basis for Receptor Recognition and Pore Formation of a Zebrafish Aerolysin-like Protein. EMBO Rep. 2016, 17, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Dang, L.; Rougé, P.; Van Damme, E.J.M. Amaranthin-like Proteins with Aerolysin Domains in Plants. Front. Plant Sci. 2017, 8, 1368. [Google Scholar] [CrossRef] [PubMed]
- Gerdol, M.; Luo, Y.-J.; Satoh, N.; Pallavicini, A. Genetic and Molecular Basis of the Immune System in the Brachiopod Lingula anatina. Dev. Comp. Immunol. 2018, 82, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Gerdol, M.; Hasan, I.; Koide, Y.; Matsuzaki, R.; Ikeda, M.; Rajia, S.; Ogawa, Y.; Kawsar, S.M.A.; Ozeki, Y. Phylogeny and Properties of a Novel Lectin Family with β-Trefoil Folding in Mussels. Trends Glycosci. Glycotechnol. 2018, 30, E195–E208. [Google Scholar] [CrossRef]
- Chikalovets, I.; Filshtein, A.; Molchanova, V.; Mizgina, T.; Lukyanov, P.; Nedashkovskaya, O.; Hua, K.-F.; Chernikov, O. Activity Dependence of a Novel Lectin Family on Structure and Carbohydrate-Binding Properties. Molecules 2020, 25, 150. [Google Scholar] [CrossRef]
- Strehlow, B.W.; Schuster, A.; Francis, W.R.; Eckford-Soper, L.; Kraft, B.; McAllen, R.; Nielsen, R.; Mandrup, S.; Canfield, D.E. Transcriptomic Responses of Sponge Holobionts to in Situ, Seasonal Anoxia and Hypoxia. bioRxiv 2023. [Google Scholar]
- Helmkampf, M.; Bellinger, M.R.; Geib, S.M.; Sim, S.B.; Takabayashi, M. Draft Genome of the Rice Coral Montipora capitata Obtained from Linked-Read Sequencing. Genome Biol. Evol. 2019, 11, 2045–2054. [Google Scholar] [CrossRef]
- Voolstra, C.R.; Li, Y.; Liew, Y.J.; Baumgarten, S.; Zoccola, D.; Flot, J.-F.; Tambutté, S.; Allemand, D.; Aranda, M. Comparative Analysis of the Genomes of Stylophora pistillata and Acropora digitifera Provides Evidence for Extensive Differences between Species of Corals. Sci. Rep. 2017, 7, 17583. [Google Scholar] [CrossRef]
- Santos, M.E.A.; Kise, H.; Julie Loïs Fourreau, C.; Poliseno, A.; Pirro, S.; Reimer, J.D. The Complete Genome Sequences of 13 Species of Brachycnemina (Cnidaria, Hexacorallia, Anthozoa, Zoantharia). Biodivers. J. 2023, 2023. [Google Scholar] [CrossRef]
- Takekata, H.; Hamazato, H.; Suan, T.E.; Izumi, R.; Yaguchi, H.; Matsunami, M.; Isomura, N.; Takemura, A. Transcriptome Analysis in a Scleractinian Coral, Acropora tenuis, during the Spawning Season With Reference to the Gonadal Condition. Zool. Sci. 2022, 39, 570–580. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, X.; Han, T.; Su, A.; Guo, Z.; Lu, N.; He, C.; Lu, Z. Full-Length Transcriptome Sequencing of the Scleractinian Coral Montipora foliosa Reveals the Gene Expression Profile of Coral–Zooxanthellae Holobiont. Biology 2021, 10, 1274. [Google Scholar] [CrossRef] [PubMed]
- Ryu, T.; Cho, W.; Yum, S.; Woo, S. Holobiont Transcriptome of Colonial Scleractinian Coral Alveopora japonica. Mar. Genom. 2019, 43, 68–71. [Google Scholar] [CrossRef]
- Ryu, T.; Hwang, S.-J.; Woo, S. Transcriptome Assemblies of Two Deep-Sea Octocorals Calyptrophora lyra and Chrysogorgia stellata from West Pacific Seamount, Godin Guyot. Mar. Genom. 2023, 67, 101006. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.-L.; Shikina, S.; Yoshioka, Y.; Shinzato, C.; Chang, C.-F. De Novo Transcriptome Assembly from the Gonads of a Scleractinian Coral, Euphyllia ancora: Molecular Mechanisms Underlying Scleractinian Gametogenesis. BMC Genom. 2020, 21, 732. [Google Scholar] [CrossRef] [PubMed]
- Ledoux, J.-B.; Cruz, F.; Gómez-Garrido, J.; Antoni, R.; Blanc, J.; Gómez-Gras, D.; Kipson, S.; López-Sendino, P.; Antunes, A.; Linares, C.; et al. The Genome Sequence of the Octocoral Paramuricea clavata—A Key Resource To Study the Impact of Climate Change in the Mediterranean. G3 (Bethesda) 2020, 10, 2941–2952. [Google Scholar] [CrossRef]
- Macleod, K.L.; Paris, J.R.; Jenkins, T.L.; Stevens, J.R. The First Genome of the Cold-Water Octocoral, the Pink Sea Fan, Eunicella verrucosa. Genome Biol. Evol. 2023, 15, evad083. [Google Scholar] [CrossRef]
- Ryu, T.; Cho, I.-Y.; Hwang, S.-J.; Yum, S.; Kim, M.-S.; Woo, S. First Transcriptome Assembly of the Temperate Azooxanthellate Octocoral Eleutherobia rubra. Mar. Genom. 2019, 48, 100682. [Google Scholar] [CrossRef]
- Khalturin, K.; Shinzato, C.; Khalturina, M.; Hamada, M.; Fujie, M.; Koyanagi, R.; Kanda, M.; Goto, H.; Anton-Erxleben, F.; Toyokawa, M.; et al. Medusozoan Genomes Inform the Evolution of the Jellyfish Body Plan. Nat. Ecol. Evol. 2019, 3, 811–822. [Google Scholar] [CrossRef]
- Guzman, C.; Shinzato, C.; Lu, T.-M.; Conaco, C. Transcriptome Analysis of the Reef-Building Octocoral, Heliopora coerulea. Sci. Rep. 2018, 8, 8397. [Google Scholar] [CrossRef]
- Stewart, F.; Dmytrenko, O.; DeLong, E.; Cavanaugh, C. Metatranscriptomic Analysis of Sulfur Oxidation Genes in the Endosymbiont of Solemya velum. Front. Microbiol. 2011, 2, 134. [Google Scholar] [CrossRef]
- Smith, S.A.; Wilson, N.G.; Goetz, F.E.; Feehery, C.; Andrade, S.C.S.; Rouse, G.W.; Giribet, G.; Dunn, C.W. Resolving the Evolutionary Relationships of Molluscs with Phylogenomic Tools. Nature 2011, 480, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Lemer, S.; Bieler, R.; Giribet, G. Resolving the Relationships of Clams and Cockles: Dense Transcriptome Sampling Drastically Improves the Bivalve Tree of Life. Proc. R. Soc. B Biol. Sci. 2019, 286, 20182684. [Google Scholar] [CrossRef]
- Bao, Y.; Zeng, Q.; Wang, J.; Zhang, Z.; Zhang, Y.; Wang, S.; Wong, N.-K.; Yuan, W.; Huang, Y.; Zhang, W.; et al. Genomic Insights into the Origin and Evolution of Molluscan Red-Bloodedness in the Blood Clam Tegillarca granosa. Mol. Biol. Evol. 2021, 38, 2351–2365. [Google Scholar] [CrossRef] [PubMed]
- Gerdol, M.; Moreira, R.; Cruz, F.; Gómez-Garrido, J.; Vlasova, A.; Rosani, U.; Venier, P.; Naranjo-Ortiz, M.A.; Murgarella, M.; Greco, S.; et al. Massive Gene Presence-Absence Variation Shapes an Open Pan-Genome in the Mediterranean Mussel. Genome Biol. 2020, 21, 275. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Escárate, C.; Valenzuela-Muñoz, V.; Nuñez-Acuña, G.; Valenzuela-Miranda, D.; Tapia, F.J.; Yévenes, M.; Gajardo, G.; Toro, J.E.; Oyarzún, P.A.; Arriagada, G.; et al. Chromosome-Level Genome Assembly of the Blue Mussel Mytilus chilensis Reveals Molecular Signatures Facing the Marine Environment. Genes 2023, 14, 876. [Google Scholar] [CrossRef]
- Gualandi, N.; Fracarossi, D.; Riommi, D.; Sollitto, M.; Greco, S.; Mardirossian, M.; Pacor, S.; Hori, T.; Pallavicini, A.; Gerdol, M. Unveiling the Impact of Gene Presence/Absence Variation in Driving Inter-Individual Sequence Diversity within the CRP-I Gene Family in Mytilus spp. Genes 2023, 14, 787. [Google Scholar] [CrossRef]
- Yang, J.-L.; Feng, D.-D.; Liu, J.; Xu, J.-K.; Chen, K.; Li, Y.-F.; Zhu, Y.-T.; Liang, X.; Lu, Y. Chromosome-Level Genome Assembly of the Hard-Shelled Mussel Mytilus coruscus, a Widely Distributed Species from the Temperate Areas of East Asia. Gigascience 2021, 10, giab024. [Google Scholar] [CrossRef]
- Paggeot, L.X.; DeBiasse, M.B.; Escalona, M.; Fairbairn, C.; Marimuthu, M.P.A.; Nguyen, O.; Sahasrabudhe, R.; Dawson, M.N. Reference Genome for the California Ribbed Mussel, Mytilus californianus, an Ecosystem Engineer. J. Hered. 2022, 113, 681–688. [Google Scholar] [CrossRef]
- Jakób, M.; Lubkowski, J.; O’Keefe, B.R.; Wlodawer, A. Structure of a Lectin from the Sea Mussel Crenomytilus grayanus (CGL). Acta Crystallogr. F Struct. Biol. Commun. 2015, 71, 1429–1436. [Google Scholar] [CrossRef]
- Inoue, K.; Yoshioka, Y.; Tanaka, H.; Kinjo, A.; Sassa, M.; Ueda, I.; Shinzato, C.; Toyoda, A.; Itoh, T. Genomics and Transcriptomics of the Green Mussel Explain the Durability of Its Byssus. Sci. Rep. 2021, 11, 5992. [Google Scholar] [CrossRef]
- Nicastro, K.R.; Pearson, G.A.; Ramos, X.; Pearson, V.; McQuaid, C.D.; Zardi, G.I. Transcriptome Wide Analyses Reveal Intraspecific Diversity in Thermal Stress Responses of a Dominant Habitat-forming Species. Sci. Rep. 2023, 13, 5645. [Google Scholar] [CrossRef]
- Erlenbach, T.R.; Wares, J.P. Latitudinal Variation and Plasticity in Response to Temperature in Geukensia demissa. Ecol. Evol. 2023, 13, e9856. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Jiao, W.; Li, J.; Xun, X.; Sun, Y.; Guo, X.; Huan, P.; Dong, B.; Zhang, L.; et al. Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat. Ecol. Evol. 2017, 1, 0120. [Google Scholar] [CrossRef] [PubMed]
- Kenny, N.J.; McCarthy, S.A.; Dudchenko, O.; James, K.; Betteridge, E.; Corton, C.; Dolucan, J.; Mead, D.; Oliver, K.; Omer, A.D.; et al. The Gene-Rich Genome of the Scallop Pecten maximus. Gigascience 2020, 9, giaa037. [Google Scholar] [CrossRef]
- Li, C.; Liu, X.; Liu, B.; Ma, B.; Liu, F.; Liu, G.; Shi, Q.; Wang, C. Draft Genome of the Peruvian Scallop Argopecten purpuratus. Gigascience 2018, 7, giy031. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.; Chen, M.; Liu, B.; Yan, X.; Ning, J.; Ma, B.; Liu, G.; Zhong, Z.; Jia, Y.; et al. Draft Genomes of Two Atlantic Bay Scallop Subspecies Argopecten irradians irradians and A. i. Concentricus. Sci. Data 2020, 7, 99. [Google Scholar] [CrossRef]
- The Genome Sequence of the Variegated Scallop, Mimachlamys varia. Available online: https://wellcomeopenresearch.org/articles/8-307 (accessed on 25 August 2023).
- Greco, S.; Voltarel, G.; Gaetano, A.S.; Manfrin, C.; Pallavicini, A.; Giulianini, P.G.; Gerdol, M. Comparative Transcriptomic Analysis Reveals Adaptive Traits in Antarctic Scallop Adamussium colbecki. Fishes 2023, 8, 276. [Google Scholar] [CrossRef]
- Galindo-Torres, P.; Abreu-Goodger, C.; Llera-Herrera, R.; Escobedo-Fregoso, C.; García-Gasca, A.; Ibarra, A.M. Triploid-Induced Complete Sterility in the Scallop Nodipecten subnodosus Might Be Triggered by an Early and Sustained DNA Damage Response. Aquaculture 2022, 559, 738422. [Google Scholar] [CrossRef]
- Plachetzki, D.C.; Pankey, M.S.; MacManes, M.D.; Lesser, M.P.; Walker, C.W. The Genome of the Softshell Clam Mya arenaria and the Evolution of Apoptosis. Genome Biol. Evol. 2020, 12, 1681–1693. [Google Scholar] [CrossRef] [PubMed]
- McCartney, M.A.; Auch, B.; Kono, T.; Mallez, S.; Zhang, Y.; Obille, A.; Becker, A.; Abrahante, J.E.; Garbe, J.; Badalamenti, J.P.; et al. The Genome of the Zebra Mussel, Dreissena polymorpha: A Resource for Comparative Genomics, Invasion Genetics, and Biocontrol. G3 Genes|Genomes|Genet. 2022, 12, jkab423. [Google Scholar] [CrossRef]
- Farhat, S.; Bonnivard, E.; Pales Espinosa, E.; Tanguy, A.; Boutet, I.; Guiglielmoni, N.; Flot, J.-F.; Allam, B. Comparative Analysis of the Mercenaria mercenaria Genome Provides Insights into the Diversity of Transposable Elements and Immune Molecules in Bivalve Mollusks. BMC Genom. 2022, 23, 192. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chen, C.; Miyamoto, N.; Li, R.; Sigwart, J.D.; Xu, T.; Sun, Y.; Wong, W.C.; Ip, J.C.H.; Zhang, W.; et al. The Scaly-Foot Snail Genome and Implications for the Origins of Biomineralised Armour. Nat. Commun. 2020, 11, 1657. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Sun, J.; Chen, C.; Sun, Y.; Zhou, Y.; Yang, Y.; Zhang, W.; Li, R.; Zhou, K.; Wong, W.C.; et al. Hologenome Analysis Reveals Dual Symbiosis in the Deep-Sea Hydrothermal Vent Snail Gigantopelta aegis. Nat. Commun. 2021, 12, 1165. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, C.; Pereira da Conceicoa, L.; Natural History Museum Genome Acquisition Lab; Darwin Tree of Life Barcoding Collective; Wellcome Sanger Institute Tree of Life Programme; Wellcome Sanger Institute Scientific Operations: DNA Pipelines Collective; Tree of Life Core Informatics Collective; Darwin Tree of Life Consortium. The Genome Sequence of the King Ragworm, Alitta virens (Sars, 1835). Wellcome Open Res. 2023, 8, 297. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; Wang, T.; Liu, F.; Yu, Y.; Qiao, G.; Lv, L.; Wang, Z.; Qi, Z. De Novo Assembly and Characterization of Transcriptome in Somatic Muscles of the Polychaete Perinereis aibuhitensis. J. Coast. Res. 2017, 33, 931–937. [Google Scholar] [CrossRef]
- Chou, H.-C.; Acevedo-Luna, N.; Kuhlman, J.A.; Schneider, S.Q. PdumBase: A Transcriptome Database and Research Tool for Platynereis dumerilii and Early Development of Other Metazoans. BMC Genom. 2018, 19, 618. [Google Scholar] [CrossRef] [PubMed]
- Khalturin, K.; Shunatova, N.; Shchenkov, S.; Sasakura, Y.; Kawamitsu, M.; Satoh, N. Polyzoa Is Back: The Effect of Complete Gene Sets on the Placement of Ectoprocta and Entoprocta. Sci. Adv. 2022, 8, eabo4400. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Sun, S.; Liu, K.; Wang, J.; Li, S.; Liu, Q.; Deagle, B.E.; Seim, I.; Biscontin, A.; Wang, Q.; et al. The Enormous Repetitive Antarctic Krill Genome Reveals Environmental Adaptations and Population Insights. Cell 2023, 186, 1279–1294.e19. [Google Scholar] [CrossRef]
- Blanco-Bercial, L.; Maas, A.E. A Transcriptomic Resource for the Northern Krill Meganyctiphanes norvegica Based on a Short-Term Temperature Exposure Experiment. Mar. Genom. 2018, 38, 25–32. [Google Scholar] [CrossRef]
- Delroisse, J.; Ullrich-Lüter, E.; Ortega-Martinez, O.; Dupont, S.; Arnone, M.-I.; Mallefet, J.; Flammang, P. High Opsin Diversity in a Non-Visual Infaunal Brittle Star. BMC Genom. 2014, 15, 1035. [Google Scholar] [CrossRef]
- Fuad, M.T.I.; Shi, W.; Liao, X.; Li, Y.; Sharifuzzaman, S.M.; Zhang, X.; Liu, X.; Xu, Q. Transcriptomic Response of Intertidal Brittle Star Ophiothrix Exigua to Seasonal Variation. Mar. Genom. 2022, 64, 100957. [Google Scholar] [CrossRef] [PubMed]
- Kudtarkar, P.; Cameron, R.A. Echinobase: An Expanding Resource for Echinoderm Genomic Information. Database 2017, 2017, bax074. [Google Scholar] [CrossRef] [PubMed]
- Mashanov, V.; Machado, D.J.; Reid, R.; Brouwer, C.; Kofsky, J.; Janies, D.A. Twinkle Twinkle Brittle Star: The Draft Genome of Ophioderma brevispinum (Echinodermata: Ophiuroidea) as a Resource for Regeneration Research. BMC Genom. 2022, 23, 574. [Google Scholar] [CrossRef] [PubMed]
- Virgili, R.; Poliseno, A.; Pirro, S.; Reimer, J.D. A Draft Genome Sequence of Dorometra sesokonis (Antedonidae, Comatulida, Crinoidea, Echinodermata). Biodivers. Genomes 2023, 2023. [Google Scholar] [CrossRef]
- Borme, D.; Legovini, S.; de Olazabal, A.; Tirelli, V. Diet of Adult Sardine Sardina pilchardus in the Gulf of Trieste, Northern Adriatic Sea. J. Mar. Sci. Eng. 2022, 10, 1012. [Google Scholar] [CrossRef]
- Hasan, I.; Gerdol, M.; Fujii, Y.; Rajia, S.; Koide, Y.; Yamamoto, D.; Kawsar, S.M.A.; Ozeki, Y. cDNA and Gene Structure of MytiLec-1, A Bacteriostatic R-Type Lectin from the Mediterranean Mussel (Mytilus galloprovincialis). Mar. Drugs 2016, 14, 92. [Google Scholar] [CrossRef]
- Wilmsen, H.U.; Pattus, F.; Buckley, J.T. Aerolysin, a Hemolysin from Aeromonas hydrophila, Forms Voltage-Gated Channels in Planar Lipid Bilayers. J. Membr. Biol. 1990, 115, 71–81. [Google Scholar] [CrossRef]
- Henricson, A.; Forslund, K.; Sonnhammer, E.L. Orthology Confers Intron Position Conservation. BMC Genom. 2010, 11, 412. [Google Scholar] [CrossRef]
- Fedorov, A.; Merican, A.F.; Gilbert, W. Large-Scale Comparison of Intron Positions among Animal, Plant, and Fungal Genes. Proc. Natl. Acad. Sci. USA 2002, 99, 16128–16133. [Google Scholar] [CrossRef]
- Rogozin, I.B.; Wolf, Y.I.; Sorokin, A.V.; Mirkin, B.G.; Koonin, E.V. Remarkable Interkingdom Conservation of Intron Positions and Massive, Lineage-Specific Intron Loss and Gain in Eukaryotic Evolution. Curr. Biol. 2003, 13, 1512–1517. [Google Scholar] [CrossRef]
- Keilwagen, J.; Wenk, M.; Erickson, J.L.; Schattat, M.H.; Grau, J.; Hartung, F. Using Intron Position Conservation for Homology-Based Gene Prediction. Nucleic Acids Res. 2016, 44, e89. [Google Scholar] [CrossRef] [PubMed]
- Kondrashov, F.A.; Koonin, E.V.; Morgunov, I.G.; Finogenova, T.V.; Kondrashova, M.N. Evolution of Glyoxylate Cycle Enzymes in Metazoa: Evidence of Multiple Horizontal Transfer Events and Pseudogene Formation. Biol. Direct 2006, 1, 31. [Google Scholar] [CrossRef] [PubMed]
- Gerdol, M.; Sollitto, M.; Pallavicini, A.; Castellano, I. The Complex Evolutionary History of Sulfoxide Synthase in Ovothiol Biosynthesis. Proc. R. Soc. B Biol. Sci. 2019, 286, 20191812. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.; Apweiler, R.; Attwood, T.K.; Bairoch, A.; Bateman, A.; Binns, D.; Bork, P.; Das, U.; Daugherty, L.; Duquenne, L.; et al. InterPro: The Integrative Protein Signature Database. Nucleic Acids Res. 2009, 37, D211–D215. [Google Scholar] [CrossRef] [PubMed]
- Dawson, N.L.; Lewis, T.E.; Das, S.; Lees, J.G.; Lee, D.; Ashford, P.; Orengo, C.A.; Sillitoe, I. CATH: An Expanded Resource to Predict Protein Function through Structure and Sequence. Nucleic Acids Res. 2017, 45, D289–D295. [Google Scholar] [CrossRef] [PubMed]
- Notova, S.; Bonnardel, F.; Rosato, F.; Siukstaite, L.; Schwaiger, J.; Lim, J.H.; Bovin, N.; Varrot, A.; Ogawa, Y.; Römer, W.; et al. The Choanoflagellate Pore-Forming Lectin SaroL-1 Punches Holes in Cancer Cells by Targeting the Tumor-Related Glycosphingolipid Gb3. Commun. Biol. 2022, 5, 954. [Google Scholar] [CrossRef]
- Söding, J.; Biegert, A.; Lupas, A.N. The HHpred Interactive Server for Protein Homology Detection and Structure Prediction. Nucleic Acids Res. 2005, 33, W244–W248. [Google Scholar] [CrossRef]
- Best, H.L.; Williamson, L.J.; Lipka-Lloyd, M.; Waller-Evans, H.; Lloyd-Evans, E.; Rizkallah, P.J.; Berry, C. The Crystal Structure of Bacillus thuringiensis Tpp80Aa1 and Its Interaction with Galactose-Containing Glycolipids. Toxins 2022, 14, 863. [Google Scholar] [CrossRef]
- Colletier, J.-P.; Sawaya, M.R.; Gingery, M.; Rodriguez, J.A.; Cascio, D.; Brewster, A.S.; Michels-Clark, T.; Hice, R.H.; Coquelle, N.; Boutet, S.; et al. Mosquito Larvicide BinAB Revealed by de Novo Phasing with an X-Ray Laser. Nature 2016, 539, 43–47. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Li, W.; Godzik, A. Cd-Hit: A Fast Program for Clustering and Comparing Large Sets of Protein or Nucleotide Sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The Proteomics Server for in-Depth Protein Knowledge and Analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [PubMed]
- Reese, M.G.; Eeckman, F.H.; Kulp, D.; Haussler, D. Improved Splice Site Detection in Genie. J. Comput. Biol. 1997, 4, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Teufel, F.; Almagro Armenteros, J.J.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 6.0 Predicts All Five Types of Signal Peptides Using Protein Language Models. Nat. Biotechnol. 2022, 40, 1023–1025. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-Scale Protein Function Classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Whelan, S.; Goldman, N. A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach. Mol. Biol. Evol. 2001, 18, 691–699. [Google Scholar] [CrossRef]
- Neath, A.A.; Cavanaugh, J.E. The Bayesian Information Criterion: Background, Derivation, and Applications. WIREs Comput. Stat. 2012, 4, 199–203. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER Web Server: Interactive Sequence Similarity Searching. Nucl. Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef]
- Chernikov, O.; Kuzmich, A.; Chikalovets, I.; Molchanova, V.; Hua, K.-F. Lectin CGL from the Sea Mussel Crenomytilus grayanus Induces Burkitt’s Lymphoma Cells Death via Interaction with Surface Glycan. Int. J. Biol. Macromol. 2017, 104, 508–514. [Google Scholar] [CrossRef] [PubMed]
- UniProt Consortium. UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [PubMed]
- Gerdol, M.; Schmitt, P.; Venier, P.; Rocha, G.; Rosa, R.D.; Destoumieux-Garzón, D. Functional Insights From the Evolutionary Diversification of Big Defensins. Front. Immunol. 2020, 11, 758. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerdol, M.; Nerelli, D.E.; Martelossi, N.; Ogawa, Y.; Fujii, Y.; Pallavicini, A.; Ozeki, Y. Taxonomic Distribution and Molecular Evolution of Mytilectins. Mar. Drugs 2023, 21, 614. https://doi.org/10.3390/md21120614
Gerdol M, Nerelli DE, Martelossi N, Ogawa Y, Fujii Y, Pallavicini A, Ozeki Y. Taxonomic Distribution and Molecular Evolution of Mytilectins. Marine Drugs. 2023; 21(12):614. https://doi.org/10.3390/md21120614
Chicago/Turabian StyleGerdol, Marco, Daniela Eugenia Nerelli, Nicola Martelossi, Yukiko Ogawa, Yuki Fujii, Alberto Pallavicini, and Yasuhiro Ozeki. 2023. "Taxonomic Distribution and Molecular Evolution of Mytilectins" Marine Drugs 21, no. 12: 614. https://doi.org/10.3390/md21120614
APA StyleGerdol, M., Nerelli, D. E., Martelossi, N., Ogawa, Y., Fujii, Y., Pallavicini, A., & Ozeki, Y. (2023). Taxonomic Distribution and Molecular Evolution of Mytilectins. Marine Drugs, 21(12), 614. https://doi.org/10.3390/md21120614