Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications
Abstract
:1. Introduction
2. Chemical Fertilizer and Its Environmental Impact
Impact of Chemical Fertilizers on Human Health
3. Microalgae as Biofertilizers in Modern Agriculture
3.1. Microalgae-Based Bofertilizer
3.1.1. Wet Microalgae-Based Biofertilizers
3.1.2. Dry Microalgae-Based Biofertilizers
3.1.3. Hydrocarbon Microalgae-Based Biofertilizer
3.1.4. Biofertilizer Enhanced with Microalgae
4. Application Techniques of Microalgae-Based Biofertilizers
Foliar and Soil Application of Microalgae Biomass
5. The Circular Economy of Waste to Microalgae-Based Biofertilizers
Microalgae | Type of Wastewater | Nutrient Removal Efficiency (%) | Biomass Yield (g/L) | Application | Composition | Reference |
---|---|---|---|---|---|---|
Chlorella vulgaris | Municipal wastewater | COD: 84.3% NO3-N: 82.62% NH3-N: 89% PO43−-P: 85.15% | 3.2 | Bio-oil production | Lipids: 18.2% Protein: 55.24% | [135] |
Tetradesmus dimorphus (formerly Acutodesmus dimorphus) | Dairy wastewater | COD: 91.71% NO3-N: 100% NH3-N: 100% PO43−-P: 100% | 0.84 | Biofuel | Lipids: 25.05%, Protein: 38.69% | [136] |
Scenedesmus sp. | Brewery wastewater | COD: 73.66% TN: 75.96% NH3-N: 89.99% TP: 95.71% | 1.02 | Wastewater purification |
Chlorophyll: 20.40 mg/L Carotenoids: 7.54 mg/L Carbohydrates: 63.61 mg/L Lipids: 38 mg/L | [137] |
Chlorella vulgaris | Clean in-place wastewater | COD: 75.0% NO3-N: 54.8% TP: 79.4% | - | Producing food-grade algae biomass | Lipid: 15.6% Proteins: 32% | [138] |
C. reinhardtii | Dairy Wastewater | COD: 76% TN: 65% NH3-N: 65% PO43−-P: 87% | 1.14 | Wastewater purification and lipid production | Lipids: 18.5% | [139] |
Auxenochlorella pyrenoidosa (formerly Chlorella pyrenoidosa) | Soybean processing wastewater | COD: 77.8% TN: 88.8% NH3-N: 89.1% TP: 70.3% | 0.64 | Biomass cultivation | Lipids: 37% | [140] |
Chlorella vulgaris | Slaughterhouse Wastewater | COD: 96.80% TN: 97.75% NH3-N: 57.74% TP: 56.66% | 0.12 | Wastewater purification | - | [141] |
Scenedesmus sp. | Piggery Wastewater | NH3-N: 90% PO43−-P 90% COD: 59% | 0.054 | Wastewater purification | - | [142] |
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kholssi, R.; Ramos, P.V.; Marks, E.A.N.; Montero, O.; Rad, C. 2Biotechnological Uses of Microalgae: A Review on the State of the Art and Challenges for the Circular Economy. Biocatal. Agric. Biotechnol. 2021, 36, 102114. [Google Scholar] [CrossRef]
- Tanumihardjo, S.A.; McCulley, L.; Roh, R.; Lopez-Ridaura, S.; Palacios-Rojas, N.; Gunaratna, N.S. Maize Agro-Food Systems to Ensure Food and Nutrition Security in Reference to the Sustainable Development Goals. Glob. Food Secur. 2020, 25, 100327. [Google Scholar] [CrossRef]
- Molazadeh, M.; Ahmadzadeh, H.; Pourianfar, H.R.; Lyon, S.; Rampelotto, P.H. The Use of Microalgae for Coupling Wastewater Treatment With CO2 Biofixation. Front. Bioeng. Biotechnol. 2019, 7, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.; Wang, P.; Wang, X.; Zou, M.; Liu, C.; Hao, J. Microalgae as Biofertilizer in Modern Agriculture. In Microalgae Biotechnology for Food, Health and High Value Products; Springer: Singapore, 2020; pp. 397–411. ISBN 9789811501692. [Google Scholar]
- Savci, S. An Agricultural Pollutant: Chemical Fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 73–80. [Google Scholar] [CrossRef] [Green Version]
- de Siqueira Castro, J.; Calijuri, M.L.; Ferreira, J.; Assemany, P.P.; Ribeiro, V.J. Microalgae Based Biofertilizer: A Life Cycle Approach. Sci. Total Environ. 2020, 724, 138138. [Google Scholar] [CrossRef]
- Alvarez, A.L.; Weyers, S.L.; Goemann, H.M.; Peyton, B.M.; Gardner, R.D. Microalgae, Soil and Plants: A Critical Review of Microalgae as Renewable Resources for Agriculture. Algal Res. 2021, 54, 102200. [Google Scholar] [CrossRef]
- Marks, E.A.N.; Montero, O.; Rad, C. The Biostimulating Effects of Viable Microalgal Cells Applied to a Calcareous Soil: Increases in Bacterial Biomass, Phosphorus Scavenging, and Precipitation of Carbonates. Sci. Total Environ. 2019, 692, 784–790. [Google Scholar] [CrossRef]
- de Souza, M.H.B.; Calijuri, M.L.; Assemany, P.P.; de Siqueira Castro, J.; de Oliveira, A.C.M. Soil Application of Microalgae for Nitrogen Recovery: A Life-Cycle Approach. J. Clean. Prod. 2019, 211, 342–349. [Google Scholar] [CrossRef]
- Nichols, K.; Olson, M.; Ayers, A.D. Microalgae as a Beneficial Soil Amendment; Myland Company LLC: Phoenix, AZ, USA, 2020. [Google Scholar]
- Renuka, N.; Guldhe, A.; Prasanna, R.; Singh, P.; Bux, F. Microalgae as Multi-Functional Options in Modern Agriculture: Current Trends, Prospects and Challenges. Biotechnol. Adv. 2018, 36, 1255–1273. [Google Scholar] [CrossRef]
- Kumar Bhatt, M.; Labanya, R.; Joshi, H.C. Influence of Long-Term Chemical Fertilizers and Organic Manures on Soil Fertility—A Review. Univers. J. Agric. Res. 2019, 7, 177–188. [Google Scholar] [CrossRef]
- Fasusi, O.A.; Cruz, C.; Babalola, O.O. Agricultural Sustainability: Microbial Biofertilizers in Rhizosphere Management. Agriculture 2021, 11, 163. [Google Scholar] [CrossRef]
- Eke, C. Investigation of Some Properties of Chemical Fertilizers Using Gamma-Ray Spectrometry and Energy Dispersive X-Ray Fluorescence Spectrometry. Instrum. Exp. Tech. 2022, 65, 482–490. [Google Scholar] [CrossRef]
- Iqbal, S.; Riaz, U.; Murtaza, G.; Jamil, M.; Ahmed, M.; Hussain, A.; Abbas, Z. Chemical Fertilizers, Formulation, and Their Influence on Soil Health. In Microbiota and Biofertilizers; Hakeem, K.R., Dar, G.H., Mehmood, M.A., Bhat, R.A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–15. ISBN1 978-3-030-48770-6. ISBN2 978-3-030-48771-3. [Google Scholar]
- Carson, J.; Philips, L. Fact Sheets Soil Nitrogen Supply. Available online: https://www.soilquality.org.au/factsheets/soil-nitrogen-supply (accessed on 20 January 2023).
- Bhatla, S.C.; Lal, M.A. Plant Physiology, Development and Metabolism; Springer: Singapore, 2018; ISBN 978-981-13-2022-4. [Google Scholar]
- Akbas, F.; Gunal, H.; Acir, N. Spatial variability of soil potassium and its relationship to land use and parent material. Soil Water Res. 2017, 12, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Prasad, R.; Shivay, Y.S. Calcium as a Plant Nutrient. Int. J. Bio-Resour. Stress Manag. 2020, 11, i–iii. [Google Scholar] [CrossRef]
- Reddy, P.; Lakshmi, V.; Kamalakar, K.; Rao, S. Critical levels of micro and secondary nutrients in soil and crops for optimum. Plant Nutr. 2021, 6, 594–595. [Google Scholar]
- Gransee, A.; Führs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 2013, 368, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Wei, X.; Ling, J.; Chen, J. Cobalt: An Essential Micronutrient for Plant Growth? Front. Plant Sci. 2021, 12, 768523. [Google Scholar] [CrossRef]
- Geilfus, C.M. Chloride in soil: From nutrient to soil pollutant. Environ. Exp. Bot. 2019, 157, 299–309. [Google Scholar] [CrossRef]
- Sharma, A. A Review on the Effect of Organic and Chemical Fertilizers on Plants. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 677–680. [Google Scholar] [CrossRef]
- Nosheen, S.; Ajmal, I.; Song, Y. Microbes as Biofertilizers, a Potential Approach for Sustainable Crop Production. Sustainability 2021, 13, 1868. [Google Scholar] [CrossRef]
- Solovchenko, A.; Zaitsev, P.; Zotov, V. Phosphorus Biofertilizer from Microalgae. In Biofertilizers; Elsevier: Amsterdam, The Netherlands, 2021; pp. 57–68. ISBN 9780128216675. [Google Scholar]
- Santos, F.M.; Pires, J.C.M. Microalgae Cultivation in Wastewater to Recycle Nutrients as Biofertilizer. In Environmental Chemistry for a Sustainable World; Gothandam, K.M., Ranjan, S., Dasgupta, N., Lichtfouse, E., Eds.; Springer: Cham, Switzerland, 2020; pp. 71–86. ISBN 978-3-030-38192-9. [Google Scholar]
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A.H. Effect of Fertilizer Application on Soil Heavy Metal Concentration. Environ. Monit. Assess. 2010, 160, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Kumari, S.; Sheo, S.; Prasad, M. Responses to Soil Pollution; Springer: Cham, Switzerland, 2020; ISBN 9789811549632. [Google Scholar]
- Bowles, T.M.; Acosta-martínez, V.; Calderón, F.; Jackson, L.E. Soil Biology & Biochemistry Soil Enzyme Activities, Microbial Communities, and Carbon and Nitrogen Availability in Organic Agroecosystems across an Intensively-Managed Agricultural Landscape Q. Soil Biol. Biochem. 2013, 68, 252–262. [Google Scholar] [CrossRef]
- Yang, X.; Ni, K.; Shi, Y.; Yi, X.; Zhang, Q.; Fang, L.; Ma, L.; Ruan, J. Effects of Long-Term Nitrogen Application on Soil Acidification and Solution Chemistry of a Tea Plantation in China. Agric. Ecosyst. Environ. 2018, 252, 74–82. [Google Scholar] [CrossRef]
- Singh, D.; Singh, S.K.; Modi, A.; Singh, P.K.; Yeka Zhimo, V.; Kumar, A. Impacts of Agrochemicals on Soil Microbiology and Food Quality. In Agrochemicals Detection, Treatment and Remediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 101–116. ISBN 978-0-08-103017-2. [Google Scholar]
- Lal, N. Effects of Acid Rain on Plant Growth and Development Nand. e-J. Sci. Technol. Eff. 2016, 11, 85–105. [Google Scholar]
- Tomić, D.; Stevović, V.; Đurović, D.; Bokan, N.; Popović, B.; Knežević, J. Forage Yield of a Grass-Clover Mixture on an Acid Soil in the Third Year after Soil Liming. J. Cent. Eur. Agric. 2018, 19, 482–489. [Google Scholar] [CrossRef]
- Han, G.; Liu, C.-Q. Water Geochemistry Controlled by Carbonate Dissolution: A Study of the River Waters Draining Karst-Dominated Terrain, Guizhou Province, China. Chem. Geol. 2004, 204, 1–21. [Google Scholar] [CrossRef]
- Jiang, Z.; Zheng, H.; Xing, B. Environmental Life Cycle Assessment of Wheat Production Using Chemical Fertilizer, Manure Compost, and Biochar-Amended Manure Compost Strategies. Sci. Total Environ. 2021, 760, 143342. [Google Scholar] [CrossRef]
- Cao, L.; Wang, S.; Peng, T.; Cheng, Q.; Zhang, L.; Zhang, Z.; Yue, F.; Fryer, A.E. Monitoring of Suspended Sediment Load and Transport in an Agroforestry Watershed on a Karst Plateau, Southwest China. Agric. Ecosyst. Environ. 2020, 299, 106976. [Google Scholar] [CrossRef]
- Yu, C.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.; Qiao, S.; Huang, G.; et al. Managing Nitrogen to Restore Water Quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, S.; Guo, Z.; Cui, T.; Zhang, L.; Lu, C.; Yu, Y.; Luo, Z.; Fu, H.; Jin, Y. Effect of Balanced Nutrient Fertilizer: A Case Study in Pinggu District, Beijing, China. Sci. Total Environ. 2021, 754, 142069. [Google Scholar] [CrossRef]
- Rashmi, I.; Roy, T.; Kartika, K.S.; Pal, R.; Coumar, V.; Kala, S.; Shinoji, K.C. Organic and Inorganic Fertilizer Contaminants in Agriculture: Impact on Soil and Water Resources. In Contaminants in Agriculture; Naeem, M., Ansari, A.A., Gill, S.S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–41. ISBN 978-3-030-41551-8-978-3-030-41552-5. [Google Scholar]
- Qin, Y.; Li, G.; Gao, Y.; Zhang, L.; Ok, Y.S.; An, T. Persistent Free Radicals in Carbon-Based Materials on Transformation of Refractory Organic Contaminants (ROCs) in Water: A Critical Review. Water Res. 2018, 137, 130–143. [Google Scholar] [CrossRef] [PubMed]
- FN, C.; MF, M. Factors Affecting Water Pollution: A Review. J. Ecosyst. Ecography 2017, 7, 1000225. [Google Scholar] [CrossRef]
- Wang, X.; Daigger, G.; de Vries, W.; Kroeze, C.; Yang, M.; Ren, N.-Q.; Liu, J.; Butler, D. Impact Hotspots of Reduced Nutrient Discharge Shift across the Globe with Population and Dietary Changes. Nat. Commun. 2019, 10, 2627. [Google Scholar] [CrossRef] [Green Version]
- Dicen, G.P.; Navarrete, I.A.; Rallos, R.V.; Salmo, S.G.; Garcia, M.C.A. The Role of Reactive Iron in Long-Term Carbon Sequestration in Mangrove Sediments. J. Soils Sediments 2019, 19, 501–510. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Shi, P.; Bi, Z.; Shan, Z.; Ren, L. The Deep Challenge of Nitrate Pollution in River Water of China. Sci. Total Environ. 2021, 770, 144674. [Google Scholar] [CrossRef]
- Hellerstein, D. Agricultural Resources and Environmental Indicators, 2019; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2019.
- Riccetto, S.; Davis, A.S.; Guan, K.; Pittelkow, C.M. Integrated Assessment of Crop Production and Resource Use Efficiency Indicators for the U.S. Corn Belt. Glob. Food Secur. 2020, 24, 100339. [Google Scholar] [CrossRef]
- Alexander, R.B.; Smith, R.A.; Schwarz, G.E.; Boyer, E.W.; Nolan, J.V.; Brakebill, J.W. Differences in Phosphorus and Nitrogen Delivery to The Gulf of Mexico from the Mississippi River Basin. Environ. Sci. Technol. 2008, 42, 822–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffen, M.M.; Davis, T.W.; McKay, R.M.L.; Bullerjahn, G.S.; Krausfeldt, L.E.; Stough, J.M.A.; Neitzey, M.L.; Gilbert, N.E.; Boyer, G.L.; Johengen, T.H.; et al. Ecophysiological Examination of the Lake Erie Microcystis Bloom in 2014: Linkages between Biology and the Water Supply Shutdown of Toledo, OH. Environ. Sci. Technol. 2014, 51, 6745–6755. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Calleros-Rincón, E.Y.; Espino-Valdés, M.S.; Alarcón-Herrera, M.T. Role of Nitrogen in Assessing the Sustainability of Irrigated Areas: Case Study of Northern Mexico. Water Air Soil Pollut. 2021, 232, 148. [Google Scholar] [CrossRef]
- Kemp, W.M.; Boynton, W.R.; Adolf, J.E.; Boesch, D.F.; Boicourt, W.C.; Brush, G.; Cornwell, J.C.; Fisher, T.R.; Glibert, P.M.; Hagy, J.D.; et al. Eutrophication of Chesapeake Bay: Historical Trends and Ecological Interactions. Mar. Ecol. Prog. Ser. 2005, 303, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Katsuki, K.; Seto, K.; Tsujimoto, A.; Takata, H.; Sonoda, T. Estuarine, Coastal and Shelf Science Relationship between Regional Climate Change and Primary Ecosystem Characteristics in a Lagoon Undergoing Anthropogenic Eutrophication, Lake. Estuar. Coast. Shelf Sci. 2019, 222, 205–213. [Google Scholar] [CrossRef]
- Jilbert, T.; Brian, R.C.; Kalevi, J.H. Preface: Restoration of Eutrophic Lakes: Current Practices and Future Challenges. Hydrobiologia 2020, 847, 4343–4357. [Google Scholar] [CrossRef]
- Sud, M. Managing the Biodiversity Impacts of Fertiliser and Pesticide Use: Overview and Insights from Trends and Policies across Selected OECD Countries; OECD Environment Working Papers, No. 155; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.Y.H.; Tan, Y.; Fan, H.; Ruan, H. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China. Sci. Rep. 2016, 6, 20816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Tan, Y.; Fan, H.; Ruan, H.; Zheng, A. Responses of soil microarthropods to inorganic and organic fertilizers in a poplar plantation in a coastal area of eastern China. Appl. Soil Ecol. 2015, 89, 69–75. [Google Scholar] [CrossRef]
- van Eekeren, N.; Jongejans, E.; van Agtmaal, M.; Guo, Y.; van der Velden, M.; Versteeg, C.; Siepel, H. Microarthropod communities and their ecosystem services restore when permanent grassland with mowing or low-intensity grazing is installed. Agric. Ecosyst. Environ. 2022, 323, 107682. [Google Scholar] [CrossRef]
- Prashar, P.; Shah, S. Impact of Fertilizers and Pesticides on Soil Microflora in Agriculture. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2016; Volume 19. [Google Scholar] [CrossRef]
- Ward, M.H. Too Much of a Good Thing? Nitrate from Nitrogen Fertilizers and Cancer. Rev. Environ. Health 2009, 24, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Adimalla, N. Spatial Distribution, Exposure, and Potential Health Risk Assessment from Nitrate in Drinking Water from Semi-Arid Region of South India. Hum. Ecol. Risk Assess. 2020, 26, 310–334. [Google Scholar] [CrossRef]
- Karwowska, M.; Kononiuk, A. Nitrates/Nitrites in Food—Risk for Nitrosative Stress and Benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Camargo, J.A.; Alonso, Á. Ecological and Toxicological Effects of Inorganic Nitrogen Pollution in Aquatic Ecosystems: A Global Assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, L.; Zhong, G.; Wu, Q.; Liu, J.; Liu, X. A Portable Analytical System for Rapid On-Site Determination of Total Nitrogen in Water. Water Res. 2021, 202, 117410. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Saeed, N.A. Excessive Use of Nitrogenous Fertilizers: An Unawareness Causing Serious Threats to Environment and Human Health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Hu, L.; Feng, X.; Wang, S. Nitrate and Nitrite in Health and Disease. Aging Dis. 2018, 9, 938–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buller, I.D.D.; Patel, D.M.M.; Weyer, P.J.J.; Prizment, A.; Jones, R.R.R.; Ward, M.H.H. Ingestion of Nitrate and Nitrite and Risk of Stomach and Other Digestive System Cancers in the Iowa Women’s Health Study. Int. J. Environ. Res. Public Health 2021, 18, 6822. [Google Scholar] [CrossRef] [PubMed]
- Nelson, S.M.M.; Gao, Y.T.T.; Nogueira, L.M.M.; Shen, M.C.C.; Wang, B.; Rashid, A.; Hsing, A.W.W.; Koshiol, J. Diet and Biliary Tract Cancer Risk in Shanghai, China. PLoS ONE 2017, 12, e0173935. [Google Scholar] [CrossRef] [Green Version]
- Calleros-Rincón, E.Y.; Gonz, A.; Romero, A.; Yasm, B.; Calder, O.; Qu, C.; Filadelfia, F.; Biol, C.; Campus, D.; Torre, C. Metahemoglobina y Cuerpos de Heinz Como Biomarcador de Exposición a Nitratos En Niños. Metahemoglobin Heinz Bodies Nitrate Expo. Biomark. Child. 2018, 9, 15–29. [Google Scholar]
- Braun, J.C.A.; Colla, L.M. Use of Microalgae for the Development of Biofertilizers and Biostimulants. BioEnergy Res. 2022. [Google Scholar] [CrossRef]
- Mitter, E.K.; Tosi, M.; Obregón, D.; Dunfield, K.E.; Germida, J.J. Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. Front. Sustain. Food Syst. 2021, 5, 29. [Google Scholar] [CrossRef]
- Kublanovskaya, A.A.; Khapchaeva, S.A.; Zotov, V.S.; Zaytsev, P.A.; Lobakova, E.S.; Solovchenko, A.E. The Effect of the Microalga Chlorella Vulgaris Ippas C-1 Biomass Application on Yield, Biological Activity, and the Microbiome of the Soil during Bean Growing. Mosc. Univ. Biol. Sci. Bull. 2019, 74, 227–234. [Google Scholar] [CrossRef]
- Schreiber, C.; Schiedung, H.; Harrison, L.; Briese, C.; Ackermann, B.; Kant, J.; Schrey, S.D.; Hofmann, D.; Singh, D.; Ebenhöh, O.; et al. Evaluating Potential of Green Alga Chlorella Vulgaris to Accumulate Phosphorus and to Fertilize Nutrient-Poor Soil Substrates for Crop Plants. J. Appl. Phycol. 2018, 30, 2827–2836. [Google Scholar] [CrossRef]
- Kour, D.; Rana, K.L.; Yadav, A.N.; Yadav, N.; Kumar, M.; Kumar, V.; Vyas, P.; Dhaliwal, H.S.; Saxena, A.K. Microbial Biofertilizers: Bioresources and Eco-Friendly Technologies for Agricultural and Environmental Sustainability. Biocatal. Agric. Biotechnol. 2020, 23, 101487. [Google Scholar] [CrossRef]
- Wang, M.; Bian, Z.; Shi, J.; Wu, Y.; Yu, X.; Yang, Y.; Ni, H.; Chen, H.; Bian, X.; Li, T.; et al. Effect of the Nitrogen-Fixing Bacterium Pseudomonas Protegens CHA0-ΔretS-Nif on Garlic Growth under Different Field Conditions. Ind. Crops Prod. 2020, 145, 111982. [Google Scholar] [CrossRef]
- Moreira, J.B.; Santos, T.D.; Duarte, J.H.; Bezerra, P.Q.M.; de Morais, M.G.; Costa, J.A.V. Role of Microalgae in Circular Bioeconomy: From Waste Treatment to Biofuel Production. Clean Technol. Environ. Policy 2021. [Google Scholar] [CrossRef]
- Ammar, E.E.; Aioub, A.A.A.; Elesawy, A.E.; Karkour, A.M.; Mouhamed, M.S.; Amer, A.A.; EL-Shershaby, N.A. Algae as Bio-fertilizers: Between current situation and future prospective. Saudi J. Biol. Sci. 2022, 29, 3083–3096. [Google Scholar] [CrossRef] [PubMed]
- Elavarasi, P.; Yuvaraj, M.; Gayathri, P. Application of Bacteria as a Prominent Source of Biofertilizers. In Biostimulants in Plant Science; IntechOpen: London, UK, 2020. [Google Scholar]
- García-Fraile, P.; Menéndez, E.; Rivas, R. Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng. 2015, 2, 183–205. [Google Scholar] [CrossRef]
- Ebru, G.; Uyar, Ö.; Nurdan, M. Symbiotic Association of Microalgae and Plants in a Deep Water Culture System. PeerJ 2022, 10, e14536. [Google Scholar] [CrossRef]
- Aditya, L.; Mahlia, T.M.I.; Nguyen, L.N.; Vu, H.P.; Nghiem, L.D. Science of the Total Environment Microalgae-Bacteria Consortium for Wastewater Treatment and Biomass Production. Sci. Total Environ. 2022, 838, 155871. [Google Scholar] [CrossRef] [PubMed]
- Perera, I.; Subashchandrabose, S.R.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Consortia of Cyanobacteria/Microalgae and Bacteria in Desert Soils: An Underexplored Microbiota. Appl. Microbiol. Biotechnol. 2018, 102, 7351–7363. [Google Scholar] [CrossRef]
- Gonçalves, A.L. The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Appl. Sci. 2021, 11, 871. [Google Scholar] [CrossRef]
- Kalyanasundaram, G.T.; Ramasamy, A.; Rakesh, S.; Karthikeyan, S. Microalgae and Cyanobacteria: Role and Applications in Agriculture. In Applied Algal Biotechnology; Arumugam, M., Kathiresan, S., Nagaraj, S., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2020; pp. 277–292. ISBN 978-1-53617-524-0. [Google Scholar]
- Chittora, D.; Meena, M.; Barupal, T.; Swapnil, P. Cyanobacteria as a Source of Biofertilizers for Sustainable Agriculture. Biochem. Biophys. Rep. 2020, 22, 100737. [Google Scholar] [CrossRef]
- Lorentz, J.F.; Calijuri, M.L.; Assemany, P.P.; Alves, W.S.; Pereira, O.G. Microalgal Biomass as a Biofertilizer for Pasture Cultivation: Plant Productivity and Chemical Composition. J. Clean. Prod. 2020, 276, 124130. [Google Scholar] [CrossRef]
- Chu, Q.; Xue, L.; Cheng, Y.; Liu, Y.; Feng, Y.; Yu, S.; Meng, L.; Pan, G.; Hou, P.; Duan, J.; et al. Microalgae-Derived Hydrochar Application on Rice Paddy Soil: Higher Rice Yield but Increased Gaseous Nitrogen Loss. Sci. Total Environ. 2020, 717, 137127. [Google Scholar] [CrossRef] [PubMed]
- Habibi, A.; Zayadan, B.K.; Baizhigitova, A.; Alemyar, S.; Bauyenova, M.O. The effect of isolated cyanobacteria on rice seed germination and growth. Eurasian J. Ecology. 2017, 2, 114–122. [Google Scholar] [CrossRef]
- Mahmoud, S.A.; El-aty, A.M.A.; Kandil, H.; Siam, H.S. Influence of different algal species application on growth of spinach plant (Spinacia oleracea L.) and their role in phytoremediation of heavy metals from pollutted soil. Plant Arch 2019, 19, 2275–2281. [Google Scholar]
- Kholssi, R.; Marks, E.A.N.; Miñón, J.; Montero, O.; Debdoubi, A.; Rad, C. Biofertilizing Effect of Chlorella Sorokiniana Suspensions on Wheat Growth. J. Plant Growth Regul. 2019, 38, 644–649. [Google Scholar] [CrossRef]
- Avila, R.; Justo, Á.; Carrero, E.; Crivillés, E.; Vicent, T.; Blánquez, P. Water Resource Recovery Coupling Microalgae Wastewater Treatment and Sludge Co-Digestion for Bio-Wastes Valorisation at Industrial Pilot-Scale. Bioresour. Technol. 2022, 343, 126080. [Google Scholar] [CrossRef]
- Saadaoui, I.; Sedky, R.; Rasheed, R.; Bounnit, T.; Almahmoud, A.; Elshekh, A.; Dalgamouni, T.; al Jmal, K.; Das, P.; Al Jabri, H. Assessment of the Algae-Based Biofertilizer Influence on Date Palm (Phoenix dactylifera L.) Cultivation. J. Appl. Phycol. 2019, 31, 457–463. [Google Scholar] [CrossRef]
- Sharma, G.K.; Khan, S.A.; Shrivastava, M.; Bhattacharyya, R.; Sharma, A.; Gupta, D.K.; Kishore, P.; Gupta, N. Circular Economy Fertilization: Phycoremediated Algal Biomass as Biofertilizers for Sustainable Crop Production. J. Environ. Manag. 2021, 287, 112295. [Google Scholar] [CrossRef]
- Kruse, A.; Koch, F.; Stelzl, K.; Wüst, D.; Zeller, M. Fate of Nitrogen during Hydrothermal Carbonization. Energy Fuels 2016, 30, 8037–8042. [Google Scholar] [CrossRef]
- Mutum, L.; Janda, T.; Ördög, V.; Molnár, Z. Biologia Futura: Potential of Different Forms of Microalgae for Soil Improvement. Biol. Futur. 2022, 73, 1–8. [Google Scholar] [CrossRef]
- Uma, V.S.; Usmani, Z.; Sharma, M.; Diwan, D.; Sharma, M.; Guo, M.; Tuohy, M.G.; Makatsoris, C.; Zhao, X.; Thakur, V.K.; et al. Valorisation of Algal Biomass to Value-Added Metabolites: Emerging Trends and Opportunities. Phytochem. Rev. 2022. [Google Scholar] [CrossRef]
- Chen, J.; Lü, S.; Zhang, Z.; Zhao, X.; Li, X.; Ning, P.; Liu, M. Environmentally Friendly Fertilizers: A Review of Materials Used and Their Effects on the Environment. Sci. Total Environ. 2018, 613–614, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Paul Peter, A.; Chew, K.W.; Munawaroh, H.S.H.; Show, P.L. Resource Recovery from Industrial Effluents through the Cultivation of Microalgae: A Review. Bioresour. Technol. 2021, 337, 125461. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, K.; Erdal, I.; Uysal, Ö.; Uysal, F.Ö.; Tunce, H.; Doğan, A. Anaerobic Digestion of Three Microalgae Biomasses and Assessment of Digestates as Biofertilizer for Plant Growth. Environ. Prog. Sustain. Energy 2019, 38, e13024. [Google Scholar] [CrossRef]
- Suchithra, M.R.; Muniswami, D.M.; Sri, M.S.; Usha, R.; Rasheeq, A.A.; Preethi, B.A.; Dinesh Kumar, R. Effectiveness of Green Microalgae as Biostimulants and Biofertilizer through Foliar Spray and Soil Drench Method for Tomato Cultivation. South Afr. J. Bot. 2022, 146, 740–750. [Google Scholar] [CrossRef]
- Dineshkumar, R.; Subramanian, J.; Arumugam, A.; Ahamed Rasheeq, A.; Sampathkumar, P. Exploring the Microalgae Biofertilizer Effect on Onion Cultivation by Field Experiment. Waste Biomass Valorization 2020, 11, 77–87. [Google Scholar] [CrossRef]
- Dineshkumar, R.; Subramanian, J.; Gopalsamy, J.; Jayasingam, P.; Arumugam, A.; Kannadasan, S.; Sampathkumar, P. The Impact of Using Microalgae as Biofertilizer in Maize (Zea mays L.). Waste Biomass Valorization 2019, 10, 1101–1110. [Google Scholar] [CrossRef]
- Plaza, B.M.; Gómez-Serrano, C.; Acién-Fernández, F.G.; Jimenez-Becker, S. Effect of Microalgae Hydrolysate Foliar Application (Arthrospira Platensis and Scenedesmus Sp.) on Petunia x Hybrida Growth. J. Appl. Phycol. 2018, 30, 2359–2365. [Google Scholar] [CrossRef]
- Hussain, F.; Shah, S.Z.; Ahmad, H.; Abubshait, S.A.; Abubshait, H.A.; Laref, A.; Manikandan, A.; Kusuma, H.S.; Iqbal, M. Microalgae an Ecofriendly and Sustainable Wastewater Treatment Option: Biomass Application in Biofuel and Bio-Fertilizer Production. A Review. Renew. Sustain. Energy Rev. 2021, 137, 110603. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Wirth, S.J.; Alqarawi, A.A.; Allah, E.F.A.; Hashem, A.; Antonio, J.; Lucas, L.; Guevara-gonzalez, R.G. Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness. Front. Microbiol. 2017, 8, 2104. [Google Scholar] [CrossRef]
- Uniyal, S.; Bhandari, M.; Singh, P. Cytokinin Biosynthesis in Cyanobacteria: Insights for Crop Improvement Cytokinin Biosynthesis in Cyanobacteria: Insights for Crop Improvement. Front. Genet. 2022. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zeng, H.; Bartocci, P. Phytohormones and Effects on Growth and Metabolites of Microalgae: A Review. J. Ferment. 2018, 4, 25. [Google Scholar] [CrossRef]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. Front. Plant Sci. 2017, 8, 475. [Google Scholar] [CrossRef] [Green Version]
- Dineshkumar, R.; Devi, N.S.; Lakshmi, V.P.; Rasheeq, A.A.; Arumugam, A.; Sampathkumar, P. Biofertilizer and Biostimulants Properties of the Green Microalgae Chlorella Vulgaris on Tomato (Lycopersicon esculentum Mill L.). Eur. J. Exp. Biol. 2021, 11, 3632. [Google Scholar]
- Li, J.; Lens, P.N.L.; Ferrer, I.; Du Laing, G. Evaluation of Selenium-Enriched Microalgae Produced on Domestic Wastewater as Biostimulant and Biofertilizer for Growth of Selenium-Enriched Crops. J. Appl. Phycol. 2021, 33, 3027–3039. [Google Scholar] [CrossRef]
- Tejada-Ruiz, S.; Gonzalez-Lopez, C.; Rojas, E.; Jiménez-Becker, S. Effect of the Foliar Application of Microalgae Hydrolysate (Arthrospira platensis) and Silicon on the Salinity Conditions. Agronomy 2020, 10, 1713. [Google Scholar] [CrossRef]
- Thinh, N.Q. Influences of Seed Priming with Spirulina Platensisextract on Seed Quality Properties in Black Gram (Vigna mungo L.). Vietnam. J. Sci. Technol. Eng. 2021, 63, 36–41. [Google Scholar] [CrossRef]
- Mukami Gitau, M.; Farkas, A.; Balla, B.; Ördög, V.; Futó, Z.; Gitau, M.M.; Farkas, A.; Balla, B.; Ördög, V.; Futó, Z.; et al. Strain-Specific Biostimulant Effects of Chlorella and Chlamydomonas Green Microalgae on Medicago Truncatula. Plants 2021, 10, 1060. [Google Scholar] [CrossRef]
- Bello, A.S.; Saadaoui, I.; Ahmed, T.; Hamdi, H.; Cherif, M.; Dalgamouni, T.; Al Ghazal, G.; Ben-Hamadou, R. Enhancement in Bell Pepper (Capsicum annuum L.) Plants with Application of Roholtiella Sp. (Nostocales) under Soilless Cultivation. Agronomy 2021, 11, 1624. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, J. Phytohormones in Microalgae: A New Opportunity for Microalgal Biotechnology? Trends Plant Sci. 2015, 20, 273–282. [Google Scholar] [CrossRef]
- Mohamed, H.I.; Abd-elsalam, K.A. Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management; Springer: Cham, Switzerland, 2021; ISBN 9783030665869. [Google Scholar]
- Pichler, G.; St, W.; Muggia, L.; Carniel, F.C.; Ametrano, C.G.; Holzinger, A.; Kranner, I. Abundance and extracellular release of phytohormones in aero- terrestrial microalgae (trebouxiophyceae, chlorophyta) as a potential chemical signaling source. J. Phycol. 2020, 1307, 1295–1307. [Google Scholar] [CrossRef] [PubMed]
- Do, V.T.C. Phytohormones Production in Microalgae and the Methods of Characterization. Recent Res. Adv. Biol. 2021, 5, 24–41. [Google Scholar] [CrossRef]
- Vishwakarma, R.; Dhaka, V.; Ariyadasa, T.U.; Malik, A. Exploring Algal Technologies for a Circular Bio-Based Economy in Rural Sector. J. Clean. Prod. 2022, 354, 131653. [Google Scholar] [CrossRef]
- Qadir, M.; Cisneros, B.J.; Kim, Y.; Pramanik, A.; Olaniyan, O. Global and Regional Potential of Wastewater as a Water, Nutrient and Energy Source. Nat. Resour. Forum. 2020, 44, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Beevi, S.; Ranjna, U.; Aswathy, S.; Pooja, U. Sustainable Microalgal Biomass Production in Food Industry Wastewater for Low-Cost Biorefinery Products: A Review. Phytochem. Rev. 2022. [Google Scholar] [CrossRef]
- Buitron, G.; Coronado-apodaca, K.G. Influence of the Solids Retention Time on the Formation of the Microalgal-Bacterial Aggregates Produced with Municipal Wastewater. J. Water Process Eng. 2022, 46, 102617. [Google Scholar] [CrossRef]
- Vital-jácome, M.; Díaz-zamorano, A.L.; Cuautle-marín, M.; Moreno, G.; Buitrón, G.; Quijano, G. Microalgal—Bacterial Aggregates with Flue Gas Supply as a Platform for the Treatment of Anaerobic Digestion Centrate. J. Chem. Technol. Biotechnol. 2019, 95, 289–296. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Y.; Chen, Z.; Chen, Y.; Wen, Y.; Chen, B. Bioresource Technology Removal of Nutrients from Undiluted Anaerobically Treated Piggery Wastewater by Improved Microalgae. Bioresour. Technol. 2016, 222, 130–138. [Google Scholar] [CrossRef]
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; et al. Bioresource Technology Microalgae-Based Wastewater Treatment for Nutrients Recovery: A Review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar] [CrossRef]
- Kumar, N.; Banerjee, C.; Chang, J.; Shukla, P. Valorization of Wastewater through Microalgae as a Prospect for Generation of Biofuel and High-Value Products. J. Clean. Prod. 2022, 362, 132114. [Google Scholar] [CrossRef]
- Sudhakar, M.P.; Kumar, B.R.; Mathimani, T.; Arunkumar, K. A Review on Bioenergy and Bioactive Compounds from Microalgae and Macroalgae-Sustainable Energy Perspective. J. Clean. Prod. 2019, 228, 1320–1333. [Google Scholar] [CrossRef]
- Ahmed, J.; Thakur, A.; Goyal, A. Industrial Wastewater and Its Toxic Effects. In Biological Treatment of Industrial Wastewater; RSC Publishing: London, UK, 2022; pp. 1–14. [Google Scholar] [CrossRef]
- Koul, B.; Sharma, K.; Shah, M.P. Environmental Technology & Innovation Phycoremediation: A Sustainable Alternative in Wastewater Treatment (WWT) Regime. Environ. Technol. Innov. 2022, 25, 102040. [Google Scholar] [CrossRef]
- Meneses, Y.E.; Stratton, J.; Flores, R.A. Trends in Food Science & Technology Water Reconditioning and Reuse in the Food Processing Industry: Current Situation and Challenges. Trends Food Sci. Technol. 2017, 61, 72–79. [Google Scholar] [CrossRef]
- Vázquez-romero, B.; Antonio, J.; Pereira, H.; Barbosa, M.; Ruiz, J. Science of the Total Environment Techno-Economic Assessment of Microalgae Production, Harvesting and Drying for Food, Feed, Cosmetics, and Agriculture. Sci. Total Environ. 2022, 837, 155742. [Google Scholar] [CrossRef]
- Ahmad, F.; Kumar, S.; Nasr, M.; Rawat, I.; Bux, F. Evaluation of Various Cell Drying and Disruption Techniques for Sustainable Metabolite Extractions from Microalgae Grown in Wastewater: A Multivariate Approach. J. Clean. Prod. 2018, 182, 634–643. [Google Scholar] [CrossRef]
- Schipper, K.; Al-jabri, H.M.S.J.; Wijffels, R.H.; Barbosa, M.J. Bioresource Technology Techno-Economics of Algae Production in the Arabian Peninsula. Bioresour. Technol. 2021, 331, 125043. [Google Scholar] [CrossRef]
- Kotsanopoulos, K.V.; Arvanitoyannis, I.S.; Magnesias, N.I. Food Processing, Wastewater Treatment and Effects on Physical, Microbiological, Organoleptic, and Nutritional Properties of Foods. Crit. Rev. Food Sci. Nutr. 2013, 55, 37–41. [Google Scholar] [CrossRef]
- Arun, J.; Varshini, P.; Prithvinath, P.K.; Priyadarshini, V. Bioresource Technology Enrichment of Bio-Oil after Hydrothermal Liquefaction (HTL) of Microalgae C. Vulgaris Grown in Wastewater: Bio-Char and Post HTL Wastewater Utilization Studies. Bioresour. Technol. 2018, 261, 182–187. [Google Scholar] [CrossRef]
- Chokshi, K.; Pancha, I.; Ghosh, A.; Mishra, S. Bioresource Technology Microalgal Biomass Generation by Phycoremediation of Dairy Industry Wastewater: An Integrated Approach towards Sustainable Biofuel Production. Bioresour. Technol. 2016, 221, 455–460. [Google Scholar] [CrossRef]
- Song, C.; Hu, X.; Liu, Z.; Li, S.; Kitamura, Y. Combination of Brewery Wastewater Puri Fi Cation and CO2 Fi Xation with Potential Value-Added Ingredients Production via Different Microalgae Strains Cultivation. J. Clean. Prod. 2020, 268, 122332. [Google Scholar] [CrossRef]
- Su, Y.; Jacobsen, C. Science of the Total Environment Treatment of Clean in Place (CIP) Wastewater Using Microalgae: Nutrient Upcycling and Value-Added Byproducts Production. Sci. Total Environ. 2021, 785, 147337. [Google Scholar] [CrossRef] [PubMed]
- Gramegna, G.; Scortica, A.; Scafati, V.; Ferella, F.; Gurrieri, L.; Giovannoni, M.; Bassi, R. Bioresource Technology Reports Exploring the Potential of Microalgae in the Recycling of Dairy Wastes. Bioresour. Technol. Rep. 2020, 12, 100604. [Google Scholar] [CrossRef]
- Hongyang, S.; Yalei, Z.; Chunmin, Z.; Xuefei, Z.; Jinpeng, L. Bioresource Technology Cultivation of Chlorella Pyrenoidosa in Soybean Processing Wastewater. Bioresour. Technol. 2011, 102, 9884–9890. [Google Scholar] [CrossRef] [PubMed]
- Adekanmi, A.A.; Adekanmi, A.S.; Adekanmi, U.T. Biotreatment of Slaughterhouse Waste Water by Microalgae Biotreatment of Slaughterhouse Waste Water by Microalgae. United Int. J. Res. Technol. 2020, 1, 19–30. [Google Scholar]
- Rossi, S.; Pizzera, A.; Bellucci, M.; Marazzi, F.; Mezzanotte, V.; Parati, K.; Ficara, E. Bioresource Technology Piggery Wastewater Treatment with Algae-Bacteria Consortia: Pilot-Scale Validation and Techno-Economic Evaluation at Farm Level. Bioresour. Technol. 2022, 351, 127051. [Google Scholar] [CrossRef]
Nutrient | Critical Concentration | Reference | |
---|---|---|---|
Primary nutrients | Nitrogen (N) | 25–50 mg/kg | [16] |
Phosphorus (P) | 1 µM * | [17] | |
Potassium (K) | 141–370 mg/kg | [18] | |
Secondary nutrients | Calcium (Ca) | 6–778 mg/kg * | [19] |
Sulfide (S) | >15 mg/kg | [20] | |
Magnesium (Mg) | 0.05–0.5% * | [21] | |
Micronutrients | Cobalt (Co) | 15–25 mg/kg * | [22] |
Copper (Cu) | >0.04 mg/kg | [20] | |
Boron (B) | >0.75 mg/kg | [20] | |
Chlorine (Cl) | 100 mg/kg * | [23] | |
Iron (Fe) | >7.5 mg/kg | [20] | |
Zinc (Zn) | >1.5 mg/kg | [20] | |
Manganese (Mn) | >4mg/kg | [20] | |
Molybdenum (Mo) | >0.2 mg/kg | [20] |
Characteristics | Traditional Fertilizers | Biofertilizers | ||
---|---|---|---|---|
Bacteria | Fungi | Microalgae/Cyanobacteria | ||
Environmental damage by degrading the soil, water contamination, and eutrophication induction. | ✔ | x | x | x |
Creation of symbiotic bonds with the plant roots and microorganisms within the soil. | x | ✔ | ✔ | ✔ |
Role in the nitrogen cycle making it available to the plant. | x | ✔ | ✔ | ✔ |
Promotion of the solubilization of phosphorus. | x | ✔ | ✔ | ✔ |
Soil fertility improvement. | x | ✔ | ✔ | ✔ |
The slow rate of nutrient release for the consumption of the plant | x | ✔ | ✔ | ✔ |
N fixation by individual strains, P solubilization, and hormone production for promoting the growth of the plant. | x | x | x | ✔ |
CO2 capture and greenhouse emissions reduction capability during the addition of organic carbon to the soil. | x | x | x | ✔ |
Industrial production and widespread used in the agriculture field. | ✔ | ✔ | ✔ | x |
Microalgae | Biomass Scale Production | Nutrient Source | Advantages | Disadvantages | Biomass Harvesting Method | Reference |
---|---|---|---|---|---|---|
Chlorella sp. | Pilot scale | Domestic Wastewater | Phaseolus vulgaris 3.2 times growth enhancement 3.5 times dry biomass | Low GP, GI, and SVI in high microalgae extract percentage. Potential contaminants carriage by the biomass from domestic water | Secondary clarifier/ sedimentation | [110] |
Chlorella vulgaris | 100 L | Conway medium | Lycopersicon esculentum mill shelf life increase in 2/3 | Several energetic consuming steps to release intracellular content (freezing, microfluidization) | Filtration | [109] |
Arthrospira platensis and Chlorella vulgaris | NM | NM | Allium cepa L. growth, yield, biochemical composition, and minerals improved | Anti-nutritional composition increase | NM | [100] |
Arthrospira platensis | Laboratory | NM | Vigna mungo L. seed germination, speed germination, dry matter production, seedling length and biochemical composition improvements | Lower free sugar content | NM | [112] |
Arthrospira platensis | 100 m2 raceway reactor | Arnon medium | Pelagonium hortum L.H. Bailey flower number and FDW increase in saline environment, Arthrospira platensis and Si combination negative effect of NaCl content mitigation | NM | NM | [111] |
Arthrospira platensis and Scenedesmus sp. | NM | NM | Petunia x hybrida increase in P foliar concentration | Enzymatic hydrolysis is required to obtain the hydrolysate | NM | [102] |
Chlorella vulgaris | 100 L | Conway medium | Solanum lycopersicum increased plant height, number of stem branches, number of leaves, leaves length, and root length | Ultrasound technology to produce cellular extracts not scalable | Filtration | [99] |
Chlorella species (MACC-360 and MACC-38) and Chlamydomonas reinhardtii | Laboratory | Tris-acetate-phosphate media | Medicago truncatula increase in leaf area, early blooming for Chlorella, increase in biomass, pigments (chlorophylls and carotenoids) and flower number | Delayed blooming for C. reinhardtii, | Direct application | [113] |
Roholtiella sp. | Laboratory | BG11 | Capsicum annuum Increase of shoot length, root length, fresh weight, dry weight, spad index, number of leaves | NM | Centrifugation | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osorio-Reyes, J.G.; Valenzuela-Amaro, H.M.; Pizaña-Aranda, J.J.P.; Ramírez-Gamboa, D.; Meléndez-Sánchez, E.R.; López-Arellanes, M.E.; Castañeda-Antonio, M.D.; Coronado-Apodaca, K.G.; Gomes Araújo, R.; Sosa-Hernández, J.E.; et al. Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications. Mar. Drugs 2023, 21, 93. https://doi.org/10.3390/md21020093
Osorio-Reyes JG, Valenzuela-Amaro HM, Pizaña-Aranda JJP, Ramírez-Gamboa D, Meléndez-Sánchez ER, López-Arellanes ME, Castañeda-Antonio MD, Coronado-Apodaca KG, Gomes Araújo R, Sosa-Hernández JE, et al. Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications. Marine Drugs. 2023; 21(2):93. https://doi.org/10.3390/md21020093
Chicago/Turabian StyleOsorio-Reyes, José Guadalupe, Hiram Martin Valenzuela-Amaro, José Juan Pablo Pizaña-Aranda, Diana Ramírez-Gamboa, Edgar Ricardo Meléndez-Sánchez, Miguel E. López-Arellanes, Ma. Dolores Castañeda-Antonio, Karina G. Coronado-Apodaca, Rafael Gomes Araújo, Juan Eduardo Sosa-Hernández, and et al. 2023. "Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications" Marine Drugs 21, no. 2: 93. https://doi.org/10.3390/md21020093
APA StyleOsorio-Reyes, J. G., Valenzuela-Amaro, H. M., Pizaña-Aranda, J. J. P., Ramírez-Gamboa, D., Meléndez-Sánchez, E. R., López-Arellanes, M. E., Castañeda-Antonio, M. D., Coronado-Apodaca, K. G., Gomes Araújo, R., Sosa-Hernández, J. E., Melchor-Martínez, E. M., Iqbal, H. M. N., Parra-Saldivar, R., & Martínez-Ruiz, M. (2023). Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications. Marine Drugs, 21(2), 93. https://doi.org/10.3390/md21020093