Glycoproteins Involved in Sea Urchin Temporary Adhesion
Abstract
:1. Introduction
2. Results
2.1. Adhesive Proteins Pulldown Assays
2.2. Lectin Inhibition Assessment
2.3. Identification of the Pulled-Down Glycoproteins
2.4. Selection of Adhesive/Cohesive Candidate Glycoproteins
2.5. Adhesive Candidate Characterization
Nectin Variants
3. Discussion
3.1. Temporary Adhesives Are a Multi Glycoproteins Mixture
3.1.1. High Molecular Weight Glycoproteins Are Involved in Sea Urchin Adhesion
3.1.2. Adhesive/Cohesive Glycoprotein Candidates
4. Materials and Methods
4.1. Sampling and Animal Maintenance
4.2. Tube Foot Collection
4.3. Protein Extracts
4.4. Protein Quantification
4.5. Lectin Pulldown
4.6. Enzyme-Linked Lectin Assay (ELLA)
4.7. Protein Precipitation
4.8. SDS Polyacrylamide Gel Electrophoresis
4.9. Lectin-Blotting
4.10. Proteomics Analyses
4.11. In Silico Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Budisa, N.; Schneider, T. Expanding the DOPA universe by genetically encoded, mussel-inspired bioadhesives for material sciences and medicine. ChemBioChem. 2019, 20, 2163. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N.; Soto-Garcia, L.F.; Liao, J.; Zimmern, P.; Nguyen, K.T.; Hong, Y. Mussel-inspired bioadhesives in healthcare: Design parameters, current trends, and future perspectives. Biomater. Sci. 2020, 8, 1240–1255. [Google Scholar] [CrossRef] [PubMed]
- Hennebert, E.; Leroy, B.; Wattiez, R.; Ladurner, P. An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion. J. Proteom. 2015, 128, 83–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davey, P.; Power, A.M.; Santos, R.; Bertemes, P.; Ladurner, P.; Palmowski, P.; Clarke, J.; Flammang, P.; Lengerer, B.; Hennebert, E.; et al. Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol. Rev. 2020, 96, 1051–1075. [Google Scholar] [CrossRef] [PubMed]
- Bertemes, P.; Grosbusch, A.; Geschwindt, A.; Kauffmann, B.; Salvenmoser, W.; Mertens, B.; Pjeta, R.; Egger, B.; Ladurner, P. Sticking together an updated model for temporary adhesion. Mar. Drugs 2020, 20, 359. [Google Scholar] [CrossRef]
- Flammang, P.; Demeuldre, M.; Hennebert, E.; Santos, R. Adhesive secretions in echinoderms: A Review. In Biological Adhesives; Springer International Publishing: Cham, Switzerland, 2016; pp. 193–222. [Google Scholar]
- Lengerer, B.; Pjeta, R.; Wunderer, J.; Rodrigues, M.; Arbore, R.; Scharer, L.; Berezikov, E.; Hess, M.W.; Pfaller, K.; Egger, B.; et al. Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland system and is mediated by a cell type-specific intermediate filament protein. Front. Zool. 2014, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- Wunderer, J.; Lengerer, B.; Pjeta, R.; Bertemes, P.; Lindner, H.; Ederth, T.; Hess, M.W.; Stock, D.; Salvenmoser, W.; Ladurner, P. A mechanism for temporary bioadhesion. Proc. Natl. Acad. Sci. USA 2019, 116, 4297–4306. [Google Scholar] [CrossRef] [Green Version]
- Zeng, F.; Wunderer, J.; Salvenmoser, W.; Hess, M.W.; Ladurner, P.; Rothbächer, U. Papillae revisited and the nature of the adhesive secreting collocytes. Dev. Biol. 2019, 448, 183–198. [Google Scholar] [CrossRef]
- Ohkawa, K.; Nishida, A.; Yamamoto, H.; Waite, J.H. A glycosylated byssal precursor protein from the green mussel Perna viridis with modified dopa side-chains. Biofouling 2004, 20, 101–115. [Google Scholar] [CrossRef]
- Urushida, Y.; Nakano, M.; Matsuda, S.; Inoue, N.; Kanai, S.; Kitamura, N.; Nishino, T.; Kamino, K. Identification and functional characterization of a novel barnacle cement protein. FEBS J. 2007, 274, 4336–4346. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Sagert, J.; Hwang, D.S.; Waite, J.H. Glycosylated hydroxytryptophan in a mussel adhesive protein from Perna viridis. J. Biol. Chem. 2009, 284, 23344–23352. [Google Scholar] [CrossRef] [Green Version]
- Roth, Z.; Yehezkel, G.; Khalaila, I. Identification and quantification of protein glycosylation. Int. J. Carbohydr. Chem. 2012, 2012, 640923. [Google Scholar] [CrossRef] [Green Version]
- Hennebert, E.; Wattiez, R.; Flammang, P. Characterisation of the carbohydrate fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. Mar. Biotechnol. 2011, 13, 484–495. [Google Scholar] [CrossRef]
- Santos, R.; Hennebert, E.; Coelho, A.V.; Flammang, P. The echinoderm tube foot and its involvement in temporary underwater adhesion. Funct. Surf. Biol. 2009, 2, 9–41. [Google Scholar] [CrossRef]
- Santos, R.; da Costa, G.; Franco, C.; Gomes-Alves, P.; Flammang, P.; Coelho, A.V. First insights into the biochemistry of tube foot adhesive from the sea urchin Paracentrotus lividus (Echinoidea, Echinodermata). Mar. Biotechnol. 2009, 11, 686–698. [Google Scholar] [CrossRef]
- Simão, M.; Moço, M.; Marques, L.; Santos, R. Characterization of the glycans involved in sea urchin Paracentrotus lividus reversible adhesion. Mar. Biol. 2020, 167, 125. [Google Scholar] [CrossRef]
- Lebesgue, N.; da Costa, G.; Ribeiro, R.M.; Ribeiro-Silva, C.; Martins, G.G.; Matranga, V.; Scholten, A.; Cordeiro, C.; Heck, A.J.R.; Santos, R. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: A quantitative proteomics approach. J. Proteom. 2016, 138, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Pjeta, R.; Linder, H.; Kremswe, L.; Salvenmoser, W.; Sobral, D.; Ladurner, P.; Santos, T. Integrative transcriptome and proteome analysis of the tube foot and adhesive secretions of the sea urchin Paracentrotus lividus. Int. J. Mol. Sci. 2020, 21, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennebert, E.; Wattiez, R.; Demeuldre, M.; Ladurner, P.; Hwang, D.S.; Waite, J.H.; Flammang, P. Sea star tenacity mediated by a protein that fragments, then aggregates. Proc. Natl. Acad. Sci. USA 2014, 111, 6317–6322. [Google Scholar] [CrossRef] [Green Version]
- Lengerer, B.; Hennebert, E.; Flammang, P.; Salvenmoser, W.; Ladurner, P. Adhesive organ regeneration in Macrostomum lignano. BMC Dev. Biol. 2016, 16, 20. [Google Scholar] [CrossRef] [Green Version]
- Lengerer, B.; Ladurner, P. Properties of temporary adhesion systems of marine and freshwater organisms. J. Exp. Biol. 2018, 221, jeb182717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wudarski, J.; Egger, B.; Ramm, S.A.; Scharer, L.; Ladurner, P.; Zadesenets, K.S.; Rubtsov, N.B.; Mouton, S.; Berezikov, E. The free-living flatworm Macrostomum lignano. Evodevo 2020, 11, 5. [Google Scholar] [CrossRef]
- Pjeta, R.; Wunderer, J.; Bertemes, P.; Hofer, T.; Salvenmoser, W.; Lengerer, B.; Coassin, S.; Erhart, G.; Beisel, C.; Sobral, D.; et al. Temporary adhesion of the proseriate flatworm Minona ileanae”. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190194. [Google Scholar] [CrossRef] [Green Version]
- Clarke, J.L.; Davey, P.A.; Aldred, N. Sea anemones (Exaiptasia pallida) use a secreted adhesive and complex pedal disc morphology for surface attachment. BMC Zool. 2020, 5, 5. [Google Scholar] [CrossRef]
- Davey, P.A.; Rodrigues, M.; Clarke, J.L.; Aldred, N. Transcriptional characterisation of the Exaiptasia pallida pedal disc. BMC Genom. 2019, 20, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C. Comparative proteomics for an in-depth understanding of bioadhesion mechanisms and evolution across metazoans. J. Proteom. 2022, 256, 104506. [Google Scholar] [CrossRef]
- Matranga, V.; Di Ferrol, D.; Zito, F.; Cervello, M.; Nakano, E. A new extracellular matrix protein of the sea urchin embryo with properties of a substrate adhesion molecule. Roux’s Arch. Dev. Biol. 1992, 201, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Toubarro, D.; Gouveia, A.; Ribeiro, R.M.; Simões, N.; da Costa, G.; Cordeiro, C.; Santos, R. Cloning, characterization, and expression levels of the Nectin gene from the tube feet of the sea urchin Paracentrotus lividus. Mar. Biotechnol. 2016, 18, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Cavalcante, C.; Zito, F.; Yokota, Y.; Matranga, V. Phylogenetic analysis and homology modelling of Paracentrotus lividus nectin. Mol. Divers. 2010, 14, 653–665. [Google Scholar] [CrossRef]
- Santos, R.; Barreto, Â.; Franco, C.; Coelho, A.V. Mapping sea urchins tube feet proteome-A unique hydraulic mechano-sensory adhesive organ. J. Proteom. 2013, 79, 100–113. [Google Scholar] [CrossRef]
- Gaspar, L.; Flammang, P.; José, R.; Luis, R.; Ramalhosa, P.; Monteiro, J.; Nogueira, N.; Canning-Clode, J.; Santos, R. Interspecific analysis of sea urchin adhesive composition emphasizes variability of glycans conjugated with putative adhesive proteins. Front. Mar. Sci. 2021, 8, 1931. [Google Scholar] [CrossRef]
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Zidek, A.; Nelson, A.W.R.; Bridgland, A.; et al. Improved protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Bhattacharjee, N.; Biswas, P. Position-specific propensities of amino acids in the -strand. BMC Struct. Biol. 2010, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Lefevre, M.; Flammang, P.; Aranko, S.; Linder, M.B.; Scheibel, T.; Humenik, M.; Leclercq, M.; Surin, M.; Tafforeau, L.; Ruddy, W.; et al. Sea star-inspired recombinant adhesive proteins self-assemble and adsorb on surfaces in aqueous environments to form cytocompatible coatings. Acta Biomater. 2020, 112, 62–74. [Google Scholar] [CrossRef]
- Dyson, H.J.; Wright, P.E.; Scheraga, H.A. The role of hydrophobic interactions in initiation and propagation of protein folding. Proc. Natl. Acad. Sci. USA 2006, 103, 13057–13061. [Google Scholar] [CrossRef] [Green Version]
- Dill, K.A.; Ozkan, S.B.; Shell, M.S.; Weikl, T.R. The Protein Folding Problem. Annu. Rev. Biophys. 2008, 49, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.W.; Shauli, T.; Linial, M.; Hershberg, U. Serine substitutions are linked to codon usage and differ for variable and conserved protein regions. Sci. Rep. 2019, 9, 17238. [Google Scholar] [CrossRef] [Green Version]
- Lengerer, B.; Bonneel, M.; Lefevre, M.; Hennebert, E.; Leclere, P.; Gosselin, E.; Ladurner, P.; Flammang, P. The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa. Beilstein J. Nanotechnol. 2018, 9, 2071–2086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, M.; Ostermann, T.; Kremeser, L.; Lindner, H.; Beisel, C.; Berezikov, E.; Hobmayer, B.; Ladurner, P. Profiling of adhesive-related genes in the freshwater cnidarian Hydra magnipapillata by transcriptomics and proteomics. Biofouling 2016, 32, 1115–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.C.; Wong, Y.H.; Sung, C.H.; Chan, B.K.K. Histology and transcriptomic analyses of barnacles with different base materials and habitats shed lights on the duplication and chemical diversification of barnacle cement proteins. BMC Genom. 2021, 22, 783. [Google Scholar] [CrossRef]
- Rees, D.J.; Hanifi, A.; Obille, A.; Alexander, R.; Sone, E.D. Fingerprinting of proteins that mediate quagga mussel adhesion using a de novo assembled foot transcriptome. Sci. Rep. 2019, 9, 6305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floriolli, R.Y.; Von Langen, J.; Waite, J.H. Marine surfaces and the expression of specific byssal adhesive protein variants in Mytilus. Mar. Biotechnol. 2000, 2, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Danner, E.; Waite, J.H.; Israelachvili, J.N.; Zeng, H.; Hwang, D.S. Adhesion of mussel foot proteins to different substrate surfaces. J. R. Soc. Interface 2013, 10, 20120759. [Google Scholar] [CrossRef] [PubMed]
- DeMartini, D.G.; Errico, J.M.; Sjoestroem, S.; Fenster, A.; Waite, J.H. A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands. J. R. Soc. Interface 2017, 14, 20170151. [Google Scholar] [CrossRef] [Green Version]
- Anand, P.P.; Vardhanan, Y.S. Computational modelling of wet adhesive mussel foot proteins (Bivalvia): Insights into the evolutionary convolution in diverse perspectives. Sci. Rep. 2020, 10, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Robertson, N.B.; Jewhurst, S.A.; Waite, J.H. Probing the adhesive footprints of Mytilus californianus byssus. J. Biol. Chem. 2006, 281, 11090–11096. [Google Scholar] [CrossRef] [Green Version]
- Stewart, R.J.; Ransom, T.C.; Hlady, V. Natural underwater adhesives. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 757–771. [Google Scholar] [CrossRef] [Green Version]
- Gantayet, A.; Rees, D.J.; Sone, E.D. Novel proteins identified in the insoluble byssal matrix of the freshwater zebra mussel. Mar. Biotechnol. 2014, 16, 144–155. [Google Scholar] [CrossRef]
- Tian, R.; Shi, D.; Yin, D.; Hu, F.; Ding, J.; Chang, Y.; Zhao, C. Transcriptomes reveal the involved genes in the sea urchin Mesocentrotus nudus exposed to high fow velocities. Sci. Rep. 2022, 12, 13493. [Google Scholar] [CrossRef]
- Viana, A.S.; Santos, R. Nanoscale characterization of the temporary adhesive of the sea urchin Paracentrotus lividus. Beilstein J. Nanotechnol. 2018, 9, 2277–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algrain, M.; Hennebert, E.; Bertemes, P.; Wattiez, R.; Flammang, P.; Lengerer, B. In the footsteps of sea stars: Deciphering the catalogue of proteins involved in underwater temporary adhesion. Open Biol. 2022, 12, 220103. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.J.; Wang, C.S.; Song, I.T.; Jones, J.P. The role of coacervation and phase transitions in the sandcastle worm adhesive system. Adv. Colloid Interface Sci. 2017, 239, 88–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Federle, W.; Labonte, D. Dynamic biological adhesion: Mechanisms for controlling attachment during locomotion. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190199. [Google Scholar] [CrossRef] [Green Version]
- Dreanno, C.; Matsumura, K.; Dohmae, N.; Takio, K.; Hirota, H.; Kirby, R.R.; Clare, A. An α2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proc. Natl. Acad. Sci. USA 2006, 103, 14396–14401. [Google Scholar] [CrossRef] [Green Version]
- Lengerer, B.; Algrain, M.; Lefevre, M.; Delroisse, J.; Hennebert, E.; Flammang, P. Interspecies comparison of sea star adhesive proteins. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190195. [Google Scholar] [CrossRef] [Green Version]
- Kang, V.; Lengerer, B.; Wattiez, R.; Flammang, P. Molecular insights into the powerful mucus-based adhesion of limpets (Patella vulgata L.): Molecular insights into limpets adhesion. Open Biol. 2020, 10, 200019. [Google Scholar] [CrossRef]
- Rittschof, D.; Cohen, J.H. Crustacean peptide and peptide-like pheromones and kairomones. Peptides 2004, 25, 1503–1516. [Google Scholar] [CrossRef]
- Liang, C.; Strickland, J.; Ye, Z.; Wu, W.; Hu, B.; Rittschof, D. Biochemistry of barnacle adhesion: An updated review. Front. Mar. Sci. 2019, 6, 565. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Pérez, D.; Almeida, D.; Wissing, J.; Machado, A.M.; Jansch, L.; Castro, L.; Antunes, A.; Vasconcelos, V.; Campos, A.; Cunha, I. The quantitative proteome of the cement and adhesive gland of the pedunculate barnacle, Pollicipes pollicipes. Int. J. Mol. Sci. 2020, 21, 2524. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.; Creavin, M.; O’Connor, B.; Clarke, P. Optimization of the enzyme-linked lectin assay for enhanced glycoprotein and glycoconjugate analysis”. Anal. Biochem. 2011, 413, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Martín, M.A.; Gómez-Baena, G.; Díez, J.; López-Grueso, M.J.; Beynon, R.J.; García-Fernández, J.M. Quantitative proteomics shows extensive remodeling induced by nitrogen limitation in Prochlorococcusmarinus SS120. mSystems 2017, 2, e00008-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldwin, M.A. Protein identification by mass spectrometry: Issues to be considered. Mol. Cell. Proteom. 2004, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tabb, D.L.; Friedman, D.B.; Ham, V.A.-J.L. Verification of automated peptide identifications from proteomic tandem massspectra. Nat. Protoc. 2006, 10, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008, 36, 5–9. [Google Scholar] [CrossRef]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.; Geer, R.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020, 48, D265–D268. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.L.; Attwood, T.K.; Babbitt, P.C.; Blum, M.; Bork, P.; Bridge, A.; Brown, S.; Chang, H.; El-Gebali, S.; Fraser, M.; et al. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019, 47, D351–D360. [Google Scholar] [CrossRef] [Green Version]
- Armenteros, J.J.A.; Tsirigos, K.D.; Sonderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook; Walker, J.M., Totowa, E., Eds.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Li, X.; Xu, Z.; Hong, X.; Zhang, Y.; Zou, X. Databases and bioinformatic tools for glycobiology and glycoproteomics. Int. J. Mol. Sci. 2020, 21, 6727. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.T. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopex, R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef] [PubMed]
Transcript | Pjeta et al. 2020 (BLAST) | 2022 (BLAST) | GSL II | WGA | LEL | SBA | Unique Peptides | MW | pI |
---|---|---|---|---|---|---|---|---|---|
COV | COV | COV | COV | ||||||
TR60905_c1_g1_i1_5 | Nectin variant 2 precursor [Paracentrotus lividus] | Nectin 2 [Paracentrotus lividus] | 39 | 35 | 41 | 34 | 37 | 31 | 39 | 35 | 40 | 108.24 | 5.98 |
TR63383_c2_g1_i1_5 | PREDICTED: alpha-tectorin [Strongylocentrotus purpuratus] | Uncharacterized protein LOC100892803 [Strongylocentrotus purpuratus] | 9 | 6 | 10 | 0.5 | 8 | 4 | 15 | 12 | 21 | 199.71 | 4.81 |
TR46688_c0_g1_i1_6 | PREDICTED: uncharacterized protein LOC100892803 [Strongylocentrotus purpuratus] | 12 | 10 | 7 | 5 | 11 | 11 | 13 | 5 | 9 | 74.09 | 5.43 | |
TR57217_c2_g1_i1_5 | PREDICTED: myeloperoxidase [Strongylocentrotus purpuratus] | Myeloperoxidase [Strongylocentrotus purpuratus] | 5 | 5 | 11 | 13 | 3 | 4 | 8 | 8 | 9 | 94.02 | 4.94 |
TR61622_c8_g1_i2_4 | PREDICTED: α-2-macroglobulin-like protein 1 isoform X1 [Strongylocentrotus purpuratus] | α-2-macroglobulin-like protein [Strongylocentrotus purpuratus] | 10 | 10 | 11| 10 | 11 | 10 | 14 | 11 | 29 | 157.63 | 5.15 |
TR46467_c1_g1_i2_6 | N/A | Uncharacterized protein LOC115927989 [Strongylocentrotus purpuratus] | 25 | x | 25 | x | 14 | 25 | 19 | 27 | 8 | 20.81 | 8.86 |
Transcript | Sequence ID | Sequence Completeness | Start/Stop Codon | Signal Peptide | Cysteine Content | Predicted Glycosylation | Conserved Domains | Homologous Proteins of Interest |
---|---|---|---|---|---|---|---|---|
TR60905_c1_g1_i1_5 | Nectin variant 3 | full length | yes/yes | yes | 1.1% | O,N | FA58C | Nectin |
TR63383_c2_g1_i1_5 | α-tectorin like | 5’ missing | no/yes | no | 5.1% | SUEL-Lectin, EGF, vWD, C8, TIL | --- | |
TR46688_c0_g1_i1_6 | 5’ & 3’ missing | no/no | no | 7.1% | α-tectorin, Spf1 | |||
TR57217_c2_g1_i1_5 | myeloperoxidase | full length | yes/yes | yes | 3.3% | Peroxidase | Myeloperoxidase | |
TR61622_c8_g1_i2_4 | α-2-macroglobulin-like | 5’ missing | no/yes | no | 2.1% | A2M_N_2, A2M, A2M_2, A2M-recp | α-2-macroglobulin-like protein 1 | |
TR46467_c1_g1_i2_6 | uncharacterized protein | full length | yes/yes | yes | 4.3% | O | CTL | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ventura, I.; Harman, V.; Beynon, R.J.; Santos, R. Glycoproteins Involved in Sea Urchin Temporary Adhesion. Mar. Drugs 2023, 21, 145. https://doi.org/10.3390/md21030145
Ventura I, Harman V, Beynon RJ, Santos R. Glycoproteins Involved in Sea Urchin Temporary Adhesion. Marine Drugs. 2023; 21(3):145. https://doi.org/10.3390/md21030145
Chicago/Turabian StyleVentura, Inês, Victoria Harman, Robert J. Beynon, and Romana Santos. 2023. "Glycoproteins Involved in Sea Urchin Temporary Adhesion" Marine Drugs 21, no. 3: 145. https://doi.org/10.3390/md21030145
APA StyleVentura, I., Harman, V., Beynon, R. J., & Santos, R. (2023). Glycoproteins Involved in Sea Urchin Temporary Adhesion. Marine Drugs, 21(3), 145. https://doi.org/10.3390/md21030145