Chemomodulatory Effect of the Marine-Derived Metabolite “Terrein” on the Anticancer Properties of Gemcitabine in Colorectal Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. Cytotoxicity Assessment
2.2. The Influence of Terr on GCB-Induced Apoptotic Cell Death in Colorectal Cell Lines (HCT-116, HT-29, and SW620)
2.3. The Effect of Terr on the Autophagic Cell Death of Colorectal Cell Lines Treated with GCB
2.4. The Effect of Terr, GCB, and Their Combination on the Cell Cycle Distribution of Colorectal Cell Lines
2.5. The Effect of GCB, Terr, and Their Combination on the Colorectal Cell Lines’ Growth and Proliferation
2.6. The Effect of Terr, GCB, and Their Combination on the Extracellular Metabolites within Colorectal Cell Llines
3. Discussion
4. Materials and Methods
4.1. Chemicals and Drugs
4.2. Cell Culture
4.3. Cytotoxicity Assay
4.4. Data Analysis
4.5. Apoptosis
4.6. Assessment of Active Caspase-3 Concentration
4.7. Autophagy
4.8. Cell Cycle Analysis
4.9. Gene Expression Analysis
4.10. Metabolomics Analysis
4.10.1. Sample Processing for NMR Spectroscopy
4.10.2. NMR Measurement
4.10.3. NMR Spectral Processing
4.10.4. Multivariate Analysis
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: A current overview. Clin. Exp. Metastasis 2018, 35, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Gewirtz, D.A.; Bristol, M.L.; Yalowich, J.C. Toxicity issues in cancer drug development. Curr. Opin. Investig. Drugs 2010, 11, 612–614. [Google Scholar]
- El-Sawy, H.S.; Al-Abd, A.M.; Ahmed, T.A.; El-Say, K.M.; Torchilin, V.P. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: Past, present, and future perspectives. ACS Nano 2018, 12, 10636–10664. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, M.S.; Keith, B.; Simon, M.C. Oxygen availability and metabolic adaptations. Nat. Rev. Cancer 2016, 16, 663–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajabi, M.; Mousa, S.A. The role of angiogenesis in cancer treatment. Biomedicines 2017, 5, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, J.; Li, Y.; Zhang, G. Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med. 2017, 14, 348. [Google Scholar] [CrossRef]
- Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci. 2018, 19, 448. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, H.; Liu, Y.; An, N.; Zhao, S.; Bao, J. Autophagy modulation as a target for anticancer drug discovery. Acta Pharmacol. Sin. 2013, 34, 612–624. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.-Y.; Shen, C.-N.; Lin, L.-H.; Yang, Y.-L.; Han, H.-Y.; Chen, J.-W.; Kuo, S.-C.; Wu, S.-H.; Liaw, C.-C. Asperjinone, a nor-neolignan, and terrein, a suppressor of ABCG2-expressing breast cancer cells, from thermophilic Aspergillus terreus. J. Nat. Prod. 2012, 75, 630–635. [Google Scholar] [CrossRef]
- Arakawa, M.; Someno, T.; Kawada, M.; Ikeda, D. A new terrein glucoside, a novel inhibitor of angiogenin secretion in tumor angiogenesis. J. Antibiot. 2008, 61, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibata, A.; Ibaragi, S.; Mandai, H.; Tsumura, T.; Kishimoto, K.; Okui, T.; Hassan, N.M.M.; Shimo, T.; Omori, K.; Hu, G.-F. Synthetic terrein inhibits progression of head and neck cancer by suppressing angiogenin production. Anticancer Res. 2016, 36, 2161–2168. [Google Scholar] [PubMed]
- Chen, Y.-F.; Wang, S.-Y.; Shen, H.; Yao, X.-F.; Zhang, F.-L.; Lai, D. The marine-derived fungal metabolite, terrein, inhibits cell proliferation and induces cell cycle arrest in human ovarian cancer cells. Int. J. Mol. Med. 2014, 34, 1591–1598. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Mijiti, M.; Ding, W.; Song, J.; Yin, Y.; Sun, W.; Li, Z. (+)-Terrein inhibits human hepatoma Bel-7402 proliferation through cell cycle arrest. Oncol. Rep. 2015, 33, 1191–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porameesanaporn, Y.; Uthaisang-Tanechpongtamb, W.; Jarintanan, F.; Jongrungruangchok, S.; Thanomsub Wongsatayanon, B. Terrein induces apoptosis in HeLa human cervical carcinoma cells through p53 and ERK regulation. Oncol. Rep. 2013, 29, 1600–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Zhu, Y.; Li, S.; Zeng, M.; Chu, J.; Hu, P.; Li, J.; Guo, Q.; Lv, X.; Huang, G. Terrein performs antitumor functions on esophageal cancer cells by inhibiting cell proliferation and synergistic interaction with cisplatin. Oncol. Lett. 2017, 13, 2805–2810. [Google Scholar] [CrossRef]
- Kim, K.-W.; Kim, H.J.; Sohn, J.H.; Yim, J.H.; Kim, Y.-C.; Oh, H. Terrein suppressed lipopolysaccharide-induced neuroinflammation through inhibition of NF-κB pathway by activating Nrf2/HO-1 signaling in BV2 and primary microglial cells. J. Pharmacol. Sci. 2020, 143, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Bours, V.; Bentires-Alj, M.; Hellin, A.-C.; Viatour, P.; Robe, P.; Delhalle, S.; Benoit, V.; Merville, M.-P. Nuclear factor-κB, cancer, and apoptosis. Biochem. Pharmacol. 2000, 60, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Tian, Y.; Liu, L.; Su, M.; Wang, H. Role of the NFκB-signaling pathway in cancer. Onco. Targets. Ther. 2018, 11, 2063. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Guo, L.; Wang, L.; Zhu, G.; Zhu, W. Improving the yield of (+)-terrein from the salt-tolerant Aspergillus terreus PT06-2. World J. Microbiol. Biotechnol. 2016, 32, 77. [Google Scholar] [CrossRef]
- Abuhijjleh, R.K.; Shabbir, S.; Al-Abd, A.M.; Jiaan, N.H.; Alshamil, S.; El-Labbad, E.M.; Khalifa, S.I. Bioactive marine metabolites derived from the Persian Gulf compared to the Red Sea: Similar environments and wide gap in drug discovery. PeerJ 2021, 9, e11778. [Google Scholar] [CrossRef] [PubMed]
- Burris, H.A., 3rd; Moore, M.J.; Andersen, J.; Green, M.R.; Rothenberg, M.L.; Modiano, M.R.; Christine Cripps, M.; Portenoy, R.K.; Storniolo, A.M.; Tarassoff, P. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J. Clin. Oncol. 1997, 15, 2403–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neesse, A.; Michl, P.; Frese, K.K.; Feig, C.; Cook, N.; Jacobetz, M.A.; Lolkema, M.P.; Buchholz, M.; Olive, K.P.; Gress, T.M. Stromal biology and therapy in pancreatic cancer. Gut 2011, 60, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Xie, J. Promising molecular mechanisms responsible for gemcitabine resistance in cancer. Genes Dis. 2015, 2, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Xue, X.; Wang, F.; An, Y.; Tang, D.; Xu, Y.; Wang, H.; Yuan, Z.; Gao, W.; Wei, J. Expression and promoter methylation analysis of ATP-binding cassette genes in pancreatic cancer. Oncol. Rep. 2012, 27, 265–269. [Google Scholar] [PubMed] [Green Version]
- Zinzi, L.; Contino, M.; Cantore, M.; Capparelli, E.; Leopoldo, M.; Colabufo, N.A. ABC transporters in CSCs membranes as a novel target for treating tumor relapse. Front. Pharmacol. 2014, 5, 163. [Google Scholar] [CrossRef]
- Quint, K.; Tonigold, M.; Di Fazio, P.; Montalbano, R.; Lingelbach, S.; Rueckert, F.; Alinger, B.; Ocker, M.; Neureiter, D. Pancreatic cancer cells surviving gemcitabine treatment express markers of stem cell differentiation and epithelial-mesenchymal transition. Int. J. Oncol. 2012, 41, 2093–2102. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Jiao, X.; Jiang, Y.; Sun, S. ERK1/2 activity contributes to gemcitabine resistance in pancreatic cancer cells. J. Int. Med. Res. 2013, 41, 300–306. [Google Scholar] [CrossRef]
- Arlt, A.; Gehrz, A.; Müerköster, S.; Vorndamm, J.; Kruse, M.-L.; Fölsch, U.R.; Schäfer, H. Role of NF-κ B and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 2003, 22, 3243–3251. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Arumugam, T.; Yamamoto, T.; Levin, P.A.; Ramachandran, V.; Ji, B.; Lopez-Berestein, G.; Vivas-Mejia, P.E.; Sood, A.K.; McConkey, D.J. Nuclear factor-κB p65/relA silencing induces apoptosis and increases gemcitabine effectiveness in a subset of pancreatic cancer cells. Clin. Cancer Res. 2008, 14, 8143–8151. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.; Kim, J.S.; Kim, W.K.; Oh, K.J.; Kim, J.M.; Lee, H.J.; Han, B.S.; Kim, D.S.; Seo, Y.-S.; Lee, S.C. Intracellular annexin A2 regulates NF-κ B signaling by binding to the p50 subunit: Implications for gemcitabine resistance in pancreatic cancer. Cell Death Dis. 2015, 6, e1606. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wang, J.; Xia, N.; Li, B.; Jiang, X. Maslinic acid potentiates the antitumor activities of gemcitabine in vitro and in vivo by inhibiting NF-κB-mediated survival signaling pathways in human gallbladder cancer cells. Oncol. Rep. 2015, 33, 1683–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, P.O., Jr.; McDunn, J.E.; Kashiwagi, H.; Chang, K.; Goedegebuure, P.S.; Hotchkiss, R.S.; Hawkins, W.G. Targeting AKT with the proapoptotic peptide, TAT-CTMP: A novel strategy for the treatment of human pancreatic adenocarcinoma. Int. J. Cancer 2009, 125, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Tréhoux, S.; Duchêne, B.; Jonckheere, N.; Van Seuningen, I. The MUC1 oncomucin regulates pancreatic cancer cell biological properties and chemoresistance. Implication of p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways. Biochem. Biophys. Res. Commun. 2015, 456, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.L.; Lin, F.J.; Guo, Y.J.; Shao, Z.M.; Ou, Z.L. Gemcitabine resistance in breast cancer cells regulated by PI3K/AKT-mediated cellular proliferation exerts negative feedback via the MEK/MAPK and mTOR pathways. Onco. Targets. Ther. 2014, 7, 1033. [Google Scholar]
- Wang, R.; Cheng, L.; Xia, J.; Wang, Z.; Wu, Q.; Wang, Z. Gemcitabine resistance is associated with epithelial-mesenchymal transition and induction of HIF-1α in pancreatic cancer cells. Curr. Cancer Drug Targets 2014, 14, 407–417. [Google Scholar] [CrossRef]
- De Castro, F.; Stefano, E.; De Luca, E.; Muscella, A.; Marsigliante, S.; Benedetti, M.; Fanizzi, F.P. A NMR-Based Metabolomic Approach to Investigate the Antitumor Effects of the Novel [Pt (η1-C2H4OMe)(DMSO)(phen)]+(phen= 1, 10-Phenanthroline) Compound on Neuroblastoma Cancer Cells. Bioinorg. Chem. Appl. 2022, 2022, 8932137. [Google Scholar] [CrossRef]
- Shammout, O.D.A.; Ashmawy, N.S.; Shakartalla, S.B.; Altaie, A.M.; Semreen, M.H.; Omar, H.A.; Soliman, S.S.M. Comparative sphingolipidomic analysis reveals significant differences between doxorubicin-sensitive and-resistance MCF-7 cells. PLoS ONE 2021, 16, e0258363. [Google Scholar] [CrossRef]
- Raistrick, H.; Smith, G. Studies in the biochemistry of micro-organisms: The metabolic products of Aspergillus terreus Thom. A new mould metabolic product—Terrein. Biochem. J. 1935, 29, 606. [Google Scholar] [CrossRef] [Green Version]
- de Sousa Cavalcante, L.; Monteiro, G. Gemcitabine: Metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur. J. Pharmacol. 2014, 741, 8–16. [Google Scholar]
- Yun, C.W.; Lee, S.H. The roles of autophagy in cancer. Int. J. Mol. Sci. 2018, 19, 3466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Kang, J.; Fu, C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct. Target. Ther. 2018, 3, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Tan, K.; Huang, H. Retracted: Long noncoding RNA HAGLROS regulates apoptosis and autophagy in colorectal cancer cells via sponging miR-100 to target ATG5 expression 2019. J. Cell. Biochem. 2018, 120, 3922–3933. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Mei, Y.; Sinha, S. Role of the crosstalk between autophagy and apoptosis in cancer. J. Oncol. 2013, 2013, 102735. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Lee, H.; Park, S.; Lee, S.; Ryoo, I.; Kim, W.; Yoo, I.; Na, J.; Kwon, S.; Park, K. Terrein inhibits keratinocyte proliferation via ERK inactivation and G2/Mcell cycle arrest. Exp. Dermatol. 2008, 17, 312–317. [Google Scholar] [CrossRef]
- Namima, D.; Fujihara, S.; Iwama, H.; Fujita, K.; Matsui, T.; Nakahara, M.; Okamura, M.; Hirata, M.; Kono, T.; Fujita, N. The effect of gemcitabine on cell cycle arrest and microRNA signatures in pancreatic cancer cells. In Vivo 2020, 34, 3195–3203. [Google Scholar] [CrossRef]
- Tsujimoto, Y. Role of Bcl-2 family proteins in apoptosis: Apoptosomes or mitochondria? Genes Cells 1998, 3, 697–707. [Google Scholar] [CrossRef]
- Hakata, S.; Terashima, J.; Shimoyama, Y.; Okada, K.; Fujioka, S.; Ito, E.; Habano, W.; Ozawa, S. Differential sensitization of two human colon cancer cell lines to the antitumor effects of irinotecan combined with 5-aza-2′-deoxycytidine. Oncol. Lett. 2018, 15, 4641–4648. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhao, W.; Yang, X.; Sun, Z.; Jin, H.; Lei, C.; Jin, B.; Wang, H. Effect of inhibiting Beclin-1 expression on autophagy, proliferation and apoptosis in colorectal cancer. Oncol. Lett. 2017, 14, 4319–4324. [Google Scholar] [CrossRef] [Green Version]
- Mastrogamvraki, N.; Zaravinos, A. Signatures of co-deregulated genes and their transcriptional regulators in colorectal cancer. NPJ Syst. Biol. Appl. 2020, 6, 23. [Google Scholar] [CrossRef]
- Jardim, D.L.; Millis, S.Z.; Ross, J.S.; Woo, M.S.; Ali, S.M.; Kurzrock, R. Cyclin Pathway Genomic Alterations Across 190,247 Solid Tumors: Leveraging Large-Scale Data to Inform Therapeutic Directions. Oncologist 2021, 26, e78–e89. [Google Scholar] [CrossRef] [PubMed]
- Squires, M.S.; Feltell, R.E.; Wallis, N.G.; Lewis, E.J.; Smith, D.-M.; Cross, D.M.; Lyons, J.F.; Thompson, N.T. Biological characterization of AT7519, a small-molecule inhibitor of cyclin-dependent kinases, in human tumor cell lines. Mol. Cancer Ther. 2009, 8, 324–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoma, O.-M.; Neurath, M.F.; Waldner, M.J. Cyclin-Dependent Kinase Inhibitors and Their Therapeutic Potential in Colorectal Cancer Treatment. Front. Pharmacol. 2021, 12, 757120. [Google Scholar] [CrossRef] [PubMed]
- Adrian, L.H. Hypoxia-A key regulatory factor in tumor growth. Nat. Rev. Cancer 2002, 2, 38–47. [Google Scholar]
- Stegeman, H.; Kaanders, J.H.; Wheeler, D.L.; van der Kogel, A.J.; Verheijen, M.M.; Waaijer, S.J.; Iida, M.; Grénman, R.; Span, P.N.; Bussink, J. Activation of AKT by hypoxia: A potential target for hypoxic tumors of the head and neck. BMC Cancer 2012, 12, 463. [Google Scholar] [CrossRef] [Green Version]
- Manning, B.D.; Cantley, L.C. AKT/PKB signaling: Navigating downstream. Cell 2007, 129, 1261–1274. [Google Scholar] [CrossRef] [Green Version]
- Plas, D.R.; Thompson, C.B. Akt-dependent transformation: There is more to growth than just surviving. Oncogene 2005, 24, 7435–7442. [Google Scholar] [CrossRef] [Green Version]
- Los, M.; Maddika, S.; Erb, B.; Schulze-Osthoff, K. Switching Akt: From survival signaling to deadly response. Bioessays 2009, 31, 492–495. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, V.; Park, Y.; Chen, C.-C.; Xu, P.-Z.; Chen, M.-L.; Tonic, I.; Unterman, T.; Hay, N. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 2008, 14, 458–470. [Google Scholar] [CrossRef] [Green Version]
- Maddika, S.; Ande, S.R.; Wiechec, E.; Hansen, L.L.; Wesselborg, S.; Los, M. Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis. J. Cell Sci. 2008, 121, 979–988. [Google Scholar] [CrossRef] [Green Version]
- Fukui, Y.; Itoh, K. A plasma metabolomic investigation of colorectal cancer patients by liquid chromatography-mass spectrometry. Open Anal. Chem. J. 2010, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hirayama, A.; Kami, K.; Sugimoto, M.; Sugawara, M.; Toki, N.; Onozuka, H.; Kinoshita, T.; Saito, N.; Ochiai, A.; Tomita, M. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009, 69, 4918–4925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denkert, C.; Budczies, J.; Weichert, W.; Wohlgemuth, G.; Scholz, M.; Kind, T.; Niesporek, S.; Noske, A.; Buckendahl, A.; Dietel, M. Metabolite profiling of human colon carcinoma–deregulation of TCA cycle and amino acid turnover. Mol. Cancer 2008, 7, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frezza, C.; Zheng, L.; Tennant, D.A.; Papkovsky, D.B.; Hedley, B.A.; Kalna, G.; Watson, D.G.; Gottlieb, E. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. PLoS ONE 2011, 6, e24411. [Google Scholar] [CrossRef] [Green Version]
- Karantza-Wadsworth, V.; Patel, S.; Kravchuk, O.; Chen, G.; Mathew, R.; Jin, S.; White, E. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 2007, 21, 1621–1635. [Google Scholar] [CrossRef] [Green Version]
- Jeon, Y.J.; Khelifa, S.; Ratnikov, B.; Scott, D.A.; Feng, Y.; Parisi, F.; Ruller, C.; Lau, E.; Kim, H.; Brill, L.M.; et al. Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell 2015, 27, 354–369. [Google Scholar] [CrossRef] [Green Version]
- Moore, G.E.; Mount, D.T.; Wendt, A.C. The growth of human tumor cells in tissue culture. Surg. Forum 1958, 9, 572–576. [Google Scholar]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Lakshmanan, I.; Batra, S.K. Protocol for apoptosis assay by flow cytometry using annexin V staining method. Bio-Protocol 2013, 3, e374. [Google Scholar] [CrossRef] [Green Version]
- Thomé, M.P.; Filippi-Chiela, E.C.; Villodre, E.S.; Migliavaca, C.B.; Onzi, G.R.; Felipe, K.B.; Lenz, G. Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy. J. Cell Sci. 2016, 129, 4622–4632. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Vignali, P.; Wang, R. Rapid profiling cell cycle by flow cytometry using concurrent staining of DNA and mitotic markers. Bio-Protocol 2017, 7, e2517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo, M.C.; Berninger, M.S.; Hartley, J.L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 1990, 93, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, X.; Wu, J.; Liu, Q.; Pang, X.; Yang, H. Metabolic characterisation of eight Escherichia coli strains including “Big Six” and acidic responses of selected strains revealed by NMR spectroscopy. Food Microbiol. 2020, 88, 103399. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wishart, D.S. Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Curr. Protoc. Bioinf. 2011, 34, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-H.; Cheng, M.-L.; Shiao, M.-S.; Lin, C.-N. Metabolomics study in severe extracranial carotid artery stenosis. BMC Neurol. 2019, 19, 138. [Google Scholar] [CrossRef] [Green Version]
HCT-116 | HT-29 | SW620 | ||||
---|---|---|---|---|---|---|
IC50 (μM) | R-Fraction (%) | IC50 (μM) | R-Fraction (%) | IC50 (μM) | R-Fraction (%) | |
GCB (N) | 0.19 ± 0.028 | 38.14 ± 1.40 | 0.01 ± 0.006 | 19.87 ± 12.0 | 0.21 ± 0.0003 | 32.61 ± 1.78 |
Terr (N) | 75.22 ± 0.97 | N/A | 56.24 ± 11.39 | N/A | 72.28 ± 1.35 | 8.34 ± 1.37 |
GCB + Terr (N) | 0.023 ± 0.005 | 24.40 ± 1.22 | 0.027 ± 0.005 | 46.45 ± 2.76 | 0.018 ± 0.04 | 32.30 ± 3.56 |
CI value | 0.13 | 2.32 | 0.09 | |||
GCB (H) | 0.01 ± 0.002 | 0.0 | 0.04 ± 0.004 | 42.64 ± 2.10 | 0.20 ± 0.008 | 32.59 ± 0.28 |
Terr (H) | 20.26 ± 2.89 | 8.13 ± 0.98 | 83.30 ± 4.41 | 3.02 ± 3.39 | 59.82 ± 8.50 | 2.52 ± 3.39 |
GCB + Terr (H) | 0.024 ± 0.03 | 41.02 ± 2.33 | 0.324 ± 7.95 | 66.74 ± 6.84 | 0.027 ± 0.007 | 48.51 ± 2.97 |
CI value | 1.78 | 7.28 | 0.14 |
Name | NMR Chemical Shift | Concentration (mM) | |||||||
---|---|---|---|---|---|---|---|---|---|
Normoxia | Hypoxia | ||||||||
Control | Terr | GCB | Terr + GCB | Control | Terr | GCB | Terr + GCB | ||
4-hydroxyphenyl acetate | 7.16 (d), 6.68 (t), 3.44 (s) | 0 | 3.2866 | 2.342 | 2.4149 | 0 | 0 | 0 | 1.332 |
2-hydroxyvalerate | 0 | 0 | 0 | 0 | 0 | 7.351 | 26.6519 | 7.033 | |
2-phosphoglycerate | 4.86 (dt), 3.76 (dd), 3.62 (dd) | 0 | 0 | 0 | 0 | 0 | 92.55 | 165.354 | 10.4 |
Acetate | 1.9 (s) | 0 | 4.203 | 6.2544 | 2.8006 | 0 | 3.2218 | 6.9808 | 2.04 |
Alanine | 1.46 (d) | 8.7211 | 18.9587 | 20.264 | 16.0552 | 48.545 | 25.8158 | 19.2287 | 1.1259 |
Dimethylamine | 2.5 (s) | 0 | 20.6557 | 6.4366 | 14.3796 | 0 | 18.5201 | 4.2958 | 13.026 |
Ethylmalonate | 0 | 0 | 11.0424 | 0 | 0 | 10.0587 | 9.8134 | 4.29 | |
Formate | 8.46 (s) | 1.3573 | 3.5965 | 4.6718 | 0 | 0 | 2.0378 | 4.6042 | 1.2927 |
Glucose | 3.23, 3.39, 3.45, 3.50, 3.71, 3.81, 3.88, 4.63, 5.22 | 71.7887 | 143.9592 | 193.9061 | 102.7318 | 257.7746 | 71.1131 | 108.3805 | 36.567 |
Glutamate | 2.34 (m) | 7.9295 | 17.862 | 8.3554 | 31.9252 | 31.8823 | 5.9122 | 29.2106 | 7.0509 |
Histamine | 7.99 (s), 7.14 (s), 3.29 (t), 3.03 (m) | 0 | 2.2367 | 2.0502 | 2.993 | 0 | 1.2942 | 1.0424 | 1.9017 |
Hypoxanthine | 8.19 (s), 8.21 (s) | 0 | 1.1172 | 0 | 1.3887 | 0 | 0.7355 | 0 | 1.53 |
Imidazole | 7.28 (s), 8.18 (s) | 0 | 3.6693 | 0 | 1.4086 | 0 | 0.8819 | 0 | 0.99 |
Lactate | 1.31, 4.09 | 62.6687 | 144.9777 | 201.7872 | 73.772 | 400.2995 | 103.39 | 166.539 | 65.067 |
Leucine | 0.96 (t),1.70 (m) | 3.7907 | 8.944 | 9.7745 | 4.7783 | 0 | 0 | 0 | 3.048 |
Methionine | 3.86 (dd), 2.65 (t), 2.23 (m) | 0 | 6.5637 | 0 | 0 | 0 | 0.4214 | 0 | 0.84 |
Phenylalanine | 7.37 (m), 3.98 (m), 3.27 (m), 3.11 (m) | 1.4766 | 3.7121 | 1.9949 | 3.3628 | 4.721 | 1.3442 | 0 | 1.1259 |
Pyruvate | 2.36 (s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.7677 |
Pipecolate | 3.58 (dd), 3.42 (m), 3.02 (td), 2.22 (m), 1.89 (m), 1.69 (m) | 0 | 31.4662 | 12.192 | 0 | 0 | 0 | 0 | 0 |
Succinate | 2.39 (s) | 1.4136 | 2.4953 | 0.6909 | 2.3995 | 6.888 | 0.4962 | 0.1574 | 0.1986 |
Tyrosine | 7.17 (m), 6.8 (m), 3.9 (m) | 1.0549 | 0 | 2.8125 | 0 | 5.7714 | 1.2658 | 1.7629 | 1.28 |
Tyramine | 2.92 (t), 3.23 (t), 6.9 (m), 7.2 (m) | 0 | 3.4448 | 2.7521 | 2.6895 | 0 | 0 | 0 | 0 |
Valine | 3.6 (d), 2.29 (m), 1.04 (d), 0.98 (d) | 2.1199 | 3.6865 | 5.2247 | 2.535 | 7.3598 | 2.204 | 2.6834 | 2.037 |
Xanthine | 7.89 (s) | 0 | 1.7549 | 1.6411 | 1.6685 | 0 | 0.9064 | 0 | 0.6265 |
Methylhistidine | 7.67 (s), 7.0 (s), 3.97 (dd), 3.68 (s), 3.18 (dd), 3.09 (dd) | 0.5439 | 0 | 1.535 | 0 | 0 | 0 | 0 | 0 |
Classification | Primer | Direction | Code |
---|---|---|---|
Apoptosis regulators | BCL2 | Forward | GAT-TGT-GGC-CTT-CTT-TGA-G |
Reverse | CAA-ACT-GAG-CAG-AGT-CTT-C | ||
BIRC5 | Forward | AGG-ACC-ACC-GCA-TCT-CTA-CAT | |
Reverse | AAG-TCT-GGC-TCG-TTC-TCA-GTG | ||
TP53 | Forward | TTC-CTC-CAA-CCA-AGA-ACC-AGA | |
Reverse | GCT-CAG-TAG-GTG-ACT-CTT-CAC-T | ||
FOXO3 | Forward | ACG-GCT-GAC-TGA-TAT-GGC-AG | |
Reverse | CGT-GAT-GTT-ATC-CAG-CAG-GTC | ||
Autophagy | ATG5 | Forward | AGA-AGC-TGT-TTC-GTC-CTG-TGG |
Reverse | AGG-TGT-TTC-CAA-CAT-TGG-CTC | ||
Beclin1 | Forward | AGC-TGC-CGT-TAT-ACT-GTT-CTG | |
Reverse | ACT-GCC-TCC-TGT-GTC-TTC-AAT-CTT | ||
Cell cycle regulators | CCND1 | Forward | TGT-TCG-TGG-CCT-CTA-AGA-TGA-AG |
Reverse | AGG-TTC-CAC-TTG-AGC-TTG-TTC-AC | ||
CDK4 | Forward | CTG-GTG-TTT-GAG-CAT-GTA-GAC-C | |
Reverse | AAA-CTG-GCG-CAT-CAG-ATC-CTT | ||
MCM7 | Forward | GGG-CTC-CAG-ATT-CAT-CAA-AT | |
Reverse | ATA-CCA-GTG-ACG-CTG-ACG-TG | ||
Cell growth | AKT1 | Forward | GGA-TGT-GGA-CCA-ACG-TGA-G |
Reverse | AGC-GGA-TGA-TGA-AGG-TGT-TG | ||
TGF-β1 | Forward | GGT-ACC-TGA-ACC-CGT-GTT-GCT | |
Reverse | TGT-TGC-TGT-ATT-TCT-GGT-ACA-GCT-C | ||
HIF1-a | Forward | GAA-CGT-CGA-AAA-GAA-AAG-TCT-CG | |
Reverse | CCT-TAT-CAA-GAT-GCG-AAC-TCA-CA | ||
PRKDC | Forward | GAC-ATC-TCC-TGA-GCT-CTG-AC | |
Reverse | CTC-TTG-TTC-CCC-AAC-AGT-CT | ||
Cell proliferation | PCNA | Forward | CGG-ATA-CCT-TGG-CGC-TAG-TA |
Reverse | TCT-CGG-CAT-ATA-CGT-GCA-AA | ||
RAD18 | Forward | CTC-AGT-GTC-CAA-CTT-GCT-GTG | |
Reverse | GAA-GAG-GAA-GAA-GCA-GGA-GAT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuhijjleh, R.K.; Al Saeedy, D.Y.; Ashmawy, N.S.; Gouda, A.E.; Elhady, S.S.; Al-Abd, A.M. Chemomodulatory Effect of the Marine-Derived Metabolite “Terrein” on the Anticancer Properties of Gemcitabine in Colorectal Cancer Cells. Mar. Drugs 2023, 21, 271. https://doi.org/10.3390/md21050271
Abuhijjleh RK, Al Saeedy DY, Ashmawy NS, Gouda AE, Elhady SS, Al-Abd AM. Chemomodulatory Effect of the Marine-Derived Metabolite “Terrein” on the Anticancer Properties of Gemcitabine in Colorectal Cancer Cells. Marine Drugs. 2023; 21(5):271. https://doi.org/10.3390/md21050271
Chicago/Turabian StyleAbuhijjleh, Reham Khaled, Dalia Yousef Al Saeedy, Naglaa S. Ashmawy, Ahmed E. Gouda, Sameh S. Elhady, and Ahmed Mohamed Al-Abd. 2023. "Chemomodulatory Effect of the Marine-Derived Metabolite “Terrein” on the Anticancer Properties of Gemcitabine in Colorectal Cancer Cells" Marine Drugs 21, no. 5: 271. https://doi.org/10.3390/md21050271
APA StyleAbuhijjleh, R. K., Al Saeedy, D. Y., Ashmawy, N. S., Gouda, A. E., Elhady, S. S., & Al-Abd, A. M. (2023). Chemomodulatory Effect of the Marine-Derived Metabolite “Terrein” on the Anticancer Properties of Gemcitabine in Colorectal Cancer Cells. Marine Drugs, 21(5), 271. https://doi.org/10.3390/md21050271