Ircinia ramosa Sponge Extract (iSP) Induces Apoptosis in Human Melanoma Cells and Inhibits Melanoma Cell Migration and Invasiveness
Abstract
:1. Introduction
2. Results
2.1. Metabolic Profile of I. ramosa Ethyl Acetate Extract
2.2. iSP Treatment Affected the Proliferation Rate of Human Melanoma Cells
2.3. iSP Promotes Apoptosis in A375 Human Melanoma Cells
2.4. iSP Induced ROS Production and Modulated Mitochondrial Fitness in Melanoma Cells
2.5. iSP Induced Cell Cycle Arrest in A375 Human Melanoma Cell Line
2.6. iSP Inhibited Melanoma Cell Migration, Colony Formation and Invasion
2.7. iSP Modulated the Expression of Cadherins and the EMT-Related Transcription Factors
3. Discussion
4. Materials and Methods
4.1. Animal Material and Extraction
4.2. Chemical Analysis
4.3. Cell Culture
4.4. MTT Assay
4.5. Flow Cytometry Analysis
4.6. Caspase 3/9 Activity Assay
4.7. Quantitative Real-Time PCR
4.8. Wound Healing Assay
4.9. Clonogenic Assay
4.10. Invasion Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar]
- Ercolano, G.; De Cicco, P.; Ianaro, A. New Drugs from the Sea: Pro-Apoptotic Activity of Sponges and Algae Derived Compounds. Mar. Drugs 2019, 17, 31. [Google Scholar] [CrossRef] [Green Version]
- Holmes, D. The cancer that rises with the sun. Nature 2014, 515, S110–S111. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zhang, N.; Yin, C.; Zhu, B.; Li, X. Ultraviolet Radiation and Melanomagenesis: From Mechanism to Immunotherapy. Front. Oncol. 2020, 10, 951. [Google Scholar] [PubMed]
- Ascierto, P.A.; Kirkwood, J.M.; Grob, J.J.; Simeone, E.; Grimaldi, A.M.; Maio, M.; Palmieri, G.; Testori, A.; Marincola, F.M.; Mozzillo, N. The role of BRAF V600 mutation in melanoma. J. Transl. Med. 2012, 10, 85. [Google Scholar] [CrossRef] [Green Version]
- Grob, J.J.; Amonkar, M.M.; Karaszewska, B.; Schachter, J.; Dummer, R.; Mackiewicz, A.; Stroyakovskiy, D.; Drucis, K.; Grange, F.; Chiarion-Sileni, V.; et al. Comparison of dabrafenib and trametinib combination therapy with vemurafenib monotherapy on health-related quality of life in patients with unresectable or metastatic cutaneous BRAF Val600-mutation-positive melanoma (COMBI-v): Results of a phase 3, open-label, randomised trial. Lancet. Oncol. 2015, 16, 1389–1398. [Google Scholar] [PubMed]
- Kelly, J.B.; Carlson, D.E.; Low, J.S.; Thacker, R.W. Novel trends of genome evolution in highly complex tropical sponge microbiomes. Microbiome 2022, 10, 164. [Google Scholar]
- Pires da Silva, I.; Lo, S.; Quek, C.; Gonzalez, M.; Carlino, M.S.; Long, G.V.; Menzies, A.M. Site-specific response patterns, pseudoprogression, and acquired resistance in patients with melanoma treated with ipilimumab combined with anti-PD-1 therapy. Cancer 2020, 126, 86–97. [Google Scholar]
- De Las Rivas, J.; Brozovic, A.; Izraely, S.; Casas-Pais, A.; Witz, I.P.; Figueroa, A. Cancer drug resistance induced by EMT: Novel therapeutic strategies. Arch. Toxicol. 2021, 95, 2279–2297. [Google Scholar] [PubMed]
- Dyshlovoy, S.A.; Honecker, F. Marine Compounds and Cancer: Updates 2020. Mar. Drugs 2020, 18, 609. [Google Scholar] [CrossRef]
- Proksch, P. Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon Off. J. Int. Soc. Toxinology 1994, 32, 639–655. [Google Scholar] [CrossRef]
- Calcabrini, C.; Catanzaro, E.; Bishayee, A.; Turrini, E.; Fimognari, C. Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Mar. Drugs 2017, 15, 310. [Google Scholar] [PubMed] [Green Version]
- Carpi, S.; Scoditti, E.; Polini, B.; Brogi, S.; Calderone, V.; Proksch, P.; Ebada, S.S.; Nieri, P. Pro-Apoptotic Activity of the Marine Sponge Dactylospongia elegans Metabolites Pelorol and 5-epi-Ilimaquinone on Human 501Mel Melanoma Cells. Mar. Drugs 2022, 20, 427. [Google Scholar] [CrossRef] [PubMed]
- Riccio, G.; Nuzzo, G.; Zazo, G.; Coppola, D.; Senese, G.; Romano, L.; Costantini, M.; Ruocco, N.; Bertolino, M.; Fontana, A.; et al. Bioactivity Screening of Antarctic Sponges Reveals Anticancer Activity and Potential Cell Death via Ferroptosis by Mycalols. Mar. Drugs 2021, 19, 459. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Xu, J.P.; Chapuis, J.C.; Pettit, R.K.; Tackett, L.P.; Doubek, D.L.; Hooper, J.N.; Schmidt, J.M. Antineoplastic agents. 520. Isolation and structure of irciniastatins A and B from the Indo-Pacific marine sponge Ircinia ramosa. J. Med. Chem. 2004, 47, 1149–1152. [Google Scholar] [CrossRef]
- BenRedjem Romdhane, Y.; Elbour, M.; Carbone, M.; Ciavatta, M.L.; Gavagnin, M.; Mathieu, V.; Lefranc, F.; Ktari, L.; Ben Mustapha, K.; Boudabous, A.; et al. In Vitro Growth Inhibitory Activities of Natural Products from Irciniid Sponges against Cancer Cells: A Comparative Study. BioMed Res. Int. 2016, 2016, 5318176. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Song, W.; Nothias, L.F.; Couvillion, S.P.; Webster, N.; Thomas, T. Comparative metabolomic analysis reveals shared and unique chemical interactions in sponge holobionts. Microbiome 2022, 10, 22. [Google Scholar]
- Hahn, D.; Chin, J.; Kim, H.; Yang, I.; Won, D.H.; Ekins, M.; Choi, H.; Nam, S.-J.; Kang, H. Sesquiterpenoids with PPARδ agonistic effect from a Korean marine sponge Ircinia sp. Tetrahedron Lett. 2014, 55, 4716–4719. [Google Scholar]
- Meng, Y.; Su, J.; Zeng, L. Chemical constituent studies on the marine sponge Stelletta tenuis (Lindgren). Zhongshan Da Xue Xue Bao Zi Ran Ke Xue Ban 1996, 35, 69–72. [Google Scholar]
- Ueoka, R.; Fujita, T.; Iwashita, T.; van Soest, R.W.; Matsunaga, S. Inconspicamide, new N-acylated serinol from the marine sponge Stelletta inconspicua. Biosci. Biotechnol. Biochem. 2008, 72, 3055–3058. [Google Scholar]
- De Rosa, S.; De Caro, S.; Tommonaro, G.; Slantchev, K.; Stefanov, K.; Popov, S. Development in a primary cell culture of the marine sponge Ircinia muscarum and analysis of the polar compounds. Mar. Biotechnol. 2001, 3, 281–286. [Google Scholar]
- Venkateswarlu, Y.; Rao, M.R.; Ramesh, P. A New Polyhydroxy Sterol from the Soft Coral Lobophytum crassum. J. Nat. Prod. 1997, 60, 1301–1302. [Google Scholar] [CrossRef]
- Abdelhafez, O.H.; Fahim, J.R.; Mustafa, M.; AboulMagd, A.M.; Desoukey, S.Y.; Hayallah, A.M.; Kamel, M.S.; Abdelmohsen, U.R. Natural metabolites from the soft coral Nephthea sp. as potential SARS-CoV-2 main protease inhibitors. Nat. Prod. Res. 2022, 36, 2893–2896. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-M.; Zhao, Y.-X.; Chen, J.-J.; Miao, Z.-H.; Zhou, J. A New Spongilipid from the Freshwater Sponge Spongilla lacustris. Bull. Korean Chem. Soc. 2009, 30, 1170–1172. [Google Scholar]
- Widmer, D.S.; Cheng, P.F.; Eichhoff, O.M.; Belloni, B.C.; Zipser, M.C.; Schlegel, N.C.; Javelaud, D.; Mauviel, A.; Dummer, R.; Hoek, K.S. Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment. Cell Melanoma Res. 2012, 25, 343–353. [Google Scholar] [PubMed]
- Liu, Q.; Peng, Z.; Shen, L.; Shen, L. Prognostic and Clinicopathological Value of Ki-67 in Melanoma: A Meta-Analysis. Front. Oncol. 2021, 11, 737760. [Google Scholar] [CrossRef]
- Nakamura, H.; Takada, K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021, 112, 3945–3952. [Google Scholar] [CrossRef]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar]
- Gorlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A mutual interplay. Redox Biol. 2015, 6, 260–271. [Google Scholar]
- Halasi, M.; Wang, M.; Chavan, T.S.; Gaponenko, V.; Hay, N.; Gartel, A.L. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors. Biochem. J. 2013, 454, 201–208. [Google Scholar]
- Kristjansdottir, K.; Rudolph, J. Cdc25 phosphatases and cancer. Chem. Biol. 2004, 11, 1043–1051. [Google Scholar]
- Pedri, D.; Karras, P.; Landeloos, E.; Marine, J.C.; Rambow, F. Epithelial-to-mesenchymal-like transition events in melanoma. FEBS J. 2022, 289, 1352–1368. [Google Scholar] [PubMed]
- Kaszak, I.; Witkowska-Pilaszewicz, O.; Niewiadomska, Z.; Dworecka-Kaszak, B.; Ngosa Toka, F.; Jurka, P. Role of Cadherins in Cancer-A Review. Int. J. Mol. Sci. 2020, 21, 7624. [Google Scholar]
- Yu, W.; Yang, L.; Li, T.; Zhang, Y. Cadherin Signaling in Cancer: Its Functions and Role as a Therapeutic Target. Front. Oncol. 2019, 9, 989. [Google Scholar] [PubMed] [Green Version]
- Tang, Y.; Durand, S.; Dalle, S.; Caramel, J. EMT-Inducing Transcription Factors, Drivers of Melanoma Phenotype Switching, and Resistance to Treatment. Cancers 2020, 12, 2154. [Google Scholar] [CrossRef]
- Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci. 2016, 8, 83–91. [Google Scholar] [PubMed]
- Montuori, E.; Capalbo, A.; Lauritano, C. Marine Compounds for Melanoma Treatment and Prevention. Int. J. Mol. Sci. 2022, 23, 10284. [Google Scholar]
- Millward, M.; Price, T.; Townsend, A.; Sweeney, C.; Spencer, A.; Sukumaran, S.; Longenecker, A.; Lee, L.; Lay, A.; Sharma, G.; et al. Phase 1 clinical trial of the novel proteasome inhibitor marizomib with the histone deacetylase inhibitor vorinostat in patients with melanoma, pancreatic and lung cancer based on in vitro assessments of the combination. Investig. New Drugs 2012, 30, 2303–2317. [Google Scholar]
- Potts, B.C.; Albitar, M.X.; Anderson, K.C.; Baritaki, S.; Berkers, C.; Bonavida, B.; Chandra, J.; Chauhan, D.; Cusack, J.C., Jr.; Fenical, W.; et al. Marizomib, a proteasome inhibitor for all seasons: Preclinical profile and a framework for clinical trials. Curr. Cancer Drug Targets 2011, 11, 254–284. [Google Scholar]
- Gogineni, V.; Oh, J.; Waters, A.L.; Kelly, M.; Stone, R.; Hamann, M.T. Monanchocidin A From Subarctic Sponges of the Genus Monanchora and Their Promising Selectivity Against Melanoma in vitro. Front. Mar. Sci. 2020, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Fiorini, L.; Tribalat, M.A.; Sauvard, L.; Cazareth, J.; Lalli, E.; Broutin, I.; Thomas, O.P.; Mus-Veteau, I. Natural paniceins from mediterranean sponge inhibit the multidrug resistance activity of Patched and increase chemotherapy efficiency on melanoma cells. Oncotarget 2015, 6, 22282–22297. [Google Scholar] [PubMed] [Green Version]
- Yuan, P.; Xu, B. Clinical Utility of Eribulin Mesylate in the Treatment of Breast Cancer: A Chinese Perspective. Breast Cancer 2021, 13, 135–150. [Google Scholar] [PubMed]
- Towle, M.J.; Nomoto, K.; Asano, M.; Kishi, Y.; Yu, M.J.; Littlefield, B.A. Broad spectrum preclinical antitumor activity of eribulin (Halaven(R)): Optimal effectiveness under intermittent dosing conditions. Anticancer. Res. 2012, 32, 1611–1619. [Google Scholar] [PubMed]
- Heidary Jamebozorgi, F.; Yousefzadi, M.; Firuzi, O.; Nazemi, M.; Zare, S.; Chandran, J.N.; Schneider, B.; Baldwin, I.T.; Jassbi, A.R. Cytotoxic furanosesquiterpenoids and steroids from Ircinia mutans sponges. Pharm. Biol. 2021, 59, 575–583. [Google Scholar] [CrossRef]
- Su, J.H.; Chang, W.B.; Chen, H.M.; El-Shazly, M.; Du, Y.C.; Kung, T.H.; Chen, Y.C.; Sung, P.J.; Ho, Y.S.; Kuo, F.W.; et al. 10-acetylirciformonin B, a sponge furanoterpenoid, induces DNA damage and apoptosis in leukemia cells. Molecules 2012, 17, 11839–11848. [Google Scholar] [CrossRef] [Green Version]
- Suski, J.M.; Lebiedzinska, M.; Bonora, M.; Pinton, P.; Duszynski, J.; Wieckowski, M.R. Relation between mitochondrial membrane potential and ROS formation. Methods Mol. Biol. 2012, 810, 183–205. [Google Scholar]
- Czarnecka, A.M.; Bartnik, E.; Fiedorowicz, M.; Rutkowski, P. Targeted Therapy in Melanoma and Mechanisms of Resistance. Int. J. Mol. Sci. 2020, 21, 4576. [Google Scholar]
- Patel, M.; Eckburg, A.; Gantiwala, S.; Hart, Z.; Dein, J.; Lam, K.; Puri, N. Resistance to Molecularly Targeted Therapies in Melanoma. Cancers 2021, 13, 1115. [Google Scholar]
- Huang, F.; Santinon, F.; Flores Gonzalez, R.E.; Del Rincon, S.V. Melanoma Plasticity: Promoter of Metastasis and Resistance to Therapy. Front. Oncol. 2021, 11, 756001. [Google Scholar]
- Vasarri, M.; Barletta, E.; Degl’Innocenti, D. Marine Migrastatics: A Comprehensive 2022 Update. Mar. Drugs 2022, 20, 273. [Google Scholar]
- Wang, J.; Liu, G.; Ma, W.; Lu, Z.; Sun, C. Marine Bacterial Polysaccharide EPS11 Inhibits Cancer Cell Growth and Metastasis via Blocking Cell Adhesion and Attenuating Filiform Structure Formation. Mar. Drugs 2019, 17, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malyarenko, O.S.; Usoltseva, R.V.; Zvyagintseva, T.N.; Ermakova, S.P. Laminaran from brown alga Dictyota dichotoma and its sulfated derivative as radioprotectors and radiosensitizers in melanoma therapy. Carbohydr. Polym. 2019, 206, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Barbosa, J.; Palhares, L.; Silva, C.H.F.; Sabry, D.A.; Chavante, S.F.; Rocha, H.A.O. In Vitro Antitumor Potential of Sulfated Polysaccharides from Seaweed Caulerpa cupressoides var. flabellata. Mar. Biotechnol. 2021, 23, 77–89. [Google Scholar] [CrossRef]
- Haass, N.K.; Smalley, K.S.; Li, L.; Herlyn, M. Adhesion, migration and communication in melanocytes and melanoma. Pigment. Cell Res. 2005, 18, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Tartaglione, L.; Gambuti, A.; De Cicco, P.; Ercolano, G.; Ianaro, A.; Taglialatela-Scafati, O.; Moio, L.; Forino, M. NMR-based phytochemical analysis of Vitis vinifera cv Falanghina leaves. Characterization of a previously undescribed biflavonoid with antiproliferative activity. Fitoterapia 2018, 125, 13–17. [Google Scholar] [CrossRef]
- Maresca, D.C.; Conte, L.; Romano, B.; Ianaro, A.; Ercolano, G. Antiproliferative and Proapoptotic Effects of Erucin, a Diet-Derived H(2)S Donor, on Human Melanoma Cells. Antioxidants 2022, 12, 41. [Google Scholar] [CrossRef] [PubMed]
- De Cicco, P.; Busa, R.; Ercolano, G.; Formisano, C.; Allegra, M.; Taglialatela-Scafati, O.; Ianaro, A. Inhibitory effects of cynaropicrin on human melanoma progression by targeting MAPK, NF-kappaB, and Nrf-2 signaling pathways in vitro. Phytother. Res. PTR 2021, 35, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
No | Family | tR (min) | Measured m/z | Molecular Formula | Identification | Relative Amount * | References |
---|---|---|---|---|---|---|---|
1 | sesquiterpenoid | 1.66 | 315.1940 | C17H30O5 | 3,4-furandiol, 3-[2-[(1S)-2,2-dimethyl-6-methylenecyclohexyl]ethyl]tetrahydro-2,5-dimethoxy | + | [17] |
2 | spongilipid | 6.99 | 475.3234 | C25H48O9 | 1-palmitoyl-3-β-D-galactosyl-glycerol | +++ | [18] |
3 | acylglycerol | 7.59 | 331.2827 | C19H38O4 | 2-Hexadecanoyl glycerol | ++ | [19] |
4 | ceramide | 12.32 | 368.3867 | C24H49NO | Tetracosanamide | +++ | [20] |
5 | N-acylated serinol | 13.60 | 372.3451 | C22H45O3N | Inconspicamide | ++ | [21] |
6 | sterol | 15.12 | 397.3077 | C27H40O2 | Ergosterol | + | [22] |
7 | sterol | 16.61 | 411.3235 | C28H42O2 | 3β-hydroxy-24-methylcholesta-5,8,22-trien-7-one | ++ | [23] |
8 | sterol | 16.99 | 381.3132 | C27H40O | Cholesta-4,6,8-trien-3-one | ++ | [24] |
9 | sterol | 18.46 | 383.3287 | C27H42O | Cholesta-4,6-dien-3-one | +++ | [21] |
10 | sterol | 18.82 | 409.3444 | C29H44O3 | Stigmasta-4,6,8-trien-3-one | ++ | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, B.; Maresca, D.C.; Somma, F.; Ahmadi, P.; Putra, M.Y.; Rahmawati, S.I.; Chianese, G.; Formisano, C.; Ianaro, A.; Ercolano, G. Ircinia ramosa Sponge Extract (iSP) Induces Apoptosis in Human Melanoma Cells and Inhibits Melanoma Cell Migration and Invasiveness. Mar. Drugs 2023, 21, 371. https://doi.org/10.3390/md21070371
Romano B, Maresca DC, Somma F, Ahmadi P, Putra MY, Rahmawati SI, Chianese G, Formisano C, Ianaro A, Ercolano G. Ircinia ramosa Sponge Extract (iSP) Induces Apoptosis in Human Melanoma Cells and Inhibits Melanoma Cell Migration and Invasiveness. Marine Drugs. 2023; 21(7):371. https://doi.org/10.3390/md21070371
Chicago/Turabian StyleRomano, Benedetta, Daniela Claudia Maresca, Fabio Somma, Peni Ahmadi, Masteria Yunovilsa Putra, Siti Irma Rahmawati, Giuseppina Chianese, Carmen Formisano, Angela Ianaro, and Giuseppe Ercolano. 2023. "Ircinia ramosa Sponge Extract (iSP) Induces Apoptosis in Human Melanoma Cells and Inhibits Melanoma Cell Migration and Invasiveness" Marine Drugs 21, no. 7: 371. https://doi.org/10.3390/md21070371
APA StyleRomano, B., Maresca, D. C., Somma, F., Ahmadi, P., Putra, M. Y., Rahmawati, S. I., Chianese, G., Formisano, C., Ianaro, A., & Ercolano, G. (2023). Ircinia ramosa Sponge Extract (iSP) Induces Apoptosis in Human Melanoma Cells and Inhibits Melanoma Cell Migration and Invasiveness. Marine Drugs, 21(7), 371. https://doi.org/10.3390/md21070371