Pepsin Hydrolysate from Surimi Industry-Related Olive Flounder Head Byproducts Attenuates LPS-Induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages and In Vivo Zebrafish Model
Abstract
:1. Introduction
2. Results
2.1. Yield and Chemical Composition
2.2. Cytotoxicity, NO, and Intracellular ROS Production in RAW 264.7 Cells
2.3. Amino Acid Composition Analysis and Molecular Weight Determination
2.4. PGE2, and Pro-Inflammatory Cytokine Production
2.5. iNOS and COX-2 Expression
2.6. In Vivo Studies
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Fish Byproduct Materials
4.3. Preparation of Samples: Enzyme Hydrolysis
4.4. Proximate Composition of the Samples
4.5. Cell Culture
4.5.1. Raw 264.7 Macrophage Cell Line
4.5.2. Sample Toxicity
4.5.3. LPS-Induced NO Production
4.5.4. LPS-Induced Intracellular ROS Production
4.6. Amino Acid Composition
4.7. Molecular Weight
4.8. Pro-Inflammatory Cytokine and PGE2 Production
4.9. Western Blot Analysis
4.10. Survival Percentage, and Heatbeating Rate of Zebrafish Model
4.11. Cell Death, NO Production, and Intracellular ROS Activity in Zebrafish Model
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sila, A.; Bougatef, A. Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review. J. Funct. Foods 2016, 21, 10–26. [Google Scholar] [CrossRef]
- Benjakul, S.; Yarnpakdee, S.; Senphan, T.; Halldorsdottir, S.M.; Kristinsson, H.G. Fish protein hydrolysates: Production, bioactivities, and applications. Antioxid. Funct. Compon. Aquat. Foods 2014, 237–281. [Google Scholar]
- Herpandi, H.; Rosma, A.; Nadiah, W.; Febrianto, N.; Huda, N. Optimization of enzymatic hydrolysis of skipjack tuna by-product using protamex®: A response surface approach. J. Fundam. Appl. Sci. 2017, 9, 845–860. [Google Scholar] [CrossRef]
- Honrado, A.; Ardila, P.; Leciñena, P.; Beltrán, J.A.; Calanche, J.B. Transforming ‘Bonito del Norte’ Tuna By-Products into Functional Ingredients for Nutritional Enhancement of Cereal-Based Foods. Foods 2023, 12, 4437. [Google Scholar] [CrossRef] [PubMed]
- Coppola, D.; Lauritano, C.; Palma Esposito, F.; Riccio, G.; Rizzo, C.; de Pascale, D. Fish Waste: From Problem to Valuable Resource. Mar. Drugs 2021, 19, 116. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Sillero, J.; Gharsallaoui, A.; Prentice, C. Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: An Overview. Mar. Biotechnol. 2018, 20, 118–130. [Google Scholar] [CrossRef] [PubMed]
- González-Serrano, D.J.; Hadidi, M.; Varcheh, M.; Jelyani, A.Z.; Moreno, A.; Lorenzo, J.M. Bioactive Peptide Fractions from Collagen Hydrolysate of Common Carp Fish Byproduct: Antioxidant and Functional Properties. Antioxidants 2022, 11, 509. [Google Scholar] [CrossRef]
- Dong, Y.; Yan, W.; Zhang, Y.-Q.; Dai, Z.-Y. A novel angiotensin-converting enzyme (ACE) inhibitory peptide from tilapia skin: Preparation, identification and its potential antihypertensive mechanism. Food Chem. 2024, 430, 137074. [Google Scholar] [CrossRef]
- Ortizo, R.G.G.; Sharma, V.; Tsai, M.-L.; Wang, J.-X.; Sun, P.-P.; Nargotra, P.; Kuo, C.-H.; Chen, C.-W.; Dong, C.-D. Extraction of Novel Bioactive Peptides from Fish Protein Hydrolysates by Enzymatic Reactions. Appl. Sci. 2023, 13, 5768. [Google Scholar] [CrossRef]
- Kim, K.H.; Moon, H.N.; Noh, Y.H.; Yeo, I.K. Influence of Osmolality and Acidity on Fertilized Eggs and Larvae of Olive Flounder (Paralichthys olivaceus). Dev. Reprod. 2020, 24, 19–30. [Google Scholar] [CrossRef]
- Jayawardhana, H.H.A.C.K.; Oh, J.Y.; Jayawardena, T.U.; Sanjeewa, K.K.A.; Liyanage, N.M.; Nagahawatta, D.P.; Hyun, J.; Son, K.-T.; Jeon, Y.-J.; Park, J. Protective Effect of Fish Gut Hydrolysates from Olive Flounder (Paralichthys olivaceus) Surimi Byproducts Against AAPH-Induced Oxidative Stress in In Vitro and In Vivo Zebrafish Models. J. Aquat. Food Prod. Technol. 2022, 31, 924–938. [Google Scholar] [CrossRef]
- Ko, J.-Y.; Lee, J.-H.; Samarakoon, K.; Kim, J.-S.; Jeon, Y.-J. Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases. Food Chem. Toxicol. 2013, 52, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Nikoo, M.; Regenstein, J.M.; Haghi Vayghan, A.; Walayat, N. Formation of Oxidative Compounds during Enzymatic Hydrolysis of Byproducts of the Seafood Industry. Processes 2023, 11, 543. [Google Scholar] [CrossRef]
- Chaszczewska-Markowska, M.; Górna, K.; Bogunia-Kubik, K.; Brzecka, A.; Kosacka, M. The Influence of Comorbidities on Chemokine and Cytokine Profile in Obstructive Sleep Apnea Patients: Preliminary Results. J. Clin. Med. 2023, 12, 801. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.; Shin, J.-S.; Lee, J.; Lee, I.-H.; Lee, S.K.; Ha, I.-H.; Chung, H.-J. Anti-inflammatory effect of Cortex Eucommiae via modulation of the toll-like receptor 4 pathway in lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Ethnopharmacol. 2017, 209, 255–263. [Google Scholar] [CrossRef]
- Stewart, A.; Beart, P. Inflammation: Maladies, Models, Mechanisms and Molecules; Wiley Online Library: Hoboken, NJ, USA, 2016; Volume 173, pp. 631–634. [Google Scholar]
- Sun, H.; Cai, W.; Wang, X.; Liu, Y.; Hou, B.; Zhu, X.; Qiu, L. Vaccaria hypaphorine alleviates lipopolysaccharide-induced inflammation via inactivation of NFκB and ERK pathways in Raw 264.7 cells. BMC Complement. Altern. Med. 2017, 17, 120. [Google Scholar] [CrossRef]
- Choi, H.-E.; Kwak, H.J.; Kim, S.K.; Cheon, H.G. Foenumoside B isolated from Lysimachia foenum-graecum extract suppresses LPS-induced inflammatory response via NF-κB/AP-1 inactivation in murine macrophages and in endotoxin-induced shock model. Eur. J. Pharmacol. 2018, 832, 120–128. [Google Scholar] [CrossRef]
- Liang, N.; Sang, Y.; Liu, W.; Yu, W.; Wang, X. Anti-Inflammatory Effects of Gingerol on Lipopolysaccharide-Stimulated RAW 264.7 Cells by Inhibiting NF-κB Signaling Pathway. Inflammation 2018, 41, 835–845. [Google Scholar] [CrossRef]
- Yang, C.-l.; Wang, S.-b.; He, W.-p.; Liu, J.-j. Anti-oxidant and Anti-inflammatory Effects of Ethanol Extract from Polygala sibirica L. var megalopha Fr. on Lipopolysaccharide-Stimulated RAW264.7 Cells. Chin. J. Integr. Med. 2023, 29, 905–913. [Google Scholar] [CrossRef]
- Suschek, C.V.; Feibel, D.; von Kohout, M.; Opländer, C. Enhancement of Nitric Oxide Bioavailability by Modulation of Cutaneous Nitric Oxide Stores. Biomedicines 2022, 10, 2124. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.; Li, K.; Yuan, D.; Yang, S.; Zhou, L.; Zhao, Y.; Miao, S.; Lv, C.; Zhao, J. COX-2/PGE2 Pathway Inhibits the Ferroptosis Induced by Cerebral Ischemia Reperfusion. Mol. Neurobiol. 2022, 59, 1619–1631. [Google Scholar] [CrossRef] [PubMed]
- Sung, N.-Y.; Jung, P.-M.; Yoon, M.; Kim, J.-S.; Choi, J.-i.; Jeong, H.G.; Lee, J.-W.; Kim, J.-H. Anti-inflammatory effect of sweetfish-derived protein and its enzymatichydrolysate on LPS-induced RAW264.7 cells via inhibition of NF-κB transcription. Fish. Sci. 2012, 78, 381–390. [Google Scholar] [CrossRef]
- Shim, J.H. Anti-Inflammatory Effect of Carex scabrifolia Steud. Extract in RAW264. 7 Cells. Microbiol. Biotechnol. Lett. 2022, 50, 354–360. [Google Scholar] [CrossRef]
- Ihsan, A.U.; Khan, F.U.; Khongorzul, P.; Ahmad, K.A.; Naveed, M.; Yasmeen, S.; Cao, Y.; Taleb, A.; Maiti, R.; Akhter, F.; et al. Role of oxidative stress in pathology of chronic prostatitis/chronic pelvic pain syndrome and male infertility and antioxidants function in ameliorating oxidative stress. Biomed. Pharmacother. 2018, 106, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Jayawardhana, H.H.A.C.K.; Lee, H.-G.; Liyanage, N.M.; Nagahawatta, D.P.; Ryu, B.; Jeon, Y.-J. Structural characterization and anti-inflammatory potential of sulfated polysaccharides from Scytosiphon lomentaria; attenuate inflammatory signaling pathways. J. Funct. Foods 2023, 102, 105446. [Google Scholar] [CrossRef]
- Samrani, L.M.M.; Pennings, J.L.A.; Hallmark, N.; Bars, R.; Tinwell, H.; Pallardy, M.; Piersma, A.H. Dynamic regulation of gene expression and morphogenesis in the zebrafish embryo test after exposure to all-trans retinoic acid. Reprod. Toxicol. 2023, 115, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Yu, Y.; Shi, H.; Tian, L.; Guo, C.; Huang, P.; Zhou, X.; Peng, S.; Sun, Z. Toxic effects of silica nanoparticles on zebrafish embryos and larvae. PLoS ONE 2013, 8, e74606. [Google Scholar] [CrossRef]
- Oliveira, B.C.C.; Machado, M.; Machado, S.; Costa, A.S.G.; Bessada, S.; Alves, R.C.; Oliveira, M.B.P.P. Algae Incorporation and Nutritional Improvement: The Case of a Whole-Wheat Pasta. Foods 2023, 12, 3039. [Google Scholar] [CrossRef]
- Han, H.-J.; Hyun, C.-G. Acenocoumarol Exerts Anti-Inflammatory Activity via the Suppression of NF-κB and MAPK Pathways in RAW 264.7 Cells. Molecules 2023, 28, 2075. [Google Scholar] [CrossRef]
- Oh, S.; Choi, M.J. Evaluation of Quality Characteristics of Broth Packets with Different Treatment of Dolsan Mustard Seeds. J. Life Sci. 2022, 32, 667–677. [Google Scholar]
- Cha, J.W.; Yoon, I.S.; Lee, G.W.; Kang, S.I.; Park, S.Y.; Kim, J.S.; Heu, M.S. Food functionalities and bioactivities of protein isolates recovered from skipjack tuna roe by isoelectric solubilization and precipitation. Food Sci. Nutr. 2020, 8, 1874–1887. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, N.M.; Nagahawatta, D.P.; Jayawardhana, H.H.A.C.K.; Jayawardena, T.U.; Kim, Y.-S.; Lee, H.-G.; Park, Y.-J.; Jeon, Y.-J. Therapeutic effect of Sargassum swartzii against urban particulate matter–induced lung inflammation via toll-like receptor-mediated NF-κB pathway inhibition. Algal Res. 2023, 71, 103045. [Google Scholar] [CrossRef]
- Kim, S.; Kim, M.; Kang, M.-C.; Lee, H.H.L.; Cho, C.H.; Choi, I.; Park, Y.; Lee, S.-H. Antioxidant Effects of Turmeric Leaf Extract against Hydrogen Peroxide-Induced Oxidative Stress In Vitro in Vero Cells and In Vivo in Zebrafish. Antioxidants 2021, 10, 112. [Google Scholar] [CrossRef] [PubMed]
Constituents | Proximate Composition (%) |
---|---|
Protein | 56.48 ± 3.02 |
Lipid | 17.01 ± 1.45 |
Polysaccharide | 5.61 ± 0.68 |
Ash | 17.51 ± 1.35 |
Moisture | 3.39 ± 0.98 |
Hydrolysate | Yield (%) | Protein Content (%) |
---|---|---|
Control (Distilled water) | 18.24 ± 0.22 | 34.55 ± 1.47 |
Alcalase | 39.00 ± 2.94 *** | 43.05 ± 1.23 ** |
Kojizyme | 35.67 ± 0.47 ** | 47.62 ± 0.61 **** |
Flavourzyme | 36.33 ± 3.40 ** | 41.46 ± 1.76 ** |
Neutrase | 39.33 ± 3.40 *** | 43.81 ± 0.46 *** |
Protamax | 44.33 ± 3.77 *** | 52.06 ± 0.15 **** |
Pepsin | 46.50 ± 0.50 **** | 45.97 ± 0.77 *** |
Trypsin | 26.67 ± 1.25 | 40.56 ± 1.07 * |
Hydrolysate | IC50 Value (µg/mL) |
---|---|
Alcalase | 731.74 ± 8.47 **** |
Kojizyme | 902.93 ± 11.72 **** |
Flavourzyme | 451.72 ± 10.24 *** |
Neutrase | 1033.33 ± 6.28 **** |
Protamax | 1357.89 ± 14.94 **** |
Pepsin | 299.82 ± 4.18 |
Trypsin | 1800.12 ± 19.55 **** |
Constituent Amino Acids | Composition mg/g | Percentage (%) |
---|---|---|
Aspartic acid | 69.93 | 8.16 |
Threonine | 34.03 | 3.97 |
Serine | 42.02 | 4.90 |
Glutamic acid | 110.50 | 12.89 |
Proline | 72.97 | 8.51 |
Glycine | 133.64 | 15.59 |
Alanine | 73.54 | 8.58 |
Cysteine | 3.18 | 0.37 |
Valine | 33.73 | 3.94 |
Methionine | 24.37 | 2.84 |
Isoleucine | 23.37 | 2.73 |
Leucin | 45.25 | 5.28 |
Tyrosine | 16.42 | 1.92 |
Phenylalanine | 27.06 | 3.16 |
Histadine | 23.14 | 2.70 |
Lysine | 52.71 | 6.15 |
Arginine | 71.18 | 8.30 |
Total | 857.09 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayawardhana, H.H.A.C.K.; Liyanage, N.M.; Nagahawatta, D.P.; Lee, H.-G.; Jeon, Y.-J.; Kang, S.I. Pepsin Hydrolysate from Surimi Industry-Related Olive Flounder Head Byproducts Attenuates LPS-Induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages and In Vivo Zebrafish Model. Mar. Drugs 2024, 22, 24. https://doi.org/10.3390/md22010024
Jayawardhana HHACK, Liyanage NM, Nagahawatta DP, Lee H-G, Jeon Y-J, Kang SI. Pepsin Hydrolysate from Surimi Industry-Related Olive Flounder Head Byproducts Attenuates LPS-Induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages and In Vivo Zebrafish Model. Marine Drugs. 2024; 22(1):24. https://doi.org/10.3390/md22010024
Chicago/Turabian StyleJayawardhana, H. H. A. C. K., N. M. Liyanage, D. P. Nagahawatta, Hyo-Geun Lee, You-Jin Jeon, and Sang In Kang. 2024. "Pepsin Hydrolysate from Surimi Industry-Related Olive Flounder Head Byproducts Attenuates LPS-Induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages and In Vivo Zebrafish Model" Marine Drugs 22, no. 1: 24. https://doi.org/10.3390/md22010024
APA StyleJayawardhana, H. H. A. C. K., Liyanage, N. M., Nagahawatta, D. P., Lee, H. -G., Jeon, Y. -J., & Kang, S. I. (2024). Pepsin Hydrolysate from Surimi Industry-Related Olive Flounder Head Byproducts Attenuates LPS-Induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages and In Vivo Zebrafish Model. Marine Drugs, 22(1), 24. https://doi.org/10.3390/md22010024