Deciphering the Glycosylation Steps in the Biosynthesis of P-1894B and Grincamycin Isolated from Marine-Derived Streptomyces lusitanus SCSIO LR32
Abstract
:1. Introduction
2. Results
2.1. Construction and Metabolite Analysis of Mutant ΔgcnG3
2.2. Construction and Metabolite Analysis of Mutants ΔgcnG2 and ΔgcnG1
2.3. Construction and Metabolite Analysis of Mutant ΔgcnG1G2
2.4. Products of Mutant ΔgcnG3~ΔgcnG1 and ΔgcnG1G2 in Modified RA Medium
3. Discussion
3.1. Functional Characterizations of GcnG1~GcnG3
3.2. The Glycosylation Pathway of P-1894B and Grincamycin
3.3. The Glycosylation Pathway of Compounds with Tricyclic Aglycone
4. Materials and Methods
4.1. Materials and General Experimental Procedures
4.2. Gene Inactivation Experiments
4.3. Fermentation of Mutant Strains
4.4. Isolation of Grincamycin Analogues from Mutant Strains
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rohr, J.; Thiericke, R. Angucycline group antibiotics. Nat. Prod. Rep. 1992, 9, 103–137. [Google Scholar] [CrossRef]
- Kharel, M.K.; Pahari, P.; Shepherd, M.D.; Tibrewal, N.; Nybo, S.E.; Shaaban, K.A.; Rohr, J. Angucyclines: Biosynthesis, mode-of-action, new natural products, and synthesis. Nat. Prod. Rep. 2012, 29, 264–325. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Woodward, J.; Hourani, A.; Zhu, D.; Ayoub, S.; Zhu, J. Synthesis of the 2-deoxy trisaccharide glycal of antitumor antibiotics landomycins A and E. Carbohydr. Res. 2016, 430, 54–58. [Google Scholar] [CrossRef]
- Luzhetskyy, A.; Vente, A.; Bechthold, A. Glycosyltransferases involved in the biosynthesis of biologically active natural products that contain oligosaccharides. Mol. Biosyst. 2005, 1, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Luzhetskyy, A.; Fedoryshyn, M.; Dürr, C.; Taguchi, T.; Novikov, V.; Bechthold, A. Iteratively acting glycosyltransferases involved in the hexasaccharide biosynthesis of landomycin A. Chem. Biol. 2005, 12, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Trefzer, A.; Hoffmeister, D.; Künzel, E.; Stockert, S.; Weitnauer, G.; Westrich, L.; Rix, U.; Fuchser, J.; Bindseil, K.U.; Rohr, J.; et al. Function of glycosyltransferase genes involved in urdamycin A biosynthesis. Chem. Biol. 2000, 7, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeister, D.; Ichinose, K.; Domann, S.; Faust, B.; Trefzer, A.; Dräger, G.; Kirschning, A.; Fischer, C.; Künzel, E.; Bearden, D.; et al. The NDP-sugar co-substrate concentration and the enzyme expression level influence the substrate specificity of glycosyltransferases: Cloning and characterization of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster. Chem. Biol. 2000, 7, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Erb, A.; Luzhetskyy, A.; Hardter, U.; Bechthold, A. Cloning and sequencing of the biosynthetic gene cluster for saquayamycin Z and galtamycin B and the elucidation of the assembly of their saccharide chains. ChemBioChem 2009, 10, 1392–1401. [Google Scholar] [CrossRef]
- Salem, S.M.; Weidenbach, S.; Rohr, J. Two cooperative glycosyltransferases are responsible for the sugar diversity of saquayamycins isolated from Streptomyces sp. KY 40-1. ACS Chem. Biol. 2017, 12, 2529–2534. [Google Scholar] [CrossRef]
- Wang, G.; Kharel, M.K.; Pahari, P.; Rohr, J. Investigating mithramycin deoxysugar biosynthesis: Enzymatic total synthesis of TDP-D-olivose. ChemBioChem 2011, 12, 2568–2571. [Google Scholar] [CrossRef]
- Fidan, O.; Yan, R.; Gladstone, G.; Zhou, T.; Zhu, D.; Zhan, J. New insights into the glycosylation steps in the biosynthesis of Sch47554 and Sch47555. ChemBioChem 2018, 19, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Ohta, K.; Kamiya, K. X-ray crystal structure of P-1894B, a collagen proline hydroxylase inhibitor produced by Streptomyces albogriseolus subsp. No. 1894. J. Chem. Soc. Chem. Commun. 1981, 4, 154–155. [Google Scholar] [CrossRef]
- Okazaki, H.; Ohta, K.; Kanamaru, T.; Ishimaru, T.; Kishi, T. A potent prolyl hydroxylase inhibitor, P-1894B, produced by a strain of Streptomyces. J. Antibiot. 1981, 34, 1355–1356. [Google Scholar] [CrossRef] [PubMed]
- Imamura, N.; Kakinuma, K.; Ikekawa, N.; Tanaka, H.; Satoshi, Ō. Identification of the aglycon part of vineomycin A1 with aquayamycin. Chem. Pharm. Bull. 1981, 29, 1788–1790. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Iwakiri, T.; Imamura, K.; Seto, H.; Otake, N. Studies on the isotetracenone antibiotics. III. A new isotetracenone antibiotic, grincamycin. J. Antibiot. 1987, 40, 1785–1787. [Google Scholar] [CrossRef]
- Huang, H.; Yang, T.; Ren, X.; Liu, J.; Song, Y.; Sun, A.; Ma, J.; Wang, B.; Zhang, Y.; Huang, C.; et al. Cytotoxic angucycline class glycosides from the deep sea actinomycete Streptomyces lusitanus SCSIO LR32. J. Nat. Prod. 2012, 75, 202–208. [Google Scholar] [CrossRef]
- Zhu, X.; Duan, Y.; Cui, Z.; Wang, Z.; Li, Z.; Zhang, Y.; Ju, J.; Huang, H. Cytotoxic rearranged angucycline glycosides from deep sea-derived Streptomyces lusitanus SCSIO LR32. J. Antibiot. 2017, 70, 819–822. [Google Scholar] [CrossRef]
- Ishimaru, T.; Kanamaru, T.; Takahashi, T.; Ohta, K.; Okazaki, H. Inhibition of prolyl hydroxylase activity and collagen biosynthesis by the anthraquinone glycoside, P-1894B, an inhibitor produced by Streptomyces albogriseolus. Biochem. Pharmacol. 1982, 31, 915–919. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, H.; Chen, Q.; Luo, M.; Sun, A.; Song, Y.; Ma, J.; Ju, J. Identification of the grincamycin gene cluster unveils divergent roles for GcnQ in different hosts, tailoring the L-rhodinose moiety. Org. Lett. 2013, 15, 3254–3257. [Google Scholar] [CrossRef]
- Westrich, L.; Domann, S.; Faust, B.; Bedford, D.; Hopwood, D.A.; Bechthold, A. Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol. Lett. 1999, 170, 381–387. [Google Scholar] [CrossRef]
- Kaliappan, K.P.; Ravikumar, V. Angucyclinone antibiotics: Total syntheses of YM-181741, (+)-ochromycinone, (+)-rubiginone B2, (−)-tetrangomycin, and MM-47755. J. Org. Chem. 2007, 72, 6116–6126. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, K.A.; Ahmed, T.A.; Leggas, M.; Rohr, J. Saquayamycins G-K, cytotoxic angucyclines from Streptomyces sp. Including two analogues bearing the aminosugar rednose. J. Nat. Prod. 2012, 75, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Imoto, M.; Watanabe, Y.; Miura, K.; Dobashi, T.; Matsuda, N.; Sawa, T.; Naganawa, H.; Hamada, M.; Takeuchi, T. Saquayamycins, new aquayamycin-group antibiotics. J. Antibiot. 1985, 38, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
- Sezaki, M.; Kondo, S.; Maeda, K.; Umezawa, H.; Ono, M. The structure of aquayamycin. Tetrahedron 1970, 26, 5171–5190. [Google Scholar] [CrossRef] [PubMed]
- Kusumi, S.; Nakayama, H.; Kobayashi, T.; Kuriki, H.; Matsumoto, Y.; Takahashi, D.; Toshima, K. Total synthesis of aquayamycin. Chemistry 2016, 22, 18733–18736. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Yu, J.; Ling, H.; Song, Y.; Yuan, J.; Ju, J.; Tao, Y.; Huang, H. Grincamycins I-K, cytotoxic angucycline glycosides derived from marine-derived actinomycete Streptomyces lusitanus SCSIO LR32. Planta Med. 2018, 84, 201–207. [Google Scholar] [CrossRef]
- Ueberbacher, B.J.; Osprian, I.; Mayer, S.F.; Faber, K. A chemoenzymatic, enantioconvergent, asymmetric total synthesis of (R)-fridamycin E. Eur. J. Org. Chem. 2005, 7, 1266–1270. [Google Scholar] [CrossRef]
- Maskey, R.P.; Helmke, E.; Laatsch, H. Himalomycin A and B: Isolation and structure elucidation of new fridamycin type antibiotics from a marine Streptomyces isolate. J. Antibiot. 2003, 56, 942–949. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Lee, S.R.; Hwang, J.Y.; Benndorf, R.; Beemelmanns, C.; Chung, S.J.; Kim, K.H. Fridamycin A, a microbial natural product, stimulates glucose uptake without Inducing adipogenesis. Nutrients 2019, 11, 765. [Google Scholar] [CrossRef]
- Imamura, N.; Kakinuma, K.; Ikekawa, N.; Tanaka, H.; Omura, S. The structure of vineomycin B2. J. Antibiot. 1981, 34, 1517–1518. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.X.; Zhao, W.C.; Huang, H.B.; Wang, J.Q.; Zhang, H.; Lu, J.Y.; Wang, R.N.; Li, W.; Cheng, Z.; et al. Identification and characterization of isocitrate dehydrogenase 1 (IDH1) as a functional target of marine natural product grincamycin B. Acta Pharmacol. Sin. 2021, 42, 801–813. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Sun, S.; Cao, M.; Mao, M.; He, J.; Gai, Q.; Qin, Y.; Yao, X.; Lu, H.; Chen, F.; et al. Grincamycin B functions as a potent inhibitor for glioblastoma stem cell via targeting RHOA and PI3K/AKT. ACS Chem. Neurosci. 2020, 11, 2256–2265. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Ferris, Z.E.; Sweeney, D.; Chase, A.B.; Yuan, C.; Hui, Y.; Hou, L.; Older, E.A.; Xue, D.; Tang, X.; et al. Grincamycins P-T: Rearranged angucyclines from the marine sediment-derived Streptomyces sp. CNZ-748 inhibit cell lines of the rare cancer pseudomyxoma peritonei. J. Nat. Prod. 2021, 84, 1638–1648. [Google Scholar] [CrossRef] [PubMed]
Gincamycin U (3a) | Gincamycin V (3′) | ||||
---|---|---|---|---|---|
δC, Type | δH, multi. (J in Hz) | δC, Type | δH, multi. (J in Hz) | ||
1 | 198.6, C | 1 | 160.9, C | ||
2 | 52.8, CH2 | 3.18, d (15.5); | 2 | 134.9, C | |
2.87, d (15.5) | |||||
3 | 77.8, C | 3 | 139.5, CH | 7.60, d (7.7) | |
4 | 42.6, CH2 | 3.29, d (16.5); | 4 | 118.7, CH | 7.42, d (7.7) |
3.10, d (16.5) | |||||
4a | 149.7, C | 4a | 131.2, C | ||
5 | 134.4, CH | 7.56, d (7.3) | 5 | 158.1, C | |
6 | 130.3, CH | 8.06, d (7.3) | 6 | 138.2, C | |
6a | 134.5, C | 7 | 132.7, CH | 7.70, d (7.7) | |
7 | 188.7, C | 8 | 117.9, CH | 7.45, d (7.7) | |
7a | 115.8, C | 8a | 131.1, C | ||
8 | 158.9, C | 9 | 187.3, C | ||
9 | 138.2, C | 9a | 114.9, C | ||
10 | 134.8, CH | 7.75, d (7.7) | 10 | 187.3, C | |
11 | 119.9, CH | 7.42, d (7.7) | 10a | 114.7, C | |
11a | 135.0, C | 11 | 38.0, CH2 | 3.21, d (13.0); 3.06, d (13.0) | |
12 | 183.8, C | 12 | 77.2, C | ||
12a | 136.7, C | 13 | 44.1, CH2 | 2.76, d (15.0); 2.61, d (15.0) | |
12b | 136.7, C | 14 | 173.3, C | ||
13 | 26.3,CH3 | 1.49, s | 15 | 22.3, CH3 | 1.44, s |
olivose | olivose | ||||
1′ | 72.4, CH | 4.77, d (11.2) | 1′ | 71.1, CH | 4.74, d (11.9) |
2′ | 40.9, CH2 | 2.46, dd (11.2, 4.0); | 2′ | 39.5, CH2 | 2.49, dd (11.9, 3.5); |
1.37, t (11.3) | 1.40, m | ||||
3′ | 73.6, CH | 3.72, ddd (11.4, 9.0, 4.9) | 3′ | 72.3, CH | 3.74, m |
4′ | 78.8, CH | 3.06, t (9.0) | 4′ | 77.4, CH | 3.10, t (8.9) |
5′ | 77.7, CH | 3.46, m | 5′ | 76.3, CH | 3.44, m |
6′ | 18.8, CH3 | 1.39, d (6.0) | 6′ | 17.4, CH3 | 1.42, overlapped |
rhodinose | rhodinose 1 | ||||
1″ | 92.9, CH | 5.10, brs | 1″ | 91.3, CH | 5.23, brs |
2″ | 26.0, CH2 | 1.80, m; 1.50, m | 2″ | 25.4, CH2 | 2.08, m; 1.42, m |
3″ | 25.2, CH2 | 1.70, m | 3″ | 24.3, CH2 | 2.10, m; 1.85, m |
4″ | 77.6, CH | 3.49, s | 4″ | 75.1, CH | 3.48, m |
5″ | 67.8, CH | 3.97, q (6.5) | 5″ | 66.7, CH | 4.11, m |
6″ | 17.5, CH3 | 1.12, d (6.5) | 6″ | 16.2, CH3 | 1.10, d (6.4) |
aculose | rhodinose 2 | ||||
1‴ | 96.4, CH | 5.19, d (3.2) | 1‴ | 98.6, CH | 4.77, brs |
2‴ | 145.5, CH | 6.95, dd (10.2, 3.2) | 2‴ | 29.5, CH2 | 1.93, m; 1.69, m |
3‴ | 127.5, CH | 6.00, d (10.2) | 3‴ | 27.1, CH2 | 1.80, m |
4‴ | 198.4, C | 4‴ | 71.4, CH2 | 3.18, m | |
5‴ | 71.4, CH | 4.47, q (6.7) | 5‴ | 70.0, CH | 3.69, m |
6‴ | 15.5, CH3 | 1.17, d (6.7) | 6‴ | 17.0, CH3 | 1.44, overlapped |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Zhang, Y.; Song, Y.; Ling, C.; Peng, S.; Ding, B.; Tao, Y.; Ju, J. Deciphering the Glycosylation Steps in the Biosynthesis of P-1894B and Grincamycin Isolated from Marine-Derived Streptomyces lusitanus SCSIO LR32. Mar. Drugs 2024, 22, 32. https://doi.org/10.3390/md22010032
Huang H, Zhang Y, Song Y, Ling C, Peng S, Ding B, Tao Y, Ju J. Deciphering the Glycosylation Steps in the Biosynthesis of P-1894B and Grincamycin Isolated from Marine-Derived Streptomyces lusitanus SCSIO LR32. Marine Drugs. 2024; 22(1):32. https://doi.org/10.3390/md22010032
Chicago/Turabian StyleHuang, Hongbo, Yun Zhang, Yongxiang Song, Chunyao Ling, Siyan Peng, Bo Ding, Yiwen Tao, and Jianhua Ju. 2024. "Deciphering the Glycosylation Steps in the Biosynthesis of P-1894B and Grincamycin Isolated from Marine-Derived Streptomyces lusitanus SCSIO LR32" Marine Drugs 22, no. 1: 32. https://doi.org/10.3390/md22010032
APA StyleHuang, H., Zhang, Y., Song, Y., Ling, C., Peng, S., Ding, B., Tao, Y., & Ju, J. (2024). Deciphering the Glycosylation Steps in the Biosynthesis of P-1894B and Grincamycin Isolated from Marine-Derived Streptomyces lusitanus SCSIO LR32. Marine Drugs, 22(1), 32. https://doi.org/10.3390/md22010032