Potential of Marine Sponge Metabolites against Prions: Bromotyrosine Derivatives, a Family of Interest
Abstract
:1. Introduction
2. Results and Discussion
2.1. Primary Screening of Various Marine Organism Extracts against [PSI+] and [URE3] Yeast Prions
2.2. Bioguided Isolation and Identification of Bioactive Compounds from Suberea laboutei
2.3. Anti-Prion Activity of Bromotyrosine Derivatives from Sponges of the Order Verongiida
2.4. Endoplasmic Reticulum Stress Reduction Activity of Bromotyrosine Derivatives
3. Materials and Methods
3.1. General Experimental Procedure
3.2. Biological Material
3.3. Extraction and Isolation
3.4. Yeast-Based Anti-Prion Screening Assay
3.5. PrPSc Clearance Assay
3.6. Immunoblots
3.7. Cytoprotection Assay
3.8. CHOP Expression Level
3.9. Statistics and Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffith, J.S. Nature of the Scrapie Agent: Self-Replication and Scrapie. Nature 1967, 215, 1043–1044. [Google Scholar] [CrossRef] [PubMed]
- Prusiner, S.B. Novel Proteinaceous Infectious Particles Cause Scrapie. Science 1982, 216, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 1998, 95, 13363–13383. [Google Scholar] [CrossRef] [PubMed]
- Collinge, J. Mammalian Prions and Their Wider Relevance in Neurodegenerative Diseases. Nature 2016, 539, 217–226. [Google Scholar] [CrossRef]
- Scheckel, C.; Aguzzi, A. Prions, Prionoids and Protein Misfolding Disorders. Nat. Rev. Genet 2018, 19, 405–418. [Google Scholar] [CrossRef]
- Baral, P.K.; Yin, J.; Aguzzi, A.; James, M.N.G. Transition of the Prion Protein from a Structured Cellular Form (PrPC) to the Infectious Scrapie Agent (PrPSc). Protein Sci. 2019, 28, 2055–2063. [Google Scholar] [CrossRef]
- Baiardi, S.; Mammana, A.; Capellari, S.; Parchi, P. Human Prion Disease: Molecular Pathogenesis, and Possible Therapeutic Targets and Strategies. Expert Opin. Ther. Targets 2023, 27, 1271–1284. [Google Scholar] [CrossRef]
- Liu, F.; Lü, W.; Liu, L. New Implications for Prion Diseases Therapy and Prophylaxis. Front. Mol. Neurosci. 2024, 17, 1324702. [Google Scholar] [CrossRef]
- Tribouillard-Tanvier, D.; Béringue, V.; Desban, N.; Gug, F.; Bach, S.; Voisset, C.; Galons, H.; Laude, H.; Vilette, D.; Blondel, M. Antihypertensive Drug Guanabenz Is Active In Vivo against Both Yeast and Mammalian Prions. PLoS ONE 2008, 3, e1981. [Google Scholar] [CrossRef]
- Oumata, N.; Nguyen, P.H.; Beringue, V.; Soubigou, F.; Pang, Y.; Desban, N.; Massacrier, C.; Morel, Y.; Paturel, C.; Contesse, M.-A.; et al. The Toll-Like Receptor Agonist Imiquimod Is Active against Prions. PLoS ONE 2013, 8, e72112. [Google Scholar] [CrossRef]
- Nguyen, P.; Oumata, N.; Soubigou, F.; Evrard, J.; Desban, N.; Lemoine, P.; Bouaziz, S.; Blondel, M.; Voisset, C. Evaluation of the Antiprion Activity of 6-Aminophenanthridines and Related Heterocycles. Eur. J. Med. Chem. 2014, 82, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Bamia, A.; Sinane, M.; Naït-Saïdi, R.; Dhiab, J.; Keruzoré, M.; Nguyen, P.H.; Bertho, A.; Soubigou, F.; Halliez, S.; Blondel, M.; et al. Anti-Prion Drugs Targeting the Protein Folding Activity of the Ribosome Reduce PABPN1 Aggregation. Neurotherapeutics 2021, 18, 1137–1150. [Google Scholar] [CrossRef] [PubMed]
- Mustazza, C.; Sbriccoli, M.; Minosi, P.; Raggi, C. Small Molecules with Anti-Prion Activity. Curr. Med. Chem. 2020, 27, 5446–5479. [Google Scholar] [CrossRef] [PubMed]
- Karagianni, K.; Pettas, S.; Kanata, E.; Lioulia, E.; Thune, K.; Schmitz, M.; Tsamesidis, I.; Lymperaki, E.; Xanthopoulos, K.; Sklaviadis, T.; et al. Carnosic Acid and Carnosol Display Antioxidant and Anti-Prion Properties in In Vitro and Cell-Free Models of Prion Diseases. Antioxidants 2022, 11, 726. [Google Scholar] [CrossRef] [PubMed]
- Jennings, L.K.; Ahmed, I.; Munn, A.L.; Carroll, A.R. Yeast-Based Screening of Natural Product Extracts Results in the Identification of Prion Inhibitors from a Marine Sponge. Prion 2018, 12, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Jennings, L.K.; Robertson, L.P.; Rudolph, K.E.; Munn, A.L.; Carroll, A.R. Anti-Prion Butenolides and Diphenylpropanones from the Australian Ascidian Polycarpa procera. J. Nat. Prod. 2019, 82, 2620–2626. [Google Scholar] [CrossRef]
- Jennings, L.K.; Prebble, D.W.; Xu, M.; Ekins, M.G.; Munn, A.L.; Mellick, G.D.; Carroll, A.R. Anti-Prion and α-Synuclein Aggregation Inhibitory Sterols from the Sponge Lamellodysidea Cf. Chlorea. J. Nat. Prod. 2020, 83, 3751–3757. [Google Scholar] [CrossRef]
- Shim, K.H.; Sharma, N.; An, S.S.A. Prion Therapeutics: Lessons from the Past. Prion 2022, 16, 265–294. [Google Scholar] [CrossRef]
- Azarkar, S.; Abedi, M.; Lavasani, A.S.O.; Ammameh, A.H.; Goharipanah, F.; Baloochi, K.; Bakhshi, H.; Jafari, A. Curcumin as a Natural Potential Drug Candidate against Important Zoonotic Viruses and Prions: A Narrative Review. Phytother. Res. 2024, 38, 3080–3121. [Google Scholar] [CrossRef]
- Montaser, R.; Luesch, H. Marine Natural Products: A New Wave of Drugs? Future Med. Chem. 2011, 3, 1475–1489. [Google Scholar] [CrossRef]
- Jiménez, C. Marine Natural Products in Medicinal Chemistry. ACS Med. Chem. Lett. 2018, 9, 959–961. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.-Y.; Li, H.-J.; Li, Q.-Y.; Wu, Y.-C. Application of Marine Natural Products in Drug Research. Bioorg. Med. Chem. 2021, 35, 116058. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.M.S.; Pierce, M. Marine Pharmacology. Available online: https://www.marinepharmacology.org/ (accessed on 10 October 2023).
- Banday, A.H.; Azha, N.U.; Farooq, R.; Sheikh, S.A.; Ganie, M.A.; Parray, M.N.; Mushtaq, H.; Hameed, I.; Lone, M.A. Exploring the Potential of Marine Natural Products in Drug Development: A Comprehensive Review. Phytochem. Lett. 2024, 59, 124–135. [Google Scholar] [CrossRef]
- Varijakzhan, D.; Loh, J.-Y.; Yap, W.-S.; Yusoff, K.; Seboussi, R.; Lim, S.-H.E.; Lai, K.-S.; Chong, C.-M. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar. Drugs 2021, 19, 246. [Google Scholar] [CrossRef]
- El-Demerdash, A.; Moriou, C.; Toullec, J.; Besson, M.; Soulet, S.; Schmitt, N.; Petek, S.; Lecchini, D.; Debitus, C.; Al-Mourabit, A. Bioactive Bromotyrosine-Derived Alkaloids from the Polynesian Sponge Suberea ianthelliformis. Mar. Drugs 2018, 16, 146. [Google Scholar] [CrossRef]
- Moriou, C.; Lacroix, D.; Petek, S.; El-Demerdash, A.; Trepos, R.; Leu, T.M.; Florean, C.; Diederich, M.; Hellio, C.; Debitus, C.; et al. Bioactive Bromotyrosine Derivatives from the Pacific Marine Sponge Suberea clavata (Pulitzer-Finali, 1982). Mar. Drugs 2021, 19, 143. [Google Scholar] [CrossRef] [PubMed]
- Tintillier, F.; Moriou, C.; Petek, S.; Fauchon, M.; Hellio, C.; Saulnier, D.; Ekins, M.; Hooper, J.N.A.; Al-Mourabit, A.; Debitus, C. Quorum Sensing Inhibitory and Antifouling Activities of New Bromotyrosine Metabolites from the Polynesian Sponge Pseudoceratina n. Sp. Mar. Drugs 2020, 18, 272. [Google Scholar] [CrossRef]
- Niemann, H.; Marmann, A.; Lin, W.; Proksch, P. Sponge Derived Bromotyrosines: Structural Diversity through Natural Combinatorial Chemistry. Nat. Prod. Commun. 2015, 10, 219–231. [Google Scholar] [CrossRef]
- Ferreira Montenegro, P.; Pham, G.N.; Abdoul-Latif, F.M.; Taffin-de-Givenchy, E.; Mehiri, M. Marine Bromotyrosine Derivatives in Spotlight: Bringing Discoveries and Biological Significance. Mar. Drugs 2024, 22, 132. [Google Scholar] [CrossRef]
- Yang, X.; Davis, R.A.; Buchanan, M.S.; Duffy, S.; Avery, V.M.; Camp, D.; Quinn, R.J. Antimalarial Bromotyrosine Derivatives from the Australian Marine Sponge Hyattella Sp. J. Nat. Prod. 2010, 73, 985–987. [Google Scholar] [CrossRef]
- Xu, M.; Andrews, K.T.; Birrell, G.W.; Tran, T.L.; Camp, D.; Davis, R.A.; Quinn, R.J. Psammaplysin H, a New Antimalarial Bromotyrosine Alkaloid from a Marine Sponge of the Genus Pseudoceratina. Bioorg. Med. Chem. Lett. 2011, 21, 846–848. [Google Scholar] [CrossRef] [PubMed]
- Diers, J.A.; Pennaka, H.K.; Peng, J.; Bowling, J.J.; Duke, S.O.; Hamann, M.T. Structural Activity Relationship Studies of Zebra Mussel Antifouling and Antimicrobial Agents from Verongid Sponges. J. Nat. Prod. 2004, 67, 2117–2120. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. Ceratinamides A and B: New Antifouling Dibromotyrosine Derivatives from the Marine Sponge Pseudoceratina purpurea. Tetrahedron 1996, 52, 8181–8186. [Google Scholar] [CrossRef]
- Tran, T.M.T.; Addison, R.S.; Davis, R.A.; Rehm, B.H.A. Bromotyrosine-Derived Metabolites from a Marine Sponge Inhibit Pseudomonas Aeruginosa Biofilms. Int. J. Mol. Sci. 2023, 24, 10204. [Google Scholar] [CrossRef] [PubMed]
- Lebouvier, N.; Jullian, V.; Desvignes, I.; Maurel, S.; Parenty, A.; Dorin-Semblat, D.; Doerig, C.; Sauvain, M.; Laurent, D. Antiplasmodial Activities of Homogentisic Acid Derivative Protein Kinase Inhibitors Isolated from a Vanuatu Marine Sponge Pseudoceratina Sp. Mar. Drugs 2009, 7, 640–653. [Google Scholar] [CrossRef] [PubMed]
- Encarnación-Dimayuga, R.; Ramírez, M.R.; Luna-Herrera, J. Aerothionin, a Bromotyrosine Derivative with Antimycobacterial Activity from the Marine Sponge Aplysina gerardogreeni (Demospongia). Pharm. Biol. 2003, 41, 384–387. [Google Scholar] [CrossRef]
- de Oliveira, M.F.; de Oliveira, J.H.H.L.; Galetti, F.C.; de Souza, A.O.; Silva, C.L.; Hajdu, E.; Peixinho, S.; Berlinck, R.G. Antimycobacterial Brominated Metabolites from Two Species of Marine Sponges. Planta Med. 2006, 72, 437–441. [Google Scholar] [CrossRef]
- Gunasekera, S.P.; Cross, S.S. Fistularin 3 and 11-Ketofistularin 3. Feline Leukemia Virus Active Bromotyrosine Metabolites from the Marine Sponge Aplysina Archeri. J. Nat. Prod. 1992, 55, 509–512. [Google Scholar] [CrossRef]
- Ross, S.A.; Weete, J.D.; Schinazi, R.F.; Wirtz, S.S.; Tharnish, P.; Scheuer, P.J.; Hamann, M.T. Mololipids, A New Series of Anti-HIV Bromotyramine-Derived Compounds from a Sponge of the Order Verongida. J. Nat. Prod. 2000, 63, 501–503. [Google Scholar] [CrossRef]
- Kernan, M.; Cambie, R.; Bergquist, P. Chemistry of Sponges, 7. 11,19-Dideoxyfistularin-3 and 11-Hydroxyaerothionin, Bromotyrosine Derivatives from Pseudoceratina-Durissima. J. Nat. Prod. 1990, 53, 615–622. [Google Scholar] [CrossRef]
- Jang, J.-H.; Van Soest, R.W.M.; Fusetani, N.; Matsunaga, S. Pseudoceratins A and B, Antifungal Bicyclic Bromotyrosine-Derived Metabolites from the Marine Sponge Pseudoceratina purpurea. J. Org. Chem. 2007, 72, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Koulman, A.; Proksch, P.; Ebel, R.; Beekman, A.C.; van Uden, W.; Konings, A.W.T.; Pedersen, J.A.; Pras, N.; Woerdenbag, H.J. Cytoxicity and Mode of Action of Aeroplysinin-1 and a Related Dienone from the Sponge Aplysina Aerophoba. J. Nat. Prod. 1996, 59, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.A.; Bruun, T.; Ilina, P.; Mäkkylä, H.; Lempinen, A.; Yli-Kauhaluoma, J.; Tammela, P.; Kiuru, P.S. Synthesis and Cytotoxicity Evaluation of Spirocyclic Bromotyrosine Clavatadine C Analogs. Mar. Drugs 2021, 19, 400. [Google Scholar] [CrossRef]
- Mierzwa, R.; King, A.; Conover, M.A.; Tozzi, S.; Puar, M.S.; Patel, M.; Coval, S.J.; Pomponi, S.A. Verongamine, a Novel Bromotyrosine-Derived Histamine H3-Antagonist from the Marine Sponge Verongula Gigantea. J. Nat. Prod. 1994, 57, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, J.; Honma, K.; Sasaki, T.; Tsuda, M. Purealidins J-R, New Bromotyrosine Alkaloids from the Okinawan Marine Sponge Psammaplysilla Purea. Chem. Pharm. Bull. 1995, 43, 403–407. [Google Scholar] [CrossRef]
- Sallam, A.A.; Ramasahayam, S.; Meyer, S.A.; Sayed, K.A.E. Design, Synthesis, and Biological Evaluation of Dibromotyrosine Analogues Inspired by Marine Natural Products as Inhibitors of Human Prostate Cancer Proliferation, Invasion, and Migration. Bioorg. Med. Chem. Lett. 2010, 18, 7446–7457. [Google Scholar] [CrossRef]
- Bhat, C.; Ilina, P.; Tilli, I.; Voráčová, M.; Bruun, T.; Barba, V.; Hribernik, N.; Lillsunde, K.-E.; Mäki-Lohiluoma, E.; Rüffer, T.; et al. Synthesis and Antiproliferative Activity of Marine Bromotyrosine Purpurealidin I and Its Derivatives. Mar. Drugs 2018, 16, 481. [Google Scholar] [CrossRef]
- Drechsel, A.; Helm, J.; Ehrlich, H.; Pantovic, S.; Bornstein, S.R.; Bechmann, N. Anti-Tumor Activity vs. Normal Cell Toxicity: Therapeutic Potential of the Bromotyrosines Aerothionin and Homoaerothionin In Vitro. Mar. Drugs 2020, 18, 236. [Google Scholar] [CrossRef]
- Avar, M.; Heinzer, D.; Thackray, A.M.; Liu, Y.; Hruska-Plochan, M.; Sellitto, S.; Schaper, E.; Pease, D.P.; Yin, J.-A.; Lakkaraju, A.K.; et al. An Arrayed Genome-Wide Perturbation Screen Identifies the Ribonucleoprotein Hnrnpk as Rate-Limiting for Prion Propagation. EMBO J. 2022, 41, e112338. [Google Scholar] [CrossRef]
- Debitus, C. BSMPF-1 Cruise, Alis R/V. 2009. Available online: https://campagnes.flotteoceanographique.fr/campagnes/9100030/ (accessed on 13 August 2024).
- Debitus, C. TUAM 2011 Cruise, Alis R/V. 2011. Available online: https://campagnes.flotteoceanographique.fr/campagnes/11100010/ (accessed on 26 September 2024).
- Debitus, C. TAHITI ITI Cruise, Alis R/V. 2013. Available online: https://campagnes.flotteoceanographique.fr/campagnes/13100040/ (accessed on 26 September 2024).
- Debitus, C. TUHAA PAE 2013 Cruise, Alis R/V. 2013. Available online: https://campagnes.flotteoceanographique.fr/campagnes/13100030/ (accessed on 26 September 2024).
- Petek, S. WALLIS 2018 Cruise, Alis R/V. 2018. Available online: https://campagnes.flotteoceanographique.fr/campagnes/18000524/ (accessed on 26 September 2024).
- Zubia, M.; Thomas, O.P.; Soulet, S.; Demoy-Schneider, M.; Saulnier, D.; Connan, S.; Murphy, E.C.; Tintillier, F.; Stiger-Pouvreau, V.; Petek, S. Potential of Tropical Macroalgae from French Polynesia for Biotechnological Applications. J. Appl. Phycol. 2020, 32, 2343–2362. [Google Scholar] [CrossRef]
- Stiger-Pouvreau, V.; Zubia, M. Macroalgal Diversity for Sustainable Biotechnological Development in French Tropical Overseas Territories. Bot. Mar. 2020, 63, 17–41. [Google Scholar] [CrossRef]
- Desriac, F.; El Harras, A.; Simon, M.; Bondon, A.; Brillet, B.; Le Chevalier, P.; Pugnière, M.; Got, P.; Destoumieux-Garzón, D.; Fleury, Y. Alterins Produced by Oyster-Associated Pseudoalteromonas Are Antibacterial Cyclolipopeptides with LPS-Binding Activity. Mar. Drugs 2020, 18, 630. [Google Scholar] [CrossRef] [PubMed]
- Bach, S.; Talarek, N.; Andrieu, T.; Vierfond, J.M.; Mettey, Y.; Galons, H.; Dormont, D.; Meijer, L.; Cullin, C.; Blondel, M. Isolation of Drugs Active against Mammalian Prions Using a Yeast-Based Screening Assay. Nat. Biotechnol. 2003, 21, 1075–1081. [Google Scholar] [CrossRef]
- Xynas, R.; Capon, R. Two New Bromotyrosine-Derived Metabolites from an Australian Marine Sponge, Aplysina Sp. Aust. J. Chem. 1989, 42, 1427–1433. [Google Scholar] [CrossRef]
- Benharref, A.; Païs, M.; Debitus, C. Bromotyrosine Alkaloids from the Sponge Pseudoceratina verrucosa. J. Nat. Prod. 1996, 59, 177–180. [Google Scholar] [CrossRef]
- Assmann, M.; Wray, V.; van Soest, R.; Proksch, P. A New Bromotyrosine Alkaloid from the Caribbean Sponge Aiolochroia crassa. Z. Naturforsch. C 1998, 53, 398–401. [Google Scholar] [CrossRef]
- MarinLit. Available online: https://marinlit.rsc.org (accessed on 14 August 2023).
- Xu, M.; Davis, R.A.; Feng, Y.; Sykes, M.L.; Shelper, T.; Avery, V.M.; Camp, D.; Quinn, R.J. Ianthelliformisamines A–C, Antibacterial Bromotyrosine-Derived Metabolites from the Marine Sponge Suberea ianthelliformis. J. Nat. Prod. 2012, 75, 1001–1005. [Google Scholar] [CrossRef]
- Rao, M.; Venkatesham, U.; Venkateswarlu, Y. Two Bromo Compounds from the Sponge Psammaplysilla purpurea. Indian J. Chem.—B Org. Med. Chem. 1999, 38, 1301–1303. [Google Scholar]
- Tilvi, S.; Majik, M. 2D NMR Studies of Bromotyrosine Alkaloid, Purpurealidin K from Marine Sponge Psammaplysilla purpurea. ChemistrySelect 2019, 4, 6568–6571. [Google Scholar] [CrossRef]
- Kijjoa, A.; Bessa, J.; Wattanadilok, R.; Sawangwong, P.; Nascimento, M.S.J.; Pedro, M.; Silva, A.M.S.; Eaton, G.; Soest, R.V.; Herz, W. Dibromotyrosine Derivatives, a Maleimide, Aplysamine-2 and Other Constituents of the Marine Sponge Pseudoceratina purpurea. Z. Naturforsch. B 2005, 60, 904–908. [Google Scholar] [CrossRef]
- Salim, A.; Khalil, Z.; Capon, R. Structural and Stereochemical Investigations into Bromotyrosine-Derived Metabolites from Southern Australian Marine Sponges, Pseudoceratina Spp. Tetrahedron 2012, 68, 9802–9807. [Google Scholar] [CrossRef]
- Tian, L.; Feng, Y.; Shimizu, Y.; Pfeifer, T.; Wellington, C.; Hooper, J.; Quinn, R. Aplysinellamides A-C, Bromotyrosine-Derived Metabolites from an Australian Aplysinella Sp Marine Sponge. J. Nat. Prod. 2014, 77, 1210–1214. [Google Scholar] [CrossRef]
- Archer, F.; Bachelin, C.; Andreoletti, O.; Besnard, N.; Perrot, G.; Langevin, C.; Le Dur, A.; Vilette, D.; Baron-Van Evercooren, A.; Vilotte, J.; et al. Cultured Peripheral Neuroglial Cells Are Highly Permissive to Sheep Prion Infection. J. Virol. 2004, 78, 482–490. [Google Scholar] [CrossRef]
- Vilotte, J.; Soulier, S.; Essalmani, R.; Stinnakre, M.; Vaiman, D.; Lepourry, L.; Da Silva, J.; Besnard, N.; Dawson, M.; Buschmann, A.; et al. Markedly Increased Susceptibility to Natural Sheep Scrapie of Transgenic Mice Expressing Ovine PrP. J. Virol. 2001, 75, 5977–5984. [Google Scholar] [CrossRef] [PubMed]
- PAYRI Claude BSMS—1 Cruise, Alis R/V. 2004. Available online: https://campagnes.flotteoceanographique.fr/campagnes/4100070/ (accessed on 26 September 2024).
- Boccitto, M.; Lee, N.; Sakamoto, S.; Spruce, L.; Handa, H.; Clardy, J.; Seeholzer, S.; Kalb, R. The Neuroprotective Marine Compound Psammaplysene A Binds the RNA-Binding Protein HNRNPK. Mar. Drugs 2017, 15, 246. [Google Scholar] [CrossRef]
- Ghemrawi, R.; Khair, M. Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 6127. [Google Scholar] [CrossRef]
- Hetz, C.; Mollereau, B. Disturbance of Endoplasmic Reticulum Proteostasis in Neurodegenerative Diseases. Nat. Rev. Neurosci. 2014, 15, 233–249. [Google Scholar] [CrossRef] [PubMed]
- Tsaytler, P.; Harding, H.; Ron, D.; Bertolotti, A. Selective Inhibition of a Regulatory Subunit of Protein Phosphatase 1 Restores Proteostasis. Science 2011, 332, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Aimé, P.; Dai, D.; Ramalingam, N.; Crary, J.F.; Burke, R.E.; Greene, L.A.; Levy, O.A. Guanabenz Promotes Neuronal Survival via Enhancement of ATF4 and Parkin Expression in Models of Parkinson Disease. Exp. Neurol. 2018, 303, 95–107. [Google Scholar] [CrossRef]
- Harding, H.; Zhang, Y.; Khersonsky, S.; Marciniak, S.; Scheuner, D.; Kaufman, R.; Javitt, N.; Chang, Y.; Ron, D. Bioactive Small Molecules Reveal Antagonism between the Integrated Stress Response and Sterol-Regulated Gene Expression. Cell Metab. 2005, 2, 361–371. [Google Scholar] [CrossRef]
- Lehrman, M.A. Biosynthesis of N-Acetylglucosamine-P-P-Dolichol, the Committed Step of Asparagine-Linked Oligosaccharide Assembly. Glycobiology 1991, 1, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Alencar, A.; Bourgeois, B.; Butscher, J.; Debitus, C.; Ekins, M.; Fleurisson, D.; Folcher, E.; Hall, K.A.; Hertrich, L.; Hooper, J.N.A. Sponges of Polynesia; Petek, S., Debitus, C., Eds.; IRD: Papeete, French Polynesia, 2017.
- Sponges of Polynesia. Available online: https://sponges-polynesia.ird.fr/ (accessed on 14 August 2023).
- Caudal, F.; Rodrigues, S.; Dufour, A.; Artigaud, S.; Le Blay, G.; Petek, S.; Bazire, A. Extracts from Wallis Sponges Inhibit Vibrio Harveyi Biofilm Formation. Microorganisms 2023, 11, 1762. [Google Scholar] [CrossRef] [PubMed]
- Liebman, S.W.; Chernoff, Y.O. Prions in Yeast. Genetics 2012, 191, 1041–1072. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.; Castillo, K.; Armisén, R.; Stutzin, A.; Soto, C.; Hetz, C. Prion Protein Misfolding Affects Calcium Homeostasis and Sensitizes Cells to Endoplasmic Reticulum Stress. PLoS ONE 2011, 5, e15658. [Google Scholar] [CrossRef]
- Otero, A.; Betancor, M.; Eraña, H.; Fernández Borges, N.; Lucas, J.J.; Badiola, J.J.; Castilla, J.; Bolea, R. Prion-Associated Neurodegeneration Causes Both Endoplasmic Reticulum Stress and Proteasome Impairment in a Murine Model of Spontaneous Disease. Int. J. Mol. Sci. 2021, 22, 465. [Google Scholar] [CrossRef]
Score | [PSI+] 1 | [URE3] 1 |
---|---|---|
0 | − | nt |
1 | + or +/− | − |
2 | + or +/− | +/− |
3 | + or +/− | + |
Family | Genus | Species | ID Sample | Location |
---|---|---|---|---|
Aplysinellidae | Suberea | ianthelliformis | P102-MNH2 | PYF 1 |
Aplysinellidae | Suberea | laboutei | P562-WLF04 | WLF 2 |
Pseudoceratinidae | Pseudoceratina | sp. (2081) 3 | P281-TRAR04 | PYF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinane, M.; Grunberger, C.; Gentile, L.; Moriou, C.; Chaker, V.; Coutrot, P.; Guenneguez, A.; Poullaouec, M.-A.; Connan, S.; Stiger-Pouvreau, V.; et al. Potential of Marine Sponge Metabolites against Prions: Bromotyrosine Derivatives, a Family of Interest. Mar. Drugs 2024, 22, 456. https://doi.org/10.3390/md22100456
Sinane M, Grunberger C, Gentile L, Moriou C, Chaker V, Coutrot P, Guenneguez A, Poullaouec M-A, Connan S, Stiger-Pouvreau V, et al. Potential of Marine Sponge Metabolites against Prions: Bromotyrosine Derivatives, a Family of Interest. Marine Drugs. 2024; 22(10):456. https://doi.org/10.3390/md22100456
Chicago/Turabian StyleSinane, Maha, Colin Grunberger, Lucile Gentile, Céline Moriou, Victorien Chaker, Pierre Coutrot, Alain Guenneguez, Marie-Aude Poullaouec, Solène Connan, Valérie Stiger-Pouvreau, and et al. 2024. "Potential of Marine Sponge Metabolites against Prions: Bromotyrosine Derivatives, a Family of Interest" Marine Drugs 22, no. 10: 456. https://doi.org/10.3390/md22100456
APA StyleSinane, M., Grunberger, C., Gentile, L., Moriou, C., Chaker, V., Coutrot, P., Guenneguez, A., Poullaouec, M. -A., Connan, S., Stiger-Pouvreau, V., Zubia, M., Fleury, Y., Cérantola, S., Kervarec, N., Al-Mourabit, A., Petek, S., & Voisset, C. (2024). Potential of Marine Sponge Metabolites against Prions: Bromotyrosine Derivatives, a Family of Interest. Marine Drugs, 22(10), 456. https://doi.org/10.3390/md22100456