Advanced Extraction Techniques and Physicochemical Properties of Carrageenan from a Novel Kappaphycus alvarezii Cultivar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seaweed Cultivation and Harvest
2.2. Sample Preparation
2.3. Carrageenan Extraction and Recovery
2.4. Native Extraction (NE)
2.5. Carrageenan Extraction via Refined and Semi-Refined Processes
2.5.1. Conventional Extraction (CE)
2.5.1.1. RC Obtention
2.5.1.2. SRC Sample Production
2.5.2. Ultrasound-Assisted Extraction (UAE) Method
2.5.2.1. RC Sample Production
2.5.2.2. SRC Sample Production
2.5.3. Supercritical Water Extraction (SFE)
2.6. Analyses of Extracted Carrageenans
2.6.1. Yield
2.6.2. Fatty Acid Content
2.6.3. Carbohydrate and Uronic Acid Content
2.6.4. Protein Content
2.6.5. Viscosity, pH, EC, and TDS
2.6.6. Spectrophotometric Profiles of Carrageenan Solutions
2.7. Statistical Analyses
3. Results
3.1. Extraction Yield and Biochemical Composition
3.2. Viscosity, pH, EC, and TDS
3.3. UV‒VIS Absorption Spectra of Carrageenan Solutions
3.4. FTIR-ATR Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdul Khalil, H.P.S.; Lai, T.K.; Tye, Y.Y.; Rizal, S.; Chong, E.W.N.; Yap, S.W.; Hamzah, A.A.; Nurul Fazita, M.R.; Paridah, M.T. A Review of Extractions of Seaweed Hydrocolloids: Properties and Applications. Express Polym. Lett. 2018, 12, 296–317. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A Comprehensive Review of Ultrasonic Assisted Extraction (UAE) for Bioactive Components: Principles, Advantages, Equipment, and Combined Technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef] [PubMed]
- Dulanlebit, Y.H.; Hernani, H. Overview of Extraction Methods for Extracting Seaweed and Its Applications. J. Penelit. Pendidik. IPA 2023, 9, 817–824. [Google Scholar] [CrossRef]
- Pereira, L.; Mesquita, J.F. Population Studies and Carrageenan Properties of Chondracanthus Teedei var. Lusitanicus (Gigartinaceae, Rhodophyta). J. Appl. Phycol. 2004, 16, 369–383. [Google Scholar] [CrossRef]
- Rupert, R.; Rodrigues, K.F.; Thien, V.Y.; Yong, W.T.L. Carrageenan from Kappaphycus alvarezii (Rhodophyta, Solieriaceae): Metabolism, Structure, Production, and Application. Front. Plant Sci. 2022, 13, 859635. [Google Scholar] [CrossRef]
- Weiner, M.L. Parameters and Pitfalls to Consider in the Conduct of Food Additive Research, Carrageenan as a Case Study. Food Chem. Toxicol. 2016, 87, 31–44. [Google Scholar] [CrossRef]
- Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Kuhnle, G.G.; et al. Re-Evaluation of Carrageenan (E 407) and Processed Eucheuma Seaweed (E 407a) as Food Additives. EFSA J. 2018, 16, e05238. [Google Scholar] [CrossRef]
- Benard, C.; Cultrone, A.; Michel, C.; Rosales, C.; Segain, J.-P.; Lahaye, M.; Galmiche, J.-P.; Cherbut, C.; Blottière, H.M. Degraded Carrageenan Causing Colitis in Rats Induces TNF Secretion and ICAM-1 Upregulation in Monocytes through NF-ΚB Activation. PLoS ONE 2010, 5, e8666. [Google Scholar] [CrossRef]
- Pereira, L.; Sousa, A.; Coelho, H.; Amado, A.M.; Ribeiro-Claro, P.J.A. Use of FTIR, FT-Raman and 13C-NMR Spectroscopy for Identification of Some Seaweed Phycocolloids. Biomol. Eng. 2003, 20, 223–228. [Google Scholar] [CrossRef]
- Heriyanto, H.; Kustiningsih, I.; Sari, D.K. The Effect of Temperature and Time of Extraction on the Quality of Semi Refined Carrageenan (SRC). MATEC Web. Conf. 2018, 154, 01034. [Google Scholar] [CrossRef]
- Rhein-Knudsen, N.; Ale, M.; Meyer, A. Seaweed Hydrocolloid Production: An Update on Enzyme Assisted Extraction and Modification Technologies. Mar. Drugs 2015, 13, 3340–3359. [Google Scholar] [CrossRef] [PubMed]
- Gereniu, C.R.N.; Saravana, P.S.; Getachew, A.T.; Chun, B.S. Characteristics of Functional Materials Recovered from Solomon Islands Red Seaweed (Kappaphycus alvarezii) Using Pressurized Hot Water Extraction. J. Appl. Phycol. 2017, 29, 1609–1621. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Ganzon-Fortes, E.T.; Montaño, N.E. Agar from Vegetative and Tetrasporic Gelidiella acerosa (Gelidiales, Rhodophyta). Bot. Mar. 1997, 40, 501–506. [Google Scholar] [CrossRef]
- Rafiquzzaman, S.M.; Ahmed, R.; Lee, J.M.; Noh, G.; Jo, G.A.; Kong, I.S. Improved Methods for Isolation of Carrageenan from Hypnea musciformis and Its Antioxidant Activity. J. Appl. Phycol. 2016, 28, 1265–1274. [Google Scholar] [CrossRef]
- Hinaloc, L.A.R.; Roleda, M.Y. Phenotypic Diversity, Growth and Sexual Differentiation in the Progeny of Wild Kappaphycus alvarezii (Gigartinales, Florideophyceae). Phycologia 2021, 60, 547–557. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Aguinaldo, Z.-Z.A.; Crisostomo, B.A.; Hinaloc, L.A.R.; Projimo, V.Z.; Dumilag, R.V.; Lluisma, A.O.; Roleda, M.Y.; Aguinaldo, Z.-Z.A.; Crisostomo, B.A.; et al. Discovery of Novel Haplotypes from Wild Populations of Kappaphycus (Gigartinales, Rhodophyta) in the Philippines. Algae 2021, 36, 1–12. [Google Scholar] [CrossRef]
- Narvarte, B.C.V.; Hinaloc, L.A.R.; Genovia, T.G.T.; Gonzaga, S.M.C.; Tabonda-Nabor, A.M.; Roleda, M.Y. Physiological and Biochemical Characterization of New Wild Strains of Kappaphycus alvarezii (Gigartinales, Rhodophyta) Cultivated under Land-Based Hatchery Conditions. Aquat. Bot. 2022, 183, 103567. [Google Scholar] [CrossRef]
- Pereira, L.; Van De Velde, F. Portuguese Carrageenophytes: Carrageenan Composition and Geographic Distribution of Eight Species (Gigartinales, Rhodophyta). Carbohydr. Polym. 2011, 84, 614–623. [Google Scholar] [CrossRef]
- Youssouf, L.; Lallemand, L.; Giraud, P.; Soulé, F.; Bhaw-Luximon, A.; Meilhac, O.; D’Hellencourt, C.L.; Jhurry, D.; Couprie, J. Ultrasound-Assisted Extraction and Structural Characterization by NMR of Alginates and Carrageenans from Seaweeds. Carbohydr. Polym. 2017, 166, 55–63. [Google Scholar] [CrossRef]
- Gonçalves, A.M.M.; Pardal, M.A.; Marques, S.C.; Mendes, S.; Fernández-Gómez, M.J.; Galindo-Villardón, M.P.; Azeiteiro, U.M. Responses of Copepoda Life-History Stages to Climatic Variability in a Southern-European Temperate Estuary. Zool. Stud. 2012, 51, 321–335. [Google Scholar]
- Selvendran, R.R.; March, J.F.; Ring, S.G. Determination of Aldoses and Uronic Acid Content of Vegetable Fiber. Anal. Biochem. 1979, 96, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, M.A.; Waldron, K.W.; Selvendran, R.R. Isolation and Characterisation of Cell Wall Polymers from Olive Pulp (Olea europaea L.). Carbohydr. Res. 1994, 252, 245–262. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New Method for Quantitative Determination of Uronic Acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Menges, F. Spectragryph—Optical Spectroscopy Software. 2024. [Google Scholar]
- Gómez-Ordóñez, E.; Rupérez, P. FTIR-ATR Spectroscopy as a Tool for Polysaccharide Identification in Edible Brown and Red Seaweeds. Food Hydrocoll. 2011, 25, 1514–1520. [Google Scholar] [CrossRef]
- Matsuhiro, B. Vibrational Spectroscopy of Seaweed Galactans. Hydrobiologia 1996, 326–327, 481–489. [Google Scholar] [CrossRef]
- Marques, J.F.; Leonel, P. A revision on the red alga Dilsea carnosa. In Carrageenans: Sources and Extraction Methods, Molecular Structure, Bioactive Properties and Health Effects; Nova Science Publishers: Hauppauge, NY, USA, 2016. [Google Scholar]
- Hung, L.D.; Hori, K.; Nang, H.Q.; Kha, T.; Hoa, L.T. Seasonal Changes in Growth Rate, Carrageenan Yield and Lectin Content in the Red Alga Kappaphycus alvarezii Cultivated in Camranh Bay, Vietnam. J. Appl. Phycol. 2009, 21, 265–272. [Google Scholar] [CrossRef]
- Véliz, K.; Chandía, N.; Rivadeneira, M.; Thiel, M. Seasonal Variation of Carrageenans from Chondracanthus chamissoi with a Review of Variation in the Carrageenan Contents Produced by Gigartinales. J. Appl. Phycol. 2017, 29, 3139–3150. [Google Scholar] [CrossRef]
- Bui, V.T.N.T.; Nguyen, B.T.; Renou, F.; Nicolai, T. Structure and Rheological Properties of Carrageenans Extracted from Different Red Algae Species Cultivated in Cam Ranh Bay, Vietnam. J. Appl. Phycol. 2019, 31, 1947–1953. [Google Scholar] [CrossRef]
- Mishra, P.C.; Jayasankar, R.; Seema, C. Yield and Quality of Carrageenan from Kappaphycus alvarezii Subjected to Different Physical and Chemical Treatments. Seaweed Res. Utiln. 2006, 28, 113–117. [Google Scholar]
- Ohno, M.; Nang, H.Q.; Hirase, S. Cultivation and carrageenan yield and quality of Kappaphycus alvarezii in the waters of Vietnam. J. Appl. Phycol. 1996, 8, 431–437. [Google Scholar] [CrossRef]
- Illijas, M.I.; Kim, G.-W.; Honda, M.; Itabashi, Y. Characteristics of Fatty Acids from the Red Alga Kappaphycus alvarezii (Doty) Doty (Rhodophyta, Solieriaceae). Algal Res. 2023, 71, 103005. [Google Scholar] [CrossRef]
- Rhein-Knudsen, N.; Ale, M.T.; Ajalloueian, F.; Yu, L.; Meyer, A.S. Rheological Properties of Agar and Carrageenan from Ghanaian Red Seaweeds. Food Hydrocoll. 2017, 63, 50–58. [Google Scholar] [CrossRef]
- Meinita, M.D.N.; Kang, J.-Y.; Jeong, G.-T.; Koo, H.M.; Park, S.M.; Hong, Y.-K. Bioethanol Production from the Acid Hydrolysate of the Carrageenophyte Kappaphycus alvarezii (Cottonii). J. Appl. Phycol. 2012, 24, 857–862. [Google Scholar] [CrossRef]
- Pacheco, D.; Cotas, J.; Rocha, C.P.; Araújo, G.S.; Figueirinha, A.; Gonçalves, A.M.M.; Bahcevandziev, K.; Pereira, L. Seaweeds’ Carbohydrate Polymers as Plant Growth Promoters. Carbohydr. Polym. Technol. Appl. 2021, 2, 100097. [Google Scholar] [CrossRef]
- Arman, M.; Qader, S.A.U. Structural Analysis of Kappa-Carrageenan Isolated from Hypnea musciformis (Red Algae) and Evaluation as an Elicitor of Plant Defense Mechanism. Carbohydr. Polym. 2012, 88, 1264–1271. [Google Scholar] [CrossRef]
- Raman, M.; Doble, M. κ-Carrageenan from marine red algae, Kappaphycus alvarezii—A functional food to prevent colon carcinogenesis. J. Funct. Foods 2015, 15, 354–364. [Google Scholar] [CrossRef]
- Chan, S.W.; Mirhosseini, H.; Taip, F.S.; Ling, T.C.; Tan, C.P. Comparative study on the physicochemical properties of κ-carrageenan extracted from Kappaphycus alvarezii (doty) doty ex Silva in Tawau, Sabah, Malaysia and commercial κ-carrageenans. Food Hydrocoll. 2013, 30, 581–588. [Google Scholar] [CrossRef]
- BeMiller, J.N. Carbohydrate Chemistry for Food Scientists; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128120699. [Google Scholar]
- Bono, A.; Anisuzzaman, S.M.; Ding, O.W. Effect of Process Conditions on the Gel Viscosity and Gel Strength of Semi-Refined Carrageenan (SRC) Produced from Seaweed (Kappaphycus alvarezii). J. King Saud Univ. Eng. Sci. 2014, 26, 3–9. [Google Scholar] [CrossRef]
- Montoro, M.A.; Francisca, F.M. Effect of Ion Type and Concentration on Rheological Properties of Natural Sodium Bentonite Dispersions at Low Shear Rates. Appl. Clay Sci. 2019, 178, 105132. [Google Scholar] [CrossRef]
- Orfanoudaki, M.; Hartmann, A.; Karsten, U.; Ganzera, M. Chemical Profiling of Mycosporine-like Amino Acids in Twenty-Three Red Algal Species. J. Phycol. 2019, 55, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Jesumani, V.; Du, H.; Pei, P.; Aslam, M.; Huang, N. Comparative study on skin protection activity of polyphenol-rich extract and polysaccharide-rich extract from Sargassum vachellianum. PLoS ONE 2020, 15, e0227308. [Google Scholar] [CrossRef] [PubMed]
Extraction Method | ||||||||
---|---|---|---|---|---|---|---|---|
Parameters | NE | SFE | CE (NaOH) | CE (KOH) | UAE (NaOH) | UAE (KOH45) | UAE (KOH) | |
Extraction yield (%) | 45.47 ± 1.92 a | 53.40 ± 1.80 a | 35.67 ± 1.89 a | 77.33 ± 2.49 a | 33.73 ± 10.52 a | 63.20 ± 3.23 a | 76.70 ± 1.44 a | |
Protein (%) | 0.00 ± 0.01 b | 0.01 ± 0.01 a,b | 0.02 ± 0.01 a,b | 0.01 ± 0.01 a,b | 0.04 ± 0.02 a | 0.02 ± 0.01 a,b | 0.01 ± 0.01 a,b | |
Uronic acids (%) | 13.59 ± 1.97 a | 13.52 ± 1.37 a | 13.95 ± 1.05 a | 9.43 ± 2.78 a,b | 6.43 ± 0.11 b | 8.95 ± 0.23 a,b | 10.06 ± 1.28 a,b | |
Fatty acids (%) | C16:0 | 0.02 ± 0.01 a | 0.01 ± 0.00 a | 0.02 ± 0.01 a | 0.05 ± 0.02 a | 0.01 ± 0.00 a | 0.07 ± 0.02 a | 0.07 ± 0.00 a |
C18:0 | 0.01 ± 0.01 a | 0.01 ± 0.00 a | 0.02 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | |
C18:1 | nd | nd | 0.01 ± 0.01 a | 0.01 ± 0.00 a | nd | 0.01 ± 0.00 a | nd | |
Σ | 0.03 | 0.03 | 0.05 | 0.07 | 0.03 | 0.09 | 0.08 | |
Monosaccharides (%) | Galactose | 6.98 ± 0.23 a,b | 7.28 ± 0.29 a,b | 7.87 ± 0.36 a | 5.23 ± 0.30 c | 6.45 ± 0.37 b | 5.06 ± 0.05 c | 6.29 ± 0.34 b |
Glucose | nd | nd | nd | 1.92 ± 0.08 | 0.04 ± 0.06 | 1.87 ± 0.19 | 2.20 ± 0.03 | |
Fucose | 0.21 ± 0.03 b,c | 0.15 ± 0.02 c | 0.36 ± 0.09 b,c | 0.68 ± 0.02 a | 0.31 ± 0.12 b,c | 0.44 ± 0.11 a,b | 0.34 ± 0.11 b,c | |
Arabinose | nd | nd | nd | 0.03 ± 0.01 a | nd | 0.06 ± 0.02 a | 0.08 ± 0.00 a | |
Xylose | 0.10 ± 0.00 b,c | 0.05 ± 0.03 c | 0.24 ± 0.03 a | 0.32 ± 0.02 a | 0.23 ± 0.08 a | 0.19 ± 0.02 a,b | 0.05 ± 0.03 c | |
Σ | 7.29 | 7.49 | 8.48 | 10.10 | 7.06 | 9.49 | 11.16 |
Extraction Method | Viscosity (cP) | pH | EC (µS cm−1) | TDS (ppm) |
---|---|---|---|---|
NE | 16.8 | 7.34 | 2373 | 1158 |
SFE | 7.8 | 6.79 | 2323 | 1170 |
CE (NaOH) | 15.9 | 10.25 | 3156 | 1604 |
CE (KOH) | 50.87 | 10.85 | 2733 | 1366 |
UAE (NaOH) | 8.1 | 10.70 | >3999 | >2000 |
UAE (KOH45) | 183.6 | 10.89 | 2817 | 1439 |
UAE (KOH) | 658.7 | 9.30 | 2492 | 1286 |
Iota standard (i) | 134.7 | 9.69 | 2019 | 1012 |
Kappa standard (k) | 79.2 | 8.66 | 1891 | 949 |
Wave Number (cm−1) | Bound | Letter Code | Iota (ι) | Kappa (κ) | NE | SFE | CE (NaOH) | CE (KOH) | UAE (NaOH) | UAE (KOH45) | UAE (KOH) |
---|---|---|---|---|---|---|---|---|---|---|---|
1210–1260 | Sulfate ester (S=O) | S | 1219 | 1222 | 1220 | 1221 | 1223 | 1231 | 1227 | 1231 | 1230 |
928–933, 1070 (shoulder) | 3,6-anhydro-D-galactose | DA | 925.2 (1067) | 922.3 (1063) | 923.1 | 923 | 921.5 | 924.6 | 920.9 (1063) | 925.7 | 925.1 |
970–975 | Galactose | G/D | 967 | 971.3 | 972.8 | 972.8 | - | - | - | - | - |
890–900 | β-D-galactose-de-sulfated | G/D | 902.1 | 889.9 | - | - | - | 890.9 | - | - | 888.5 |
840–850 | D-galactose-4-sulfate | G4S | 846.4 | 842.2 | 839.7 | 839.7 | 842.4 | 841.5 | 846.2 | 841.6 | 841.4 |
830 | D-galactose-2-sulfate | G2S | - | - | - | - | - | - | - | - | - |
820, 825 (shoulder) | D-galactose-2,6-disulphate | D2S, D6S | - | - | - | - | - | - | - | - | - |
810–820, 867 (shoulder) | D-galactose-6-sulfate | G/D6S | - | - | - | - | - | - | - | - | - |
800–805, 905 (shoulder) | 3,6-anhydro-D-galactose-2-sulfate | DA2S | 803.4 | - | - | - | - | 800.2 | - | 800.7 | 800.9 |
Iota (ι) | Kappa (κ) | NE | SFE | CE (NaOH) | CE (KOH) | UAE (NaOH) | UAE (KOH45) | UAE (KOH) | |
---|---|---|---|---|---|---|---|---|---|
iota/kappa ratio | 0.82 | 0.51 | 0.68 | 0.66 | 0.65 | 0.73 | 0.65 | 0.79 | 0.78 |
Similarity (%) | |||||||
---|---|---|---|---|---|---|---|
NE | SFE | CE (NaOH) | CE (KOH) | UAE (NaOH) | UAE (KOH45) | UAE (KOH) | |
Iota (ι) | 33.59 | 32.17 | 47.39 | 53.83 | 38.82 | 43.18 | 41.55 |
Kappa (κ) | 40.10 | 38.35 | 56.83 | 64.66 | 46.92 | 51.98 | 49.93 |
Extraction Conditions | Yield Mean (%) | Locality | Reference |
---|---|---|---|
Aqueous (Native) | 40–50 | Cam Ranh Bay, Vietnam | [31] |
Aqueous (SFE) | 71 | Wagina, Solomon Islands | [11] |
Alkali (NaOH) | 48 | Palk Bay, India | [32] |
Alkali (KOH) | 52 | Palk Bay, India | [32] |
Alkali (4% KOH) | 53.2 | Philippines (commercial sample) | [33] |
Alkali (6% KOH) | 54.6 | Philippines (commercial sample) | [33] |
Alkali (8% KOH) | 53.7 | Philippines (commercial sample) | [33] |
Aqueous UAE | 50-55 | BIS Algoculture (Madagascar) | [19] |
Various (7 methods) | 34–77 | Philippines (novel variant) | This study, Table 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, M.; Cotas, J.; Gutiérrez, I.B.; Gonçalves, A.M.M.; Critchley, A.T.; Hinaloc, L.A.R.; Roleda, M.Y.; Pereira, L. Advanced Extraction Techniques and Physicochemical Properties of Carrageenan from a Novel Kappaphycus alvarezii Cultivar. Mar. Drugs 2024, 22, 491. https://doi.org/10.3390/md22110491
Mendes M, Cotas J, Gutiérrez IB, Gonçalves AMM, Critchley AT, Hinaloc LAR, Roleda MY, Pereira L. Advanced Extraction Techniques and Physicochemical Properties of Carrageenan from a Novel Kappaphycus alvarezii Cultivar. Marine Drugs. 2024; 22(11):491. https://doi.org/10.3390/md22110491
Chicago/Turabian StyleMendes, Madalena, João Cotas, Irene B. Gutiérrez, Ana M. M. Gonçalves, Alan T. Critchley, Lourie Ann R. Hinaloc, Michael Y. Roleda, and Leonel Pereira. 2024. "Advanced Extraction Techniques and Physicochemical Properties of Carrageenan from a Novel Kappaphycus alvarezii Cultivar" Marine Drugs 22, no. 11: 491. https://doi.org/10.3390/md22110491
APA StyleMendes, M., Cotas, J., Gutiérrez, I. B., Gonçalves, A. M. M., Critchley, A. T., Hinaloc, L. A. R., Roleda, M. Y., & Pereira, L. (2024). Advanced Extraction Techniques and Physicochemical Properties of Carrageenan from a Novel Kappaphycus alvarezii Cultivar. Marine Drugs, 22(11), 491. https://doi.org/10.3390/md22110491