Initial Exploration of the In Vitro Activation of GLP-1 and GIP Receptors and Pancreatic Islet Cell Protection by Salmon-Derived Bioactive Peptides
Abstract
:1. Introduction
2. Results
2.1. GLP-1 Receptor Agonism Assay Results for SPH
2.2. GLP-1 Agonist Activity in Fractionated SPH
2.3. GIP Receptor Agonism Assay Results for SPH
2.4. GIP Agonist Activity in Fractionated SPH
2.5. Liquid Chromatography–Mass Spectrometry (LC-MS) Peptidomic Analysis
2.6. Islet Cell Proliferation Assays
3. Discussion
4. Materials and Methods
4.1. Assay for GLP-1 and GIP Receptor Activity
4.2. Peptide Fractionation
4.3. Pancreatic Islet Cell Assay
4.4. Liquid Chromatography–Mass Spectrometry Peptide Sequencing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012, 2, 1143–1211. [Google Scholar] [PubMed]
- Available online: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2023 (accessed on 27 August 2024).
- Sun, X.; Du, T. Trend in weight change patterns across life course among US adults, 1988–2018: Population-based study. BMC Public Health 2023, 23, 2168. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Manson, J.E.; Yuan, C.; Liang, M.H.; Grodstein, F.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Associations of Weight Gain from Early to Middle Adulthood With Major Health Outcomes Later in Life. JAMA 2017, 318, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Soreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Franchesci, C.; Campisi, J. Chronic inflammation (inflammageing) and its potential contribution to age-associated diseases. J. Gerontol. A 2014, 69, S4–S9. [Google Scholar] [CrossRef]
- Reimers, C.D.; Knapp, G.; Reimers, A.K. Does Physical Activity Increase Life Expectancy? A Review of the Literature. J. Aging Res. 2012, 2012, 243958. [Google Scholar] [CrossRef]
- Blundell, J.E.; Gibbons, C.; Beaulieu, K.; Casanova, N.; Duarte, C.; Finlayson, G.; Stubbs, R.J.; Hopkins, M. The drive to eat in homo sapiens: Energy expenditure drives energy intake. Physiol. Behav. 2020, 219, 112846. [Google Scholar] [CrossRef]
- Wadden, T.A.; Berkowitz, R.I.; Silvestry, F.; Vogt, R.A.; St John Sutton, M.G.; Stunkard, A.J.; Foster, G.D.; Aber, J.L. The fen-phen finale: A study of weight loss and valvular heart disease. Obes. Res. 1998, 6, 278–284. [Google Scholar] [CrossRef]
- King, A. Neuropsychiatric adverse effects signal the end of the line for rimonabant. Nat. Rev. Cardiol. 2010, 7, 602. [Google Scholar] [CrossRef]
- Lincoff, M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.; Kushner, R.F.; et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Chakniramol, S.; Wierschem, A.; Cho, M.G.; Bashir, K.M.I. Physiological and Clinical Aspects of Bioactive Peptides from Marine Animals. Antioxidants 2022, 11, 1021. [Google Scholar] [CrossRef] [PubMed]
- Jabubczyk, A.; Kara’s, M.; Rybczynska-Tkaczyk, K.; Zielinska, E.; Zielinski, D. Current Trends of Bioactive Peptides—New Sources and Therapeutic Effect. Food 2020, 9, 846. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.F.; Wang, B. Marine Bioactive Peptides—Structure, Function and Application. Mar. Drugs. 2023, 21, 275. [Google Scholar] [CrossRef]
- Gilbert, M.P.; Pratley, R.R. GLP-1 Analogs and DPP-IV Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials. Front. Endocrinol. 2020, 11, 178. [Google Scholar] [CrossRef]
- Framroze, B.; Halvadaar, F.; Misal, F. An in vitro study on the regulation of oxidative protective genes in human gingival and intestinal epithelial cells after treatment with salmon protein hydrolysate peptides. Funct. Foods Health Dis. 2018, 8, 398–411. [Google Scholar]
- Framroze, B.; Vekaariya, S.; Dhruv, S. A Placebo-Controlled Study of the Impact of Dietary Salmon Protein Hydrolysate Supplementation in Increasing Ferritin and Hemoglobin Levels in Iron-Deficient Anemia Subjects. J. Nutr. Food Sci. 2015, 5, 379. [Google Scholar]
- Framroze, B.; Vekaariya, S.; Dhruv, S. A Placebo-Controlled Study on the Impact of Dietary Salmon Protein Hydrolysate Supplementation on Body Mass Index in Overweight Human Subjects. J. Obes. Weight. Loss Ther. 2016, 6, 296. [Google Scholar] [CrossRef]
- Halvadar, F. (GPH Biotech LLC, Menlo Park, CA, USA). A randomized, placebo-controlled, double-blind study to evaluate the efficacy of Salmon Protein Hydrolysate Powder on Circulatory Hemoglobin and Ferritin modulation and Hair, Nail, Skin Health in healthy males and females. Unpublished draft final study report, 2020.
- Simental-Media, L.E.; Sanchez-Garcia, A.; Linden Torres, E.; Simental-Mendia, M. Impact of glucagon-like peptide-1 receptor agonists on adiponectin concentrations: A meta-analysis of randomized controlled trials. Br. J. Clin. Pharmacol. 2021, 87, 4140–4149. [Google Scholar] [CrossRef]
- Wei, J.; Tao, G.; Xu, B.; Wang, K.; Liu, J.; Chen, C.-H.; Dunn, J.C.Y.; Currie, C.; Framroze, B.; Sylvester, K.G. Soluble Protein Hydrolysate Ameliorates Gastrointestinal Inflammation and injury in 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice. Biomolecules 2022, 12, 1287. [Google Scholar] [CrossRef]
- Framroze, B.; Bjerknes, C.; Currie, C. Further In Vitro Studies on the Protective Effects of a Novel Peptide Hydrolysate, SPH1, Against Muscle Atrophy using Primary Normal Human Skeletal Myoblasts (HSkM) & Preliminary Characterisation of Properties to Support GI Function. In Proceedings of the Annual Meeting of the Multinational Association of The Supportive Care in Cancer (MASCC), Lille, France, 27–29 June 2024. [Google Scholar]
- Moll, H.; Frey, E.; Gerber, P.; Geidl, B.; Kaufmann, M.; Braun, J.; Beuschlein, F.; Puhan, M.A.; Yebyo, H.G. GLP-1 receptor agonists for weight reduction in people living with obesity but without diabetes: A living benefit-harm modelling study. eClinicalMedicine 2024, 73, 102661. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, L.B. GLP-1 for Treating Obesity—Origin, History, and Evolution. 2024 Lasker-DeBakey Clinical Medical Research Award. JAMA 2024, ahead of print. [Google Scholar] [CrossRef]
- Burkart, V.; Kolb, H. Protection of islet cells from inflammatory death in vitro. Clin. Exp. Immunol. 1993, 93, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Lieb, D.C.; Brotman, J.J.; Hatcher, M.A.; Aye, M.S.; Cole, B.K.; Haynes, B.A.; Wohlgemuth, S.D.; Fontana, M.A.; Beydoun, H.; Nadler, J.A.; et al. Adipose tissue 12/15 lipoxygenase pathway in human obesity and diabetes. J. Clin. Endocrinol. Metab 2014, 99, e1713–e1720. [Google Scholar] [CrossRef] [PubMed]
- Mooney, C.; Haslam, N.J.; Pollastri, G.; Shields, D.C. Towards the improving discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity. PLoS ONE 2012, 7, e45012. [Google Scholar] [CrossRef] [PubMed]
- Bjerknes, C.; Wubshet, S.; Ronning, S.B.; Afseth, N.K.; Currie, C.; Framroze, B.; Hermansen, E. Glucoregulatory Properties of a Protein Hydrolysate from Atlantic Salmon (Salmo salar): Preliminary Characterization and Evaluation of DPP-IV Inhibition and Direct Glucose Uptake In Vitro. Marine Drugs 2024, 22, 151. [Google Scholar] [CrossRef]
- Peart, M.J.; Smyth, G.K.; van Laar, R.K.; Bowtell, D.D.; Richon, V.M.; Marks, P.A.; Holloway, A.J.; Johnstone, R.W. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc. Natl. Acad. Sci. USA 2005, 102, 3697–3702. [Google Scholar] [CrossRef]
- McCarthy, D.J.; Smyth, G.K. Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 2009, 6, 765–771. [Google Scholar] [CrossRef]
- Rodriguez, P.J.; Goodwin Cartwright, B.M.; Gratzi, S.; Brar, R.; Baker, C.; Gluckman, T.J.; Stucky, N.L. Semaglutide vs Tirzepatide for Weight Loss in Adults With Overweight or Obesity. JAMA Intern Med. 2024, 184, e242525. [Google Scholar] [CrossRef]
- Xu, Q.; Zheng, L.; Huang, M.; Zhao, M. exploring structural features of potent dipeptidyl peptidase IV (DPP-IV) inhibitory peptides derived from tilapia (Oreochromis niloticus) skin gelatin by an integrated approach of multivariate analysis and Gly-Pro-based peptides library. Food Chem. 2022, 397, 133821. [Google Scholar] [CrossRef]
- Ucd, B. Peptide Ranker. Available online: http://bioware.ucd.ie/~compass/biowareweb/Server_pages/help/peptideranker/help.php (accessed on 21 October 2024).
- Currie, C.; Bjerknes, C.; Mykelbust, T.A.; Framroze, B. Assessing the Potential of Small Peptides for Altering Expression Levels of the Iron-Regulatory Genes FTH1 and TRFC and Enhancing Androgen Receptor Inhibitor Activity in In Vitro Prostate Cancer Models. Int. J. Mol. Sci. 2023, 24, 15231. [Google Scholar] [CrossRef] [PubMed]
- Gaesser, G.A.; Miller Jones, J.; Angadi, S.S. Perspective: Does Glycaemic Index Matter for Weight Loss and Obesity Prevention? Examination of the Evidence on “Fast” Compared with “Slow” Carbs. Adv. Nutr. 2021, 12, 2076–2084. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.E.; Sharma, A.M.; Ardern, C.I.; Mirdamadi, P.; Mirdamadi, P.; Kuk, J.L. Secular differences in the association between caloric intake, macronutrient intake, and physical activity with obesity. Obes. Res. Clin. Pract. 2016, 10, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Della Guardia, L.; Wang, L. Fine particulate matter induces adipose tissue expansion and weight gain: Pathophysiology. Obes. Rev. 2023, 24, e13552. [Google Scholar] [CrossRef]
- Corkey, B.E.; Deeney, J.T. The redox communication network as a regulator of metabolism. Front. Physiol. 2020, 11, 567796. [Google Scholar] [CrossRef]
- Corkey, B.E.; Deeney, J.T. Reactive oxygen species: Role in obesity and mitochondrial energy efficiency. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2023, 378, 20220210. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, X.; Zhong, M.; Hotchkiss, I.P.; Lewandowski, R.P.; Wagner, J.G.; Bramble, L.A.; Yang, Y.; Wang, A.; Harkema, J.R.; et al. Ambient particulate air pollution induces oxidative stress and alterations of mitochondrial and gene expression in brown and white adipose tissues. Part. Fibre Toxicol. 2011, 8, 20. [Google Scholar] [CrossRef]
- Tucker, L.A.; Parker, K. 10-Year Weight Gain in 13,802 US Adults: The Role of Age, Sex, and Race. J. Obes. 2022, 2022, 7652408. [Google Scholar] [CrossRef]
- Greendale, G.A.; Sternfeld, B.; Huang, M.H.; Han, W.; Karvonen-Gutierrez, C.; Ruppert, K.; Cauley, J.A.; Finkelstein, J.S.; Jiang, S.F.; Karlamangla, A.S. Changes in body composition and weight during the menopause transition. JCI Insight. 2019, 4, e124865. [Google Scholar] [CrossRef]
- Stoffers, D.A.; Kieffer, T.J.; Hussain, M.A.; Drucker, D.J.; Bonner-Weir, S.; Habener, J.F.; Egan, J.M. Insulinotrophic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 2000, 49, 741–748. [Google Scholar] [CrossRef]
- Souza Marinho, T.; Ferreira Martins, F.; Macedo Cardosa, L.E.; Aguila, M.B.; Mandarim-de-Lacerda, C.A. Pancreatic islet cell disarray, apoptosis, and proliferation in obese mice. The role of Semaglutide treatment. Biochimie 2022, 193, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Harada, N.; Inagaki, N. Role of GIP receptor signalling in B-cell survival. Diabetol. Int. 2017, 8, 137–138. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Nian, C.; Doudet, D.; McIntosh, H.S. Inhibition of Dipeptidyl Peptidase IV with Sitagliptin (MK0431) Prolongs Islet Graft Survival in Streptozotocin-Induced Diabetic Mice. Diabetes 2008, 57, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Cheng, J.; Guo, Z.; Lu, Y.; Tian, B. DPP IV inhibitor suppresses STZ-induced islets injury dependent on activation of the IGFR/Akt/mTOR signalling pathways by GLP-1 in monkeys. Biochem. Biophys. Res. Commun. 2015, 456, 139–144. [Google Scholar] [CrossRef]
- Vargova, L.; Zacharovova, K.; Dovolilova, E.; Vojtova, L.; Cimburek, Z.; Saudek, F. The effects of DPP-IV inhibition in NOD mice with overt diabetes. Folia Biol. 2013, 59, 116–122. [Google Scholar] [CrossRef]
- Boni-Schnetzler, M.; Meier, D.T. Islet cell inflammation in type 2 diabetes. Semin. Immunopathol. 2019, 41, 501–513. [Google Scholar] [CrossRef]
- Larsen, C.M.; Faulenbach, M.; Vaag, A.; Volund, A.; Ehses, J.A.; Seifert, B.; Mandrup-Poulsen, T.; Donath, M.Y. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 2007, 356, 1517–1526. [Google Scholar] [CrossRef]
- Shimoda, M.; Kanda, Y.; Hamamoto, S.; Tawaramoto, K.; Hashiramoto, M.; Matsuki, M.; Kaku, K. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia 2011, 54, 1098–1108. [Google Scholar] [CrossRef]
- Framroze, B.; Currie, C.; Hermansen, E. Development of a Natural Protein Hydrolysate Supplement Containing Peptidyl Inhibitors of Activin A and Myostatin to Alleviate Cancer Cachexia. In Proceedings of the Annual Meeting of the Multinational Association of The Supportive Care in Cancer (MASCC), Nara, Japan, 22–24 June 2023. [Google Scholar]
- Mella, R.M.; Kortazar, D.; Roura-Ferrer, M.; Salado, C.; Valcarel, M.; Castilla, A.; Vallace, P. Nomad Biosensors: A New Multiplexed Technology for the Screening of GPCR Ligands. SLAS Technol. 2018, 23, 207–216. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Currie, C.; Bjerknes, C.; Framroze, B. Initial Exploration of the In Vitro Activation of GLP-1 and GIP Receptors and Pancreatic Islet Cell Protection by Salmon-Derived Bioactive Peptides. Mar. Drugs 2024, 22, 490. https://doi.org/10.3390/md22110490
Currie C, Bjerknes C, Framroze B. Initial Exploration of the In Vitro Activation of GLP-1 and GIP Receptors and Pancreatic Islet Cell Protection by Salmon-Derived Bioactive Peptides. Marine Drugs. 2024; 22(11):490. https://doi.org/10.3390/md22110490
Chicago/Turabian StyleCurrie, Crawford, Christian Bjerknes, and Bomi Framroze. 2024. "Initial Exploration of the In Vitro Activation of GLP-1 and GIP Receptors and Pancreatic Islet Cell Protection by Salmon-Derived Bioactive Peptides" Marine Drugs 22, no. 11: 490. https://doi.org/10.3390/md22110490
APA StyleCurrie, C., Bjerknes, C., & Framroze, B. (2024). Initial Exploration of the In Vitro Activation of GLP-1 and GIP Receptors and Pancreatic Islet Cell Protection by Salmon-Derived Bioactive Peptides. Marine Drugs, 22(11), 490. https://doi.org/10.3390/md22110490