A Review of Cyclic Imines in Shellfish: Worldwide Occurrence, Toxicity and Assessment of the Risk to Consumers
Abstract
:1. Introduction
2. Hazard Identification
3. Hazard Characterization
3.1. Gymnodimines
3.2. Spirolides
3.3. Pinnatoxins
3.4. Other Cyclic Imine Classes
Compound | Parameter | Acute Toxicity | Ref |
---|---|---|---|
Pteriatoxin A c | LD99 | 100 | [82] |
Pteriatoxins B and C (1:1) c | LD99 | 8 | [82] |
Prorocentrolide c | “lethality” | 400 | [83] |
Prorocentrolide B a | Fast acting | ND | [84] |
Spiro-prorocentrimine c | LD99 | 2500 | [85] |
Portimine b | LD50 | 1570 (1269–3080) | [88] |
4. Exposure Assessment
4.1. Gymnodimines
4.2. Spirolides
4.3. Pinnatoxins
5. Risk Characterization
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EFSA. Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on Marine Biotoxins in Shellfish-summary on regulated marine biotoxins. EFSA J. 2009, 1306, 1–23. [Google Scholar]
- Mafra, L.L.; de Souza, D.A.; Menezes, M.; Schramm, M.A.; Hoff, R. Marine biotoxins: Latest advances and challenges toward seafood safety, using Brazil as a case study. Curr. Opin. Food Sci. 2023, 53, 101078. [Google Scholar] [CrossRef]
- Hannah, D.J.; Till, D.G.; Deverall, T.; Jones, P.D.; Fry, J.M. Extraction of lipid-soluble marine biotoxins. J. AOAC Int. 1995, 78, 480–483. [Google Scholar] [CrossRef]
- MacKenzie, A.L.; Haywood, A.; Adamson, J.; Truman, P.; Till, D.; Seki, T.; Satake, M.; Yasumoto, K. Gymnodimine contamination of shellfish in New Zealand. In Harmful and Algal Blooms; Yasumoto, K., Oshima, Y., Fukuyo, Y., Eds.; Intergovernmental Oceanographic Commission of UNESCO: Paris, France, 1996; pp. 97–100. [Google Scholar]
- Finch, S.C.; Boundy, M.J.; Harwood, D.T. The acute toxicity of tetrodotoxin and tetrodotoxin–saxitoxin mixtures to mice by various routes of administration. Toxins 2018, 10, 423. [Google Scholar] [CrossRef]
- Munday, R.; Thomas, K.; Gibbs, R.; Murphy, C.; Quilliam, M.A. Acute toxicities of saxitoxin, neosaxitoxin, decarbamoyl saxitoxin and gonyautoxins 1&4 and 2&3 to mice by various routes of administration. Toxicon 2013, 76, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Combes, R.D. The mouse bioassay for diarrhetic shellfish poisoning: A gross misuse of laboratory animals and of scientific methodology. Altern. Lab. Anim. 2003, 31, 595–610. [Google Scholar] [CrossRef] [PubMed]
- McNabb, P.; Selwood, A.I.; Holland, P.T.; Collaborators. Multiresidue Method for Determination of Algal Toxins in Shellfish: Single-Laboratory Validation and Interlaboratory Study. J. AOAC Int. 2019, 88, 761–772. [Google Scholar] [CrossRef]
- Otero, A.; Chapela, M.-J.; Atanassova, M.; Vieites, J.M.; Cabado, A.G. Cyclic imines: Chemistry and mechanism of action: A review. Chem. Res. Toxicol. 2011, 24, 1817–1829. [Google Scholar] [CrossRef]
- Molgó, J.; Aráoz, R.; Benoit, E.; Iorga, B. Cyclic imine toxins: Chemistry, origin, metabolism, pharmacology, toxicology, and detection. In Seafood and Freshwater Toxins, 3rd ed.; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Davidson, K.; Baker, C.; Higgins, C.; Higman, W.; Swan, S.; Veszelovszki, A.; Turner, A.D. Potential threats posed by new or emerging marine biotoxins in UK waters and examination of detection methodologies used for their control: Cyclic imines. Mar. Drugs 2015, 13, 7087–7112. [Google Scholar] [CrossRef]
- Molgó, J.; Marchot, P.; Aráoz, R.; Benoit, E.; Iorga, B.I.; Zakarian, A.; Taylor, P.; Bourne, Y.; Servent, D. Cyclic imine toxins from dinoflagellates: A growing family of potent antagonists of the nicotinic acetylcholine receptors. J. Neurochem. 2017, 142, 41–51. [Google Scholar] [CrossRef]
- Kharrat, R.; Servent, D.; Girard, E.; Ouanounou, G.; Amar, M.; Marrouchi, R.; Benoit, E.; Molgó, J. The marine phycotoxin gymnodimine targets muscular and neuronal nicotinic acetylcholine receptor subtypes with high affinity. J. Neurochem. 2008, 107, 952–963. [Google Scholar] [CrossRef]
- Otofuji, T.; Ogo, A.; Koisjo, J.; Matsuo, K.; Tokiwa, H.; Yasumoto, T.; Nishihara, K.; Yamamoto, E.; Saisho, M.; Kurihara, Y.; et al. Food poisoning caused by Atrina pectinata in the Ariake Sea. Food Santitation Res. 1981, 31, 76–83. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on marine biotoxins in shellfish—Cyclic imines (spirolides, gymnodimines, pinnatoxins and pteriatoxins). EFSA J. 2010, 8, 1628. [Google Scholar] [CrossRef]
- ANSES. Opinion of the French Agency for Food, Environmental and Occupational Health and Safety on the Assessment of the Health Risks Associated with Pinnatoxins in Shellfish; ANSES Opinion Request No 2016-SA-0013; French Agency for Food, Environmental and Occupational Health and Safety: Maisons-Alfort, France, 2019.
- Seki, T.; Satake, M.; Mackenzie, L.; Kaspar, H.F.; Yasumoto, T. Gymnodimine, a new marine toxin of unprecedented structure isolated from New Zealand oysters and the dinoflagellate, Gymnodinium sp. Tetrahedron Lett. 1995, 36, 7093–7096. [Google Scholar] [CrossRef]
- Seki, T.; Satake, M.; MacKenzie, A.L.; Faspar, H.F.; Yasumoto, T. Gymnodimine, a novel toxic imine isolated from the Foveaux Strait oysters and Gymnodinium sp. In Harmful and Toxic Algal Blooms; Yasumoto, T., Oshima, Y., Fukuyo, Y., Eds.; Intergovernmental Oceanographic Commission of UNESCO: Paris, France, 1996; pp. 495–498. [Google Scholar]
- Stirling, D.J. Survey of historical New Zealand shellfish samples for accumulation of gymnodimine. N. Z. J. Mar. Freshw. Res. 2001, 35, 851–857. [Google Scholar] [CrossRef]
- Miles, C.O.; Wilkins, A.L.; Stirling, D.J.; MacKenzie, A.L. New analogue of gymnodimine from a Gymnodinium Species. J. Agric. Food Chem. 2000, 48, 1373–1376. [Google Scholar] [CrossRef] [PubMed]
- Miles, C.; Wilkins, A.; Stirling, D.; Mackenzie, L. Gymnodimine C, an isomer of gymnodimine B, from Karenia selliformis. J. Agric. Food Chem. 2003, 51, 4838–4840. [Google Scholar] [CrossRef] [PubMed]
- Harju, K.; Koskela, H.; Kremp, A.; Suikkanen, S.; de la Iglesia, P.; Miles, C.O.; Krock, B.; Vanninen, P. Identification of gymnodimine D and presence of gymnodimine variants in the dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Toxicon 2016, 112, 68–76. [Google Scholar] [CrossRef]
- Zurhelle, C.; Nieva, J.; Tillmann, U.; Harder, T.; Krock, B.; Tebben, J. Identification of novel gymnodimines and spirolides from the marine dinoflagellate Alexandrium ostenfeldii. Mar. Drugs 2018, 16, 446. [Google Scholar] [CrossRef]
- Van Wagoner, R.M.; Misner, I.; Tomas, C.R.; Wright, J.L.C. Occurrence of 12-methylgymnodimine in a spirolide-producing dinoflagellate Alexandrium peruvianum and the biogenetic implications. Tetrahedron Lett. 2011, 52, 4243–4246. [Google Scholar] [CrossRef]
- Talić, S.; Škobić, D.; Dedić, A.; Nazlić, N.; Ujević, I.; Ivanković, A.; Pavela-Vrančić, M. The occurrence of lipophilic toxins in shellfish from the Middle Adriatic Sea. Toxicon 2020, 186, 19–25. [Google Scholar] [CrossRef]
- Kvrgić, K.; Lešić, T.; Aysal, A.I.; Džafić, N.; Pleadin, J. Cyclic imines in shellfish and ascidians in the northern Adriatic Sea. Food Addit. Contam. Part B 2021, 14, 12–22. [Google Scholar] [CrossRef]
- Amzil, Z.; Sibat, M.; Royer, F.; Masson, N.; Abadie, E. Report on the first detection of pectenotoxin-2, spirolide-A and their derivatives in French shellfish. Mar. Drugs 2007, 5, 168–179. [Google Scholar] [CrossRef]
- Bacchiocchi, S.; Siracusa, M.; Campacci, D.; Ciriaci, M.; Dubbini, A.; Tavoloni, T.; Stramenga, A.; Gorbi, S.; Piersanti, A. Cyclic Imines (CIs) in mussels from North-Central Adriatic Sea: First evidence of gymnodimine A in Italy. Toxins 2020, 12, 370. [Google Scholar] [CrossRef]
- Haddouch, A.B.; Amanhi, R.; Amzil, Z.; Taleb, H.; Rovillon, G.; Adly, F.; Loutfi, M. Lipophilic toxin profile in Mytilus galloprovincialis from the north atlantic coast of Morocco: LC-MS/MS and mouse bioassay analyses. Int. J. Sci. Res. 2017, 6, 187–195. [Google Scholar] [CrossRef]
- Krock, B.; Pitcher, G.; Ntuli, J.; Cembella, A. Confirmed identification of gymnodimine in oysters from the west coast of South Africa by liquid chromatography–tandem mass spectrometry. Afr. J. Mar. Sci. 2009, 31, 113–118. [Google Scholar] [CrossRef]
- Takahashi, E.; Yu, Q.; Eaglesham, G.; Connell, D.W.; McBroom, J.; Costanzo, S.; Shaw, G.R. Occurrence and seasonal variations of algal toxins in water, phytoplankton and shellfish from North Stradbroke Island, Queensland, Australia. Mar. Environ. Res. 2007, 64, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Liang, Y.; Wu, X.; Xu, D.; Liu, Y.; Liu, L. First report on the detection of pectenotoxin groups in Chinese shellfish by LC–MS/MS. Toxicon 2011, 57, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Yan, G.; Wang, G.; Liu, J.; Tang, Z.; Yan, Y.; Qiu, J.; Zhang, L.; Pan, W.; Fu, Y.; et al. Prevalence and distribution of domoic acid and cyclic imines in bivalve mollusks from Beibu Gulf, China. J. Hazard. Mater. 2022, 423, 127078. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Liu, L.; Li, Y.; Zhang, J.; Tan, Z.; Wu, H.; Jiang, T.; Lu, S. Occurrence of marine algal toxins in oyster and phytoplankton samples in Daya Bay, South China Sea. Chemosphere 2017, 183, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.E.R.; Ujević, I.; Mahfouz, C.; Fakhri, M.; Roje-Busatto, R.; Jemaa, S.; Nazlić, N. Occurrence of domoic acid and cyclic imines in marine biota from Lebanon-Eastern Mediterranean Sea. Sci. Total Environ. 2021, 755, 142542. [Google Scholar] [CrossRef]
- Marrouchi, R.; Dziri, F.; Belayouni, N.; Hamza, A.; Benoit, E.; Molgó, J.; Kharrat, R. Quantitative determination of gymnodimine-A by high performance liquid chromatography in contaminated clams from Tunisia coastline. Mar. Biotechnol. 2010, 12, 579–585. [Google Scholar] [CrossRef]
- Lamas, J.P.; Arévalo, F.; Moroño, Á.; Correa, J.; Rossignoli, A.E.; Blanco, J. Gymnodimine A in mollusks from the north Atlantic Coast of Spain: Prevalence, concentration, and relationship with spirolides. Environ. Pollut. 2021, 279, 116919. [Google Scholar] [CrossRef]
- Sibat, M.; Mai, T.; Tanniou, S.; Biegala, I.; Hess, P.; Jauffrais, T. Seasonal single-site sampling reveals large diversity of marine algal toxins in coastal waters and shellfish of New Caledonia (southwestern pacific). Toxins 2023, 15, 642. [Google Scholar] [CrossRef] [PubMed]
- Amzil, Z.; Derrien, A.; Terre Terrillon, A.; Savar, V.; Bertin, T.; Peyrat, M.; Duval, A.; Lhaute, K.; Arnich, N.; Hort, V.; et al. Five years monitoring the emergence of unregulated toxins in shellfish in France (EMERGTOX 2018–2022). Mar. Drugs 2023, 21, 435. [Google Scholar] [CrossRef] [PubMed]
- de la Iglesia, P.; McCarron, P.; Diogène, J.; Quilliam, M.A. Discovery of gymnodimine fatty acid ester metabolites in shellfish using liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Che, Y.; Wright, E.J.; McCarron, P.; Hess, P.; Li, A. Fatty acid ester metabolites of gymnodimine in shellfish collected from China and in mussels (Mytilus galloprovincialis) exposed to Karenia selliformis. Harmful Algae 2020, 92, 101774. [Google Scholar] [CrossRef]
- Munday, R.; Towers, N.R.; Mackenzie, L.; Beuzenberg, V.; Holland, P.T.; Miles, C.O. Acute toxicity of gymnodimine to mice. Toxicon 2004, 44, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.; Blunt, J.W.; Munro, M.H.; Robinson, W.T.; Hannah, D.J. The absolute stereochemistry of the New Zealand shellfish toxin gymnodimine. Tetrahedron Lett. 1997, 38, 4889–4890. [Google Scholar] [CrossRef]
- Munday, R.; Reeve, J. Risk assessment of shellfish toxins. Toxins 2013, 5, 2109. [Google Scholar] [CrossRef]
- Hu, T.; Curtis, J.M.; Oshima, Y.; Quilliam, M.A.; Walter, J.A.; Watson-Wright, W.M.; Wright, J.L.C. Spirolides B and D, two novel macrocycles isolated from the digestive glands of shellfish. J. Chem. Soc. Chem. Commun. 1995, 20, 2159–2161. [Google Scholar] [CrossRef]
- Hu, T.; Curtis, J.M.; Walter, J.A.; Wright, J.L.C. Characterization of biologically inactive spirolides E and F: Identification of the spirolide pharmacophore. Tetrahedron Lett. 1996, 37, 7671–7674. [Google Scholar] [CrossRef]
- Hu, T.; Burton, I.W.; Cembella, A.D.; Curtis, J.M.; Quilliam, M.A.; Walter, J.A.; Wright, J.L.C. Characterization of spirolides A, C, and 13-desmethyl C, new marine toxins isolated from toxic plankton and contaminated shellfish. J. Nat. Prod. 2001, 64, 308–312. [Google Scholar] [CrossRef]
- Cembella, A.D.; Lewis, N.I.; Quilliam, M.A. The marine dinoflagellate Alexandrium ostenfeldii (Dinophyceae) as the causative organism of spirolide shellfish toxins. Phycologia 2000, 39, 67–74. [Google Scholar] [CrossRef]
- Cembella, A.D.; Lewis, N.I.; Quilliam, M.A. Spirolide composition of micro-extracted pooled cells isolated from natural plankton assemblages and from cultures of the dinoflagellate Alexandrium ostenfeldii. Nat. Toxins 1999, 7, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Aasen, J.; MacKinnon, S.L.; LeBlanc, P.; Walter, J.A.; Hovgaard, P.; Aune, T.; Quilliam, M.A. Detection and identification of spirolides in norwegian shellfish and plankton. Chem. Res. Toxicol. 2005, 18, 509–515. [Google Scholar] [CrossRef]
- MacKinnon, S.L.; Walter, J.A.; Quilliam, M.A.; Cembella, A.D.; LeBlanc, P.; Burton, I.W.; Hardstaff, W.R.; Lewis, N.I. Spirolides isolated from danish strains of the toxigenic dinoflagellate Alexandrium ostenfeldii. J. Nat. Prod. 2006, 69, 983–987. [Google Scholar] [CrossRef]
- Ciminiello, P.; Dell’Aversano, C.; Iacovo, E.D.; Fattorusso, E.; Forino, M.; Grauso, L.; Tartaglione, L.; Guerrini, F.; Pezzolesi, L.; Pistocchi, R. Characterization of 27-hydroxy-13-desmethyl spirolide C and 27-oxo-13,19-didesmethyl spirolide C. Further insights into the complex Adriatic Alexandrium ostenfeldii toxin profile. Toxicon 2010, 56, 1327–1333. [Google Scholar] [CrossRef]
- Roach, J.S.; LeBlanc, P.; Lewis, N.I.; Munday, R.; Quilliam, M.A.; MacKinnon, S.L. Characterization of a dispiroketal spirolide subclass from Alexandrium ostenfeldii. J. Nat. Prod. 2009, 72, 1237–1240. [Google Scholar] [CrossRef]
- Aasen, J.A.; Hardstaff, W.; Aune, T.; Quilliam, M.A. Discovery of fatty acid ester metabolites of spirolide toxins in mussels from Norway using liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 1531–1537. [Google Scholar] [CrossRef]
- Turner, A.D.; Goya, A.B. Occurrence and profiles of lipophilic toxins in shellfish harvested from Argentina. Toxicon 2015, 102, 32–42. [Google Scholar] [CrossRef]
- Rundberget, T.; Aasen, J.A.B.; Selwood, A.I.; Miles, C.O. Pinnatoxins and spirolides in Norwegian blue mussels and seawater. Toxicon 2011, 58, 700–711. [Google Scholar] [CrossRef]
- Li, A.; Chen, H.; Qiu, J.; Lin, H.; Gu, H. Determination of multiple toxins in whelk and clam samples collected from the Chukchi and Bering seas. Toxicon 2016, 109, 84–93. [Google Scholar] [CrossRef]
- Rambla-Alegre, M.; Miles, C.O.; de la Iglesia, P.; Fernandez-Tejedor, M.; Jacobs, S.; Sioen, I.; Verbeke, W.; Samdal, I.A.; Sandvik, M.; Barbosa, V.; et al. Occurrence of cyclic imines in European commercial seafood and consumers risk assessment. Environ. Res. 2018, 161, 392–398. [Google Scholar] [CrossRef]
- Villar González, A.; Rodríguez-Velasco, M.L.; Ben-Gigirey, B.; Botana, L.M. First evidence of spirolides in Spanish shellfish. Toxicon 2006, 48, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, A.; Chen, J.; Tan, Z.; Tong, M.; Liu, Z.; Qiu, J.; Yu, R. Progress on the investigation and monitoring of marine phycotoxins in China. Harmful Algae 2022, 111, 102152. [Google Scholar] [CrossRef] [PubMed]
- McNabb, P.; McCoubrey, D.; Rhodes, L.; Smith, K.; Selwood, A.; Van Ginkel, R.; MacKenzie, A.; Munday, R.; Holland, P. New perspectives on biotoxin detection in Rangaunu Harbour, New Zealand arising from the discovery of pinnatoxins. Harmful Algae 2012, 13, 34–39. [Google Scholar] [CrossRef]
- Munday, R.; Quilliam, M.A.; LeBlanc, P.; Lewis, N.; Gallant, P.; Sperker, S.A.; Ewart, H.S.; MacKinnon, S.L. Investigations into the toxicology of spirolides, a group of marine phycotoxins. Toxins 2012, 4, 1–14. [Google Scholar] [CrossRef]
- Otero, P.; Alfonso, A.; Rodríguez, P.; Rubiolo, J.A.; Cifuentes, J.M.; Bermúdez, R.; Vieytes, M.R.; Botana, L.M. Pharmacokinetic and toxicological data of spirolides after oral and intraperitoneal administration. Food Chem. Toxicol. 2012, 50, 232–237. [Google Scholar] [CrossRef]
- Finch, S.C.; Boundy, M.J.; Webb, N.G.; Harwood, D.T. The effect of experimental protocol on the toxicity of saxitoxin in mice. Toxins 2023, 15, 290. [Google Scholar] [CrossRef]
- Uemura, D.; Chou, T.; Haino, T.; Nagatsu, A.; Fukuzawa, S.; Zheng, S.-Z.; Chen, H.-S. Pinnatoxin A: A toxic amphoteric macrocycle from the Okinawan bivalve Pinna muricata. J. Am. Chem. Soc. 1995, 117, 1155–1156. [Google Scholar] [CrossRef]
- Takada, N.; Umemura, N.; Suenaga, K.; Chou, T.; Nagatsu, A.; Haino, T.; Yamada, K.; Uemura, D. Pinnatoxins B and C, the most toxic components in the pinnatoxin series from the Okinawan bivalve Pinna muricata. Tetrahedron Lett. 2001, 42, 3491–3494. [Google Scholar] [CrossRef]
- Chou, T.; Haino, T.; Kuramoto, M.; Uemura, D. Isolation and structure of pinnatoxin D, a new shellfish poison from the Okinawan bivalve Pinna muricata. Tetrahedron Lett. 1996, 37, 4027–4030. [Google Scholar] [CrossRef]
- Selwood, A.I.; Miles, C.O.; Wilkins, A.L.; van Ginkel, R.; Munday, R.; Rise, F.; McNabb, P. Isolation, structural determination and acute toxicity of pinnatoxins E., F and G. J. Agric. Food Chem. 2010, 58, 6532–6542. [Google Scholar] [CrossRef]
- Rhodes, L.; Smith, K.; Selwood, A.; McNabb, P.; Munday, R.; Suda, S.; Molenaar, S.; Hallegraeff, G. Dinoflagellate Vulcanodinium rugosum identified as the causative organism of pinnatoxins in Australia, New Zealand and Japan. Phycologia 2011, 50, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Selwood, A.I.; Wilkins, A.L.; Munday, R.; Gu, H.; Smith, K.F.; Rhodes, L.L.; Rise, F. Pinnatoxin H: A new pinnatoxin analogue from a South China Sea Vulcanodinium rugosum isolate. Tetrahedron Lett. 2014, 55, 5508–5510. [Google Scholar] [CrossRef]
- McCarron, P.; Rourke, W.A.; Hardstaff, W.; Pooley, B.; Quilliam, M.A. Identification of pinnatoxins and discovery of their fatty acid ester metabolites in mussels (Mytilus edulis) from Eastern Canada. J. Agric. Food Chem. 2012, 60, 1437–1446. [Google Scholar] [CrossRef] [PubMed]
- Norambuena, L.; Mardones, J.I. Emerging phycotoxins in the Chilean coast: First localized detection of the neurotoxic cyclic imine Pinnatoxin-G in shellfish banks. Mar. Pollut. Bull. 2023, 190, 114878. [Google Scholar] [CrossRef] [PubMed]
- Hess, P.; Abadie, E.; Hervé, F.; Berteaux, T.; Séchet, V.; Aráoz, R.; Molgó, J.; Zakarian, A.; Sibat, M.; Rundberget, T.; et al. Pinnatoxin G is responsible for atypical toxicity in mussels (Mytilus galloprovincialis) and clams (Venerupis decussata) from Ingril, a French Mediterranean lagoon. Toxicon 2013, 75, 16–26. [Google Scholar] [CrossRef]
- Miles, C.; Rundberget, T.; Sandvik, M.; Aasen, J.; Selwood, A. The Presence of Pinnatoxins in Norwegian Mussels; National Veterinary Institute’s Report Series 7b-2010; National Veterinary Institute: Oslo, Norway, 2009. [Google Scholar]
- García-Altares, M.; Casanova, A.; Bane, V.; Diogène, J.; Furey, A.; De la Iglesia, P. Confirmation of pinnatoxins and spirolides in shellfish and passive samplers from Catalonia (Spain) by liquid chromatography coupled with triple quadrupole and high-resolution hybrid tandem mass spectrometry. Mar. Drugs 2014, 12, 3706–3732. [Google Scholar] [CrossRef]
- Tamele, I.J.; Timba, I.; Vasconcelos, V.; Costa, P.R. First report of pinnatoxins in bivalve molluscs from Inhaca Island (South of Mozambique)—South of the Indian Ocean. J. Mar. Sci. Eng. 2022, 10, 1215. [Google Scholar] [CrossRef]
- Moreira-González, A.R.; Comas-González, A.; Valle-Pombrol, A.; Seisdedo-Losa, M.; Hernández-Leyva, O.; Fernandes, L.F.; Chomérat, N.; Bilien, G.; Hervé, F.; Rovillon, G.A.; et al. Summer bloom of Vulcanodinium rugosum in Cienfuegos Bay (Cuba) associated to dermatitis in swimmers. Sci. Total Environ. 2021, 757, 143782. [Google Scholar] [CrossRef] [PubMed]
- Hess, P.; Mertens, K.; Chomérat, N.; Sechet, V.; Hervé, F.; Plessis, L.; Reveillon, D.; Brehmer, P. Vulcanodinium rugosum—A potent and ubiquitous genus affecting mice and man. In Dinophyte Seminars; Ludwig-Maximilians-Universität München: Munich, Germany, 2022. [Google Scholar]
- McCauley, J.A.; Nagasawa, K.; Lander, P.A.; Mischke, S.G.; Semones, M.A.; Kishi, Y. Total synthesis of pinnatoxin A. J. Am. Chem. Soc. 1998, 120, 7647–7648. [Google Scholar] [CrossRef]
- Munday, R.; Selwood, A.I.; Rhodes, L. Acute toxicity of pinnatoxins E., F and G to mice. Toxicon 2012, 60, 995–999. [Google Scholar] [CrossRef]
- Sosa, S.; Pelin, M.; Cavion, F.; Hervé, F.; Hess, P.; Tubaro, A. Acute oral toxicity of pinnatoxin G in mice. Toxins 2020, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Takada, N.; Umemura, N.; Suenaga, K.; Uemura, D. Structural determination of pteriatoxins A, B and C, extremely potent toxins from the bivalve Pteria penguin. Tetrahedron Lett. 2001, 42, 3495–3497. [Google Scholar] [CrossRef]
- Torigoe, K.; Murata, M.; Yasumoto, T.; Iwashita, T. Prorocentrolide, a toxic nitrogenous macrocycle from a marine dinoflagellate, Prorocentrum lima. J. Am. Chem. Soc. 1988, 110, 7876–7877. [Google Scholar] [CrossRef]
- Hu, T.; deFreitas, A.S.W.; Curtis, J.M.; Oshima, Y.; Walter, J.A.; Wright, J.L.C. Isolation and structure of prorocentrolide B, a fast-acting toxin from Prorocentrum maculosum. J. Nat. Prod. 1996, 59, 1010–1014. [Google Scholar] [CrossRef]
- Lu, C.-K.; Lee, G.-H.; Huang, R.; Chou, H.-N. Spiro-prorocentrimine, a novel macrocyclic lactone from a benthic Prorocentrum sp. of Taiwan. Tetrahedron Lett. 2001, 42, 1713–1716. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, N.-H.; Jeong, E.J.; Rho, J.-R. Cytotoxic 4-hydroxyprorocentrolide and prorocentrolide C from cultured dinoflagellate Prorocentrum lima induce human cancer cell death through apoptosis and cell cycle arrest. Toxins 2020, 12, 304. [Google Scholar] [CrossRef]
- Amar, M.; Aráoz, R.; Iorga, B.I.; Yasumoto, T.; Servent, D.; Molgó, J. Prorocentrolide-A from cultured Prorocentrum lima dinoflagellates collected in Japan blocks sub-types of nicotinic acetylcholine receptors. Toxins 2018, 10, 97. [Google Scholar] [CrossRef]
- Selwood, A.I.; Wilkins, A.L.; Munday, R.; Shi, F.; Rhodes, L.L.; Holland, P.T. Portimine: A bioactive metabolite from the benthic dinoflagellate Vulcanodinium rugosum. Tetrahedron Lett. 2013, 54, 4705–4707. [Google Scholar] [CrossRef]
- Cuddihy, S.L.; Drake, S.; Harwood, D.T.; Selwood, A.I.; McNabb, P.S.; Hampton, M.B. The marine cytotoxin portimine is a potent and selective inducer of apoptosis. Apoptosis 2016, 21, 1447–1452. [Google Scholar] [CrossRef]
- Tang, J.; Li, W.; Chiu, T.-Y.; Martínez-Peña, F.; Luo, Z.; Chong, C.T.; Wei, Q.; Gazaniga, N.; West, T.J.; See, Y.Y.; et al. Synthesis of portimines reveals the basis of their anti-cancer activity. Nature 2023, 622, 507–513. [Google Scholar] [CrossRef]
- Fribley, A.M.; Xi, Y.; Makris, C.; Alves-de-Souza, C.; York, R.; Tomas, C.; Wright, J.L.C.; Strangman, W.K. Identification of portimine B, a new cell permeable spiroimine that induces apoptosis in oral squamous cell carcinoma. ACS Med. Chem. Lett. 2019, 10, 175–179. [Google Scholar] [CrossRef]
- Aráoz, R.; Barnes, P.; Séchet, V.; Delepierre, M.; Zinn-Justin, S.; Molgó, J.; Zakarian, A.; Hess, P.; Servent, D. Cyclic imine toxins survey in coastal european shellfish samples: Bioaccumulation and mode of action of 28-O-palmitoyl ester of pinnatoxin-G. first report of portimine-A bioaccumulation. Harmful Algae 2020, 98, 101887. [Google Scholar] [CrossRef] [PubMed]
- Hermawan, I.; Higa, M.; Hutabarat, P.U.B.; Fujiwara, T.; Akiyama, K.; Kanamoto, A.; Haruyama, T.; Kobayashi, N.; Higashi, M.; Suda, S.; et al. Kabirimine, a new cyclic imine from an Okinawan dinoflagellate. Mar. Drugs 2019, 17, 353. [Google Scholar] [CrossRef] [PubMed]
- Kita, M.; Ohishi, N.; Washida, K.; Kondo, M.; Koyama, T.; Yamada, K.; Uemura, D. Symbioimine and neosymbioimine, amphoteric iminium metabolites from the symbiotic marine dinoflagellate Symbiodinium sp. Bioorganic Med. Chem. 2005, 13, 5253–5258. [Google Scholar] [CrossRef] [PubMed]
- Arnich, N.; Abadie, E.; Delcourt, N.; Fessard, V.; Fremy, J.M.; Hort, V.; Lagrange, E.; Maignien, T.; Molgó, J.; Peyrat, M.B.; et al. Health risk assessment related to pinnatoxins in French shellfish. Toxicon 2020, 180, 1–10. [Google Scholar] [CrossRef]
- Bouquet, A.; Thébault, A.; Arnich, N.; Foucault, E.; Caillard, E.; Gianaroli, C.; Bellamy, E.; Rolland, J.L.; Laabir, M.; Abadie, E. Modelling spatiotemporal distributions of Vulcanodinium rugosum and pinnatoxin G in French Mediterranean lagoons: Application to human health risk characterisation. Harmful Algae 2023, 129, 102500. [Google Scholar] [CrossRef] [PubMed]
- Katikou, P.; Aligizaki, K.; Zacharaki, T.; Iossifidis, D.; Nikolaidis, G. First report of spirolides in Greek shellfish assocociated with causative Alexandrium species. In Proceedings of the 14th International Conference on Harmful Algal Blooms, Crete, Greece, 1–5 November 2010; pp. 197–199. [Google Scholar]
- Pigozzi, S.; Bianchi, L.; Boschetti, L.; Cangini, M.; Ceredi, A.; Magnani, F.; Milandri, A.; Montanari, S.; Pompei, M.; Riccardi, E.; et al. First evidence of spirolide accumulation in northwestern Adriatic shellfish. In Proceedings of the 12th International Conference on Harmful Algae, Copenhagen, Denmark, 4–8 September 2006; pp. 319–322. [Google Scholar]
- Paredes-Banda, P.; García-Mendoza, E.; Ponce-Rivas, E.; Blanco, J.; Almazán-Becerril, A.; Galindo-Sánchez, C.; Cembella, A. Association of the toxigenic dinoflagellate Alexandrium ostenfeldii with spirolide accumulation in cultured mussels (Mytilus galloprovincialis) from Northwest Mexico. Front. Mar. Sci. 2018, 5, 491. [Google Scholar] [CrossRef]
- Silva, M.; Barreiro, A.; Rodriguez, P.; Otero, P.; Azevedo, J.; Alfonso, A.; Botana, L.M.; Vasconcelos, V. New invertebrate vectors for PST, spirolides and okadaic acid in the North Atlantic. Mar. Drugs 2013, 11, 1936–1960. [Google Scholar] [CrossRef]
- Blanco, J.; Arévalo, F.; Moroño, Á.; Correa, J.; Rossignoli, A.E.; Lamas, J.P. Spirolides in bivalve mollusk of the Galician (NW Spain) coast: Interspecific, spatial, temporal variation and presence of an isomer of 13-desmethyl spirolide C. Toxins 2023, 15, 13. [Google Scholar] [CrossRef] [PubMed]
- Moreiras, G.; Leão, J.M.; Gago-Martínez, A. Analysis of cyclic imines in mussels (Mytilus galloprovincialis) from Galicia (NW Spain) by LC-MS/MS. Int. J. Environ. Res. Public Health 2020, 17, 281. [Google Scholar] [CrossRef]
- Barreiro-Crespo, L.; Fernández-Tejedor, M.; Diogène, J.; Rambla-Alegre, M. The temporal distribution of cyclic imines in shellfish in the bays of Fangar and Alfacs, Northwestern Mediterranean region. Toxins 2024, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Rossignoli, A.E.; Mariño, C.; Martín, H.; Blanco, J. First report of two gymnodimines and two tetrodotoxin analogues in invertebrates from the North Atlantic Coast of Spain. Mar. Drugs 2023, 21, 232. [Google Scholar] [CrossRef] [PubMed]
- Rossignoli, A.E.; Ben-Gigirey, B.; Cid, M.; Mariño, C.; Martín, H.; Garrido, S.; Rodríguez, F.; Blanco, J. Lipophilic shellfish poisoning toxins in marine invertebrates from the Galician coast. Toxins 2023, 15, 631. [Google Scholar] [CrossRef]
- Geng, H.; Sun, H.; Liu, C.; Kong, F.; Zhang, Q.; Yan, T.; Yu, R. Screening for lipophilic marine toxins and their potential producers in coastal waters of Weihai in autumn, 2020. J. Oceanol. Limnol. 2022, 40, 2218–2230. [Google Scholar] [CrossRef]
- Wang, X.-Z.; Cheng, Y.; Li, N.; Wen, H.-M.; Liu, R.; Shan, C.-X.; Chai, C.; Wu, H. Occurrence and seasonal variations of lipophilic marine toxins in commercial clam species along the coast of Jiangsu, China. Toxins 2016, 8, 8. [Google Scholar] [CrossRef]
- Ujević, I.; Roje-Busatto, R.; Ezgeta-Balić, D. Comparison of amnesic, paralytic and lipophilic toxins profiles in cockle (Acanthocardia tuberculata) and smooth clam (Callista chione) from the central Adriatic Sea (Croatia). Toxicon 2019, 159, 32–37. [Google Scholar] [CrossRef]
- Villar-González, A.; Rodríguez-Velasco, M.L.; Ben-Gigirey, B.; Botana, L.M. Lipophilic toxin profile in Galicia (Spain): 2005 toxic episode. Toxicon 2007, 49, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Otero, P.; Vale, C.; Boente-Juncal, A.; Costas, C.; Louzao, M.C.; Botana, L.M. Detection of cyclic imine toxins in dietary supplements of sreen lipped mussels (Perna canaliculus) and in shellfish Mytilus chilensis. Toxins 2020, 12, 613. [Google Scholar] [CrossRef] [PubMed]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; et al. Scientific opinion on the risks for public health related to the presence of tetrodotoxin (TTX) and TTX analogues in marine bivalves and gastropods. EFSA J. 2017, 15, 4752. [Google Scholar] [CrossRef]
- EFSA Scientific Committee. Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. EFSA J. 2012, 10, 2579. [Google Scholar] [CrossRef]
- Interdepartmental Group on Health Risks from Chemicals. Uncertainty Factors: Their Use in Human Health Risk Assessment by UK Government; MRC Institute for Environment and Health: Leicester, UK, 2003; p. 69. [Google Scholar]
- EFSA. Scientific opinion of the panel on contaminants in the food chain on a request from the european commission on marine biotoxins in shellfish–saxitoxin group. EFSA J. 2009, 1019, 1–76. [Google Scholar] [CrossRef]
- FAO/IOC/WHO. Report of the Joint FAO/IOC/WHO Ad Hoc Expert Consultation on Biotoxins in Bivalve Molluscs; FAO: Oslo, Norway, 2004; p. 31. [Google Scholar]
Compound | Mouse Strain | Gender | State of Alimentation | Parameter | Acute Toxicity | Ref |
---|---|---|---|---|---|---|
GYM A | ? | ? | ? | “lethality” | 450 | [17] |
GYM A | ? | ? | ? | MLD | 700 | [43] |
GYM A | Swiss albino | F | Fed | LD50 | 96 (79–118) | [42] |
GYM A | Swiss Webster | M | ? | LD50 | 80 | [13] |
GYM B | Swiss Webster | M | ? | LD50 | 800 | [13] |
Compound | Method of Administration | State of Alimentation | Acute Toxicity | Ref |
---|---|---|---|---|
GYM A | Gavage | Fed | 750 (600–945) | [42] |
GYM A | Over the tongue a | ? | 4057 (3750–4390) | [42] |
GYM A | Feeding b | Fasted | >7500 | [42] |
Compound | Parameter | Acute Toxicity | Ref |
---|---|---|---|
Spirolide A a | LD50 | 37 (35–44) | [62] |
Spirolide B a | LD50 | 99 | [62] |
Spirolide B c | LD100 | 250 | [45] |
Dihydrospirolide B b | MLD | >1000 | [46] |
Spirolide C a | LD50 | 8.0 (4.6–16.0) | [62] |
13-desmethyl spirolide C a | LD50 | 6.9 (5.0–8.0) | [62] |
13-desmethyl spirolide C | LD50 | 27.9 | [63] |
27-hydroxy-13-desmethyl spirolide C b | MLD | >27 | [52] |
27-oxo-13,19-didesmethyl spirolide C b | MLD | >35 | [52] |
13,19-didesmethyl spirolide C b | LD50 | 32 | [63] |
13,19-didesmethyl spirolide C b | MLD | 30 | [51] |
Spirolide D c | LD100 | 250 | [45] |
Spirolide E b | MLD | >1000 | [46] |
Spirolide F b | MLD | >1000 | [46] |
20-methyl spirolide G a | LD50 | 8.0 (3.9–14.0) | [62] |
20-methyl spirolide G | MLD | >63.5 | [63] |
Spirolide H a | MLD | >2000 | [53] |
Compound | Gavage | Voluntary Feeding | ||
---|---|---|---|---|
Fed | Fasted | Fed | Fasted | |
Spirolide A | 550 (436–690) | 240 (188–298) | 1300 (1250–1580) | 1200 (1047–3690) |
Spirolide B | ND | 440 (320–500) | ND | ND |
Spirolide C | ND | 53 (50–63) | 780 | 500 (353–657) |
13-desmethyl spirolide C | 160 (123–198) | 130 (87–166) | 1000 (861–1290) | 500 (381–707) |
20-methyl spirolide G | 160 | 88 (27–120) | ND | 500 (381–707) |
Compound | Parameter | Fed Acute Toxicity | Fasted Acute Toxicity | Acute Toxicity | Ref |
---|---|---|---|---|---|
(+)-Pinnatoxin A b | LD99 | ND | ND | 180 | [65] |
(+)-Pinnatoxin A b | LD99 | ND | ND | 135 | [79] |
(−)-Pinnatoxin A b | MLD | ND | ND | >5000 | [79] |
Pinnatoxin B/C 1:1 b | LD99 | ND | ND | 22 | [66] |
Pinnatoxin D b | LD99 | ND | ND | 400 | [67] |
Pinnatoxin E a | LD50 | 45 (32–58) | ND | ND | [68] |
Pinnatoxin E a | LD50 | 57 (39.7–75.3) | 48.0 (33.5–63.5) | ND | [80] |
Pinnatoxin F a | LD50 | 16 (12–23) | ND | ND | [68] |
Pinnatoxin F a | LD50 | 12.7 (9.5–14.6) | 14.9 (12.6–15.8) | ND | [80] |
Pinnatoxin G a | LD50 | 50 (35–66) | ND | ND | [68] |
Pinnatoxin G a | LD50 | 48.0 (36.3–68.1) | 42.7 (40.0–50.0) | ND | [80] |
Pinnatoxin H a | LD50 | 67 (63–79) | ND | ND | [70] |
Compound | Gavage | Voluntary Feeding | Ref | ||
---|---|---|---|---|---|
Fed | Fasted | Fed | Fasted | ||
Pinnatoxin E | 2800 (2380–3000) | ND | ND | ND | [80] |
Pinnatoxin F | 25.0 (19.1–35.1) | 29.9 (25.0–32.0) | 50.0 (39.4–62.8) | 77 | [80] |
Pinnatoxin G | 150 (105–199) | ND | 400 (380–470) | ND | [80] |
Pinnatoxin G | ND | 208 (155–281) | ND | ND | [81] |
Pinnatoxin H | 163 (139–175) | ND | ND | ND | [70] |
Country | Area | Year | GYM a | SPX b | PnTX c | Ref |
---|---|---|---|---|---|---|
Mussels (various species) | ||||||
Argentina | Beagle Channel | 2005–2007 | <LOD | 68 (1) | NT | [55] |
Bosnia and Herzegovina | Bay of Neum | 2017 | 11.4 | NT | NT | [25] |
Canada | Eastern Canada | 2010–2011 | NT | NT | 83 (G), 1.5 (A) | [71] |
Chile | Beagle Channel | 2021–2022 | NT | NT | 100 | [72] |
Croatia | Istrian Peninsula | 2018–2019 | 17.2 | 17.0 (1) | 6.9 | [26] |
Makarska City Bay | 2017 | 7.4 | NT | NT | [25] | |
France | Corsica | 2021 | 3.5 | Low | Low | [39] |
South Brittany | 2005 | <LOD | 14 (1), 7 (2), 2 (3) | NT | [27] | |
Atlantic Coast | 2005 | <LOD | 68 (2), 19 (1) | NT | [27] | |
Ingril Lagoon | 2018 | <LOD | 12 (total) | 473 | [39] | |
Ingril Lagoon | 2010 | NT | NT | 1244 | [73] | |
Survey data | 2013 | NT | NT | 89 | [95] | |
Ingril Lagoon | 2021–2022 | NT | NT | 129 | [96] | |
Prevost Lagoon | 2021–2022 | NT | NT | 129 | [96] | |
Thau Lagoon | 2021–2022 | NT | NT | 58 | [96] | |
Vic Lagoon | 2021–2022 | NT | NT | 318 | [96] | |
Greece | Thermaikos Gulf | 2008–2009 | NT | 26 (1) | NT | [97] |
Ireland | Dublin | 2015 | <LOD | <LOD | 4.6 | [58] |
Italy | 2014–2015 | 12.1 | 29.2 (1) + (4) | <LOD | [28] | |
Emilia Romagna Coast | 2003 | NT | 13 (1) | NT | [98] | |
Mexico | Todos Santos Bay | NT | 1.05 (1) | NT | [99] | |
Morocco | Essaouira | 2014–2015 | 5.6 | <LOD | NT | [29] |
Netherlands | Ijmuiden | 2015 | <LOD | <LOD | 5.1 | [58] |
New Zealand | Survey | 1993–1999 | 2773 | NT | NT | [19] |
Norway | 2009 | NT | 226 (1), 63 (5), 49 (6) 34 (7) | <LOD | [56] | |
Hvaler | 2009 | NT | 3 (5), 5 (7) | <LOD | [56] | |
Nordreisa | 2009 | NT | 52 (1), 34 (7) | 7 | [56] | |
Nærøy | 2009 | NT | 226 (1), 5 (3), 6 (6), 37 (7) | 20 | [56] | |
Vadsø | 2009 | NT | 42 (1), 63 (3), 16 (7) | 10 | [56] | |
Vestvågøy | 2009 | NT | 2 (1), 5 (7) | 115 | [56] | |
Skjer | 2002–2003 | NT | 44 (7), 103 total | NT | [50] | |
Portugal | Atlantic Coast | 2009–2010 | NT | 2.2 (1) | NT | [100] |
Slovenia | Marobor | 2015 | <LOD | 33 (1) | <LOD | [58] |
South Africa | Lambert’s Bay | 2008 | 0.15 | NT | NT | [30] |
Spain | Galicia | NT | 78 (1) | NT | [101] | |
Galicia | 2015 | <LOD | 6.9 (1) | 3.1 | [102] | |
Catalonia | 2012 | NT | 16 (1) | 59 | [75] | |
Fangar Bay | 2015–2021 | Trace | Low | 38 | [103] | |
Sant Carles de la Rapita | 2018 | <LOD | 28 (1) | 4 | [58] | |
Oysters (various species) | ||||||
Australia | SE Queensland | 2003–2005 | 43 | NT | NT | [31] |
China | Beibu Gulf | 2017–2018 | 40.9 | <LOD | NT | [32] |
Beibu Gulf | 2018–2022 | 10.1 | 19.6 (1) | <LOD | [33] | |
Daya Bay | 2013–2014 | 2.64 | NT | NT | [34] | |
Croatia | Istrian Peninsula | 2018–2019 | 40.2 | 38 (1) | 3.59 | [26] |
France | Atlantic Coast | 2005 | <LOD | 47 (1) | NT | [27] |
Lebanon | Tripoli, Beirut, Tyre | 102.9 (B) | 15.1 (1) | <LOD | [35] | |
Mozabique | Ihaca Island | 2020 | NT | NT | 1.6 | [76] |
New Zealand | Foveaux Strait | 1996 | 23,437 | NT | NT | [19] |
Rangaunu Harbour | 2008 | <LOD | 4.7 (1) | 3.9 (D), 126 (E) 68 (F) | [61] | |
Spain | Galicia | 2022 | 10 (DMD) | NT | NT | [104] |
Galicia | 2021–2022 | <LOD | 21 (1) | NT | [105] | |
Catalonia | 2012 | NT | 6.6 | <LOD | [75] | |
Slovenia | Marobor | 2014–2015 | <LOD | 27 | 4 | [58] |
South Africa | Lambert’s Bay | 2008 | 0.65 | NT | NT | [30] |
Clams (various species) | ||||||
China | Weihai, Shandong | 2020 | 3.77 | <LOD | NT | [106] |
Ganyu Harbour | 2014–2015 | 5.96 | <LOD | NT | [107] | |
Croatia | Cetina Estuary | 2009–2010 | 6.14 | 2.1 | NT | [108] |
France | Ingril Lagoon | 2010 | NT | NT | 95 | [73] |
Brittany | 2005 | NT | 8 (1) | NT | [27] | |
Italy | Goro, Caleri and La Spezia | 2014 | <LOD | <LOD | 4 | [58] |
Lebanon | Tripoli, Beirut, Tyre | 2019–2020 | 15.8 (B) | 5.9 (1) | NT | [35] |
New Caledonia | Noumea | 2021–2022 | 22.6 | <LOD | 22.6 | [38] |
Chukchi Sea | 2014 | <LOD | 0.78 (1) | <LOD | [57] | |
Lisbon | 2015 | <LOD | 63 (1) | <LOD | [58] | |
Spain | Galicia | 2005 | NT | 13 (1) | NT | [109] |
Tunisia | Boughrara Lagoon | 2000–2007 | 1290 (DG) | NT | NT | [36] |
Mozambique | Inhaca Island | 2020 | NT | NT | 4.5 | [76] |
Cockles (Acanthocardia turberculata or Cerastoderma edule) | ||||||
Croatia | Cetina Estuary | 2009–2010 | 15.8 | 5.9 (1) | NT | [108] |
Portugal | Lisbon | 2015 | <LOD | 57 (1) | <LOD | [58] |
Spain | Galicia | 2022 | 8.8 (D) | NT | NT | [104] |
Scallops (Aequipecten opercularis or Pecten novaezelandiae) | ||||||
Croatia | Istrian Peninsula | 2018–2019 | 3.66 | <LOD | <LOD | [26] |
New Zealand | Survey | 1993–1999 | 66.2 | NT | NT | [19] |
Pipi (Donax deltoides or Paphies australis) | ||||||
New Zealand | Survey | 1993–1999 | 17.7 | NT | NT | [19] |
Australia | SE Queensland | 2003–2005 | 220 | NT | NT | [31] |
Abalone (Haliotis iris) | ||||||
New Zealand | Survey | 1993–1999 | 81.7 | NT | NT | [19] |
Limpet (Patella rustica complex or Patella intermedia) | ||||||
Lebanon | Tripoli, Beirut, Tyre | 2019–2020 | 26.9 (B) | <LOD | <LOD | [35] |
Portugal | Atlantic Coast | 2009–2010 | NT | 1.9 (1) | NT | [100] |
Whelk (Nucella lapillus or Neptunea varicifera) | ||||||
Portugal | Atlantic Coast | 2009–2010 | NT | 1.1 (1) | NT | [100] |
Chukchi Sea | 2014 | <LOD | 20 (1), 7.6 (5), 2.2 (8), 3.3 (9) (DG) | <LOD | [57] | |
Bering Sea | 2014 | <LOD | 1.4 (1), 1.6 (9) (DG) | <LOD | [57] | |
Pen Shell (Atrina vexillum) | ||||||
Mozambique | Inhaca Island | 2020 | NT | NT | 7.7 | [76] |
Tellina donacina | ||||||
Spain | Galicia | 2021–2022 | <LOD | NT | 63 | [105] |
“Shellfish” | ||||||
China | Beibu Gulf | 2016 | 211 | Low | NT | [33] |
France | 2005–2008 | <LOD | 90 total | <LOD | [15] | |
Greece | 74 | 69 (1) | 64 | [39] | ||
Italy | 2002–2008 | <LOD | 105 total | <LOD | [15] | |
Netherlands | Ijmuiden | 2007 | <LOD | 9.6 total | <LOD | [15] |
Spain | Galicia | 2017–2019 | 23.9 | NT | NT | [37] |
GYM | SPX | PnTX | |
---|---|---|---|
NOAEL (µg/kg bodyweight) | 7500 | 320 | 153 |
Apply safety factors (100×) (µg/kg bodyweight) | 75 | 3.2 | 1.53 |
“Safe” concentration in seafood (µg/kg shellfish flesh) | 13,125 | 560 | 268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finch, S.C.; Harwood, D.T.; Boundy, M.J.; Selwood, A.I. A Review of Cyclic Imines in Shellfish: Worldwide Occurrence, Toxicity and Assessment of the Risk to Consumers. Mar. Drugs 2024, 22, 129. https://doi.org/10.3390/md22030129
Finch SC, Harwood DT, Boundy MJ, Selwood AI. A Review of Cyclic Imines in Shellfish: Worldwide Occurrence, Toxicity and Assessment of the Risk to Consumers. Marine Drugs. 2024; 22(3):129. https://doi.org/10.3390/md22030129
Chicago/Turabian StyleFinch, Sarah C., D. Tim Harwood, Michael J. Boundy, and Andrew I. Selwood. 2024. "A Review of Cyclic Imines in Shellfish: Worldwide Occurrence, Toxicity and Assessment of the Risk to Consumers" Marine Drugs 22, no. 3: 129. https://doi.org/10.3390/md22030129
APA StyleFinch, S. C., Harwood, D. T., Boundy, M. J., & Selwood, A. I. (2024). A Review of Cyclic Imines in Shellfish: Worldwide Occurrence, Toxicity and Assessment of the Risk to Consumers. Marine Drugs, 22(3), 129. https://doi.org/10.3390/md22030129