Antibacterial Polyketides from the Deep-Sea Cold-Seep-Derived Fungus Talaromyces sp. CS-258
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation
2.2. Biological Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation, Extraction, and Isolation
3.4. Spectroscopic Data
3.5. X-ray Crystallographic Analysis of Compounds 2, 11, 13, and 14
3.6. Antimicrobial Activity Assay
3.7. Details of Computational Methods
3.8. The Modified Mosher’s Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chooi, Y.H.; Tang, Y. Navigating the fungal polyketide chemical space: From genes to molecules. J. Org. Chem. 2012, 77, 9933–9953. [Google Scholar] [CrossRef] [PubMed]
- Crawford, J.M.; Korman, T.P.; Labonte, J.W.; Vagstad, A.L.; Hill, E.A.; Kamari-Bidkorpeh, O.; Tsai, S.C.; Townsend, C.A. Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization. Nature 2009, 461, 1139–1143. [Google Scholar] [CrossRef] [PubMed]
- Crawford, J.M.; Townsend, C.A. New insights into the formation of fungal aromatic polyketides. Nat. Rev. Microbiol. 2010, 8, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-R.; Dong, Y.-L.; Li, X.-M.; Shi, X.-S.; Li, H.-L.; Meng, L.-H.; Xu, R.; Wang, B.-G. Curvularin derivatives from the marine mangrove derived fungus Penicillium sumatrense MA-325. Phytochemistry 2024, 220, 114000. [Google Scholar] [CrossRef] [PubMed]
- Weissman, K.J.; Leadlay, P.F. Combinatorial biosynthesis of reduced polyketides. Nat. Rev. Microbiol. 2005, 3, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.H.; Du, F.Y.; Li, X.M.; Yang, S.Q.; Wang, B.G.; Li, X. Antibacterial indole diketopiperazine alkaloids from the deep-sea cold seep-derived fungus Aspergillus chevalieri. Mar. Drugs 2023, 21, 195. [Google Scholar] [CrossRef] [PubMed]
- Jin, E.; Li, H.; Liu, Z.; Xiao, F.; Li, W. Antibiotic dixiamycins from a cold-seep-derived Streptomyces olivaceus. J. Nat. Prod. 2021, 84, 2606–2611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Su, X.; Chen, F.; Wang, Y.; Jiao, L.; Dong, H.; Huang, Y.; Jiang, H. Microbial diversity in cold seep sediments from the northern South China Sea. Geosci. Front. 2012, 3, 301–316. [Google Scholar] [CrossRef]
- Chi, L.P.; Li, X.M.; Wan, Y.P.; Li, X.; Wang, B.G. Ophiobolin sesterterpenoids and farnesylated phthalide derivatives from the deep sea cold-seep-derived fungus Aspergillus insuetus sd-512. J. Nat. Prod. 2020, 83, 3652–3660. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Li, X.; Yang, S.; Wang, B.; Li, H. Verrucosidin derivatives from the deep sea cold-seep-derived fungus Penicillium polonicum CS-252. Int. J. Mol. Sci. 2022, 23, 5567. [Google Scholar] [CrossRef]
- Song, Q.; Yang, S.Q.; Li, X.M.; Hu, X.Y.; Li, X.; Wang, B.G. Aromatic polyketides from the deep-sea cold-seep mussel associated endozoic fungus Talaromyces minioluteus CS-138. Mar. Drugs 2022, 20, 529. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Fang, S.T.; Shi, Z.Z.; Wang, B.G.; Li, X.N.; Ji, N.Y. Phenylhydrazone and quinazoline derivatives from the cold-seep-derived fungus Penicillium oxalicum. Mar. Drugs 2020, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Cong, M.; Zhang, Y.; Feng, X.; Pang, X.; Liu, Y.; Zhang, X.; Yang, Z.; Wang, J. Anti-inflammatory alkaloids from the cold-seep-derived fungus Talaromyces helicus SCSIO41311. 3 Biotech 2022, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Y.; Wang, C.Y.; Li, X.M.; Yang, S.Q.; Li, X.; Wang, B.G.; Si, S.Y.; Meng, L.H. Cytochalasin derivatives from the endozoic Curvularia verruculosa CS-129, a fungus isolated from the deep-sea squat lobster Shinkaia crosnieri living in the cold seep environment. J. Nat. Prod. 2021, 84, 3122–3130. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.H.; Li, P.H.; Li, X.M.; Yang, S.Q.; Liu, K.C.; Wang, B.G.; Li, X. Chevalinulins A and B, proangiogenic alkaloids with a spiro[bicyclo[2.2.2]octane-diketopiperazine] skeleton from deep-sea cold-seep-derived fungus Aspergillus chevalieri CS-122. Org. Lett. 2022, 24, 2684–2688. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, X.; Yang, S.; Li, X.; Wang, B.; Meng, L. Vercytochalasins A and B: Two unprecedented biosynthetically related cytochalasins from the deep-sea-sourced endozoic fungus Curvularia verruculosa. Chin. Chem. Lett. 2023, 34, 107516. [Google Scholar] [CrossRef]
- Che, Y.-H.; Wang, J.-F.; Shi, X.-F.; Ding, W.-P.; Xiao, Z.-H.; Wu, J.-M.; Wang, F.-Z.; Zhang, S. The 8R-methoxy-9R-hydroxyl-fumitremorgin C, a new diketopiperazine alkaloid from Haima cold seep-derived fungus Aspergillus fumigatus CYH-5. Nat. Prod. Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Fall, Y.; Santana, L.; Uriarte, E. Synthesis and characterization of some coumarins with two hydroxy or methoxy substituents. J. Heterocycl. Chem. 2001, 38, 1231. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, S.; Liu, Y. A new polyketide from a sponge-derived fungus. Acta Pharm. Sinica 2018, 53, 1134–1138. [Google Scholar]
- Liu, Y.; Wu, Y.; Zhai, R.; Liu, Z.; Huang, X.; She, Z. Altenusin derivatives from mangrove endophytic fungus Alternaria sp. SK6YW3L. RSC Adv. 2016, 6, 72127–72132. [Google Scholar] [CrossRef]
- Wang, Q.X.; Bao, L.; Yang, X.L.; Guo, H.; Yang, R.N.; Ren, B.; Zhang, L.X.; Dai, H.Q.; Guo, L.D.; Liu, H.W. Polyketides with antimicrobial activity from the solid culture of an endolichenic fungus Ulocladium sp. Fitoterapia 2012, 83, 209–214. [Google Scholar] [CrossRef]
- Jin, P.F.; Dai, H.F.; Zuo, W.J.; Zeng, Y.B.; Guo, Z.K.; Mei, W.L. Metabolites from the endophytic fungus of Ceriops tagal. Chin. J. Med. Chem. 2013, 23, 309. [Google Scholar]
- Kornsakulkarn, J.; Saepua, S.; Suvannakad, R.; Supothina, S.; Boonyuen, N.; Isaka, M.; Prabpai, S.; Kongsaeree, P.; Thongpanchang, C. Cytotoxic tropolones from the fungus Nemania sp. BCC 30850. Tetrahedron 2017, 73, 3505–3512. [Google Scholar] [CrossRef]
- Dale, J.A.; Mosher, H.S. Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and α-methoxy-α-trifluoromethylpheny-lacetate (MTPA) esters. J. Am. Chem. Soc. 1973, 95, 512–519. [Google Scholar] [CrossRef]
- Su, B.N.; Park, E.J.; Mbwambo, Z.H.; Santarsiero, B.D.; Mesecar, A.D.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. New chemical constituents of Euphorbia quinquecostata and absolute configuration assignment by a convenient mosher ester procedure carried out in NMR tubes. J. Nat. Prod. 2002, 65, 1278–1282. [Google Scholar] [CrossRef] [PubMed]
- Kashiwada, Y.; Nonaka, G.; Nishioka, I. Chromone glucosides from Rhubarb. Phytochemistry 1990, 29, 1007–1009. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, C.; Zheng, Z.; Sun, R.; Yu, X.; Zhao, J. Synthesis of 2-arylbenzofuran-3-carbaldehydes via an organocatalytic [3+2] annulation/oxidative aromatization reaction. Chem. Commun. 2018, 54, 4935–4938. [Google Scholar] [CrossRef]
- Li, C.-P.; Song, Y.-P.; Wang, B.-G.; Ji, N.-Y. Sulfurated and iodinated metabolites from the cold-seep fungus Cladosporium cladosporioides 8-1. Tetrahedron Lett. 2022, 93, 153689. [Google Scholar] [CrossRef]
- Ye, F.; Chen, G.-D.; He, J.-W.; Li, X.-X.; Sun, X.; Guo, L.-D.; Li, Y.; Gao, H. Xinshengin, the first altenusin with tetracyclic skeleton core from Phialophora spp. Tetrahedron Lett. 2013, 54, 4551–4554. [Google Scholar] [CrossRef]
- Naganuma, M.; Nishida, M.; Kuramochi, K.; Sugawara, F.; Yoshida, H.; Mizushina, Y. 1-deoxyrubralactone, a novel specific inhibitor of families X and Y of eukaryotic DNA polymerases from a fungal strain derived from sea algae. Bioorg. Med. Chem. 2008, 16, 2939–2944. [Google Scholar] [CrossRef]
- He, J.W.; Chen, G.D.; Gao, H.; Yang, F.; Li, X.X.; Peng, T.; Guo, L.D.; Yao, X.S. Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp. and Phialophora sp. Fitoterapia 2012, 83, 1087–1091. [Google Scholar] [CrossRef]
- Hua, Y.; Pan, R.; Bai, X.; Wei, B.; Chen, J.; Wang, H.; Zhang, H. Aromatic polyketides from a symbiotic strain Aspergillus fumigatus D and characterization of their biosynthetic gene D8.T287. Mar. Drugs 2020, 18, 324. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, A.A.; Kohn, B.N.; Pfeiffer, E.; Wefers, D.; Metzler, M.; Bunzel, M. Conjugation of the mycotoxins alternariol and alternariol monomethyl ether in tobacco suspension cells. J. Agric. Food Chem. 2015, 63, 4728–4736. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.H.; Edrada-Ebel, R.; Indriani, I.D.; Wray, V.; Muller, W.E.G.; Totzke, F.; Zirrgiebel, U.; Schachtele, C.; Kubbutat, M.H.G.; Lin, W.H.; et al. Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense. J. Nat. Prod. 2008, 71, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.D.; Yi, T.F.; Ma, Q.Y.; Xie, Q.Y.; Zhou, L.M.; Chen, J.P.; Dai, H.F.; Wu, Y.G.; Zhao, Y.X. Biphenyl metabolites from the patchouli endophytic fungus Alternaria sp. PfuH1. Fitoterapia 2020, 146, 104708. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ma, H.B.; Wu, T.; Liu, L.F.; Xie, M.M.; Hu, M.Y.; Gai, Y.B.; Zhong, T.H.; Yang, X.W. Hyposterolactone A, a 3α-hydroxy steroidal lactone from the deep-sea-derived fungus Hypocrea sp. ZEN14. Chem. Biodiversity 2023, 20, e202300753. [Google Scholar] [CrossRef]
- Pfeiffer, E.; Schebb, N.H.; Podlech, J.; Metzler, M. Novel oxidative in vitro metabolites of the mycotoxins alternariol and alternariol methyl ether. Mol. Nutr. Food Res. 2007, 51, 307–316. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Zhang, T.Y.; Zhang, M.Y.; Cheng, J.; Zhang, Y.X. An endophytic fungi of Ginkgo biloba L. produces antimicrobial metabolites as potential inhibitors of FtsZ of Staphylococcus aureus. Fitoterapia 2018, 128, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Komai, S.-i.; Hosoe, T.; Itabashi, T.; Nozawa, K.; Yaguchi, T.; Fukushima, K.; Kawai, K.-i. New penicillide derivatives isolated from Penicillium simplicissimum. J. Nat. Med. 2006, 60, 185–190. [Google Scholar] [CrossRef]
- Jeon, H.; Shim, S.H. Chemical constituents of the endophyte Penicillium sp. isolated from Artemisia princeps. Chem. Nat. Compd. 2020, 56, 122–124. [Google Scholar] [CrossRef]
- Kazumi, S.; Koohei, N.; Shun-ichi, U.; Shoichi, N.; Ken-ichi, K. Penicillide and dehydroisopenicillide from Talaromyces derxii. Phytochemistry 1991, 30, 2096–2098. [Google Scholar]
- Ayer, W.A.; Racok, J.S. The metabolites of Talaromyces flavus: Part 2. biological activity and biosynthetic studies. Can. J. Chem. 1990, 68, 2095–2101. [Google Scholar] [CrossRef]
- Yang, H.; Qi, B.; Ding, N.; Jiang, F.; Jia, F.; Luo, Y.; Xu, X.; Wang, L.; Zhu, Z.; Liu, X.; et al. Polyketides from Alternaria alternata MT-47, an endophytic fungus isolated from Huperzia serrata. Fitoterapia 2019, 137, 104282. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.H.; James, V.H. Biogenetically modeled syntheses of heptaacetate metabolites. Alternariol and lichexanthone. J. Am. Chem. Soc. 1977, 99, 1631–1637. [Google Scholar]
- Sun, J.; Awakawa, T.; Noguchi, H.; Abe, I. Induced production of mycotoxins in an endophytic fungus from the medicinal plant Datura stramonium L. Bioorg. Med. Chem. Lett. 2012, 22, 6397–6400. [Google Scholar] [CrossRef]
- Chi, L.P.; Liu, D.; Li, X.M.; Wan, Y.; Wang, B.G.; Li, X. Aspertides A-E: Antimicrobial pentadepsipeptides with a unique p-methoxycinnamoyl amide group from the marine isolates Aspergillus tamarii MA-21 and Aspergillus insuetus SD-512. J. Agric. Food Chem. 2023, 71, 13316–13324. [Google Scholar] [CrossRef] [PubMed]
- Blessing, R.H. An empirical correction for absorption anisotropy. Acta Crystallogr. A 1995, 51, 33–38. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Shi, X.-S.; Wang, D.-J.; Li, X.-M.; Li, H.-L.; Meng, L.-H.; Li, X.; Pi, Y.; Zhou, X.-W.; Wang, B.-G. Antimicrobial polyketides from Trichoderma koningiopsis QA-3, an endophytic fungus obtained from the medicinal plant Artemisia argyi. RSC Adv. 2017, 7, 51335–51342. [Google Scholar] [CrossRef]
- Li, H.L.; Li, X.M.; Mandi, A.; Antus, S.; Li, X.; Zhang, P.; Liu, Y.; Kurtan, T.; Wang, B.G. Characterization of cladosporols from the marine algal-derived endophytic fungus Cladosporium cladosporioides EN-399 and configurational revision of the previously reported cladosporol derivatives. J. Org. Chem. 2017, 82, 9946–9954. [Google Scholar] [CrossRef]
- Bruhn, T.; Schaumloeffel, A.; Hemberger, Y.; Bringmann, G. Specdis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 2013, 25, 243–249. [Google Scholar] [CrossRef]
- Dai, P.; Jiang, N.; Tan, R.-X. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations. J. Asian Nat. Prod. Res. 2016, 18, 72–91. [Google Scholar] [CrossRef]
- Pecul, M.; Ruud, K.; Helgaker, T. Density functional theory calculation of electronic circular dichroism using London orbitals. Chem. Phys. Lett. 2004, 388, 110–119. [Google Scholar] [CrossRef]
- Li, X.-C.; Ferreira, D.; Ding, Y. Determination of absolute configuration of natural products: Theoretical calculation of electronic circular dichroism as a tool. Curr. Org. Chem. 2010, 14, 1678–1697. [Google Scholar] [CrossRef] [PubMed]
- Pescitelli, G.; Bruhn, T. Good computational practice in the assignment of absolute configurations by TDDFT calculations of ECD spectra. Chirality 2016, 28, 749. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Li, X.-C.; Ferreira, D. Theoretical calculation of electronic circular dichroism of the rotationally restricted 3,8″-biflavonoid morelloflavone. J. Org. Chem. 2007, 72, 9010–9017. [Google Scholar] [CrossRef] [PubMed]
- Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond DP4: An improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 2015, 80, 12526–12534. [Google Scholar] [CrossRef] [PubMed]
- Waters, A.L.; Oh, J.; Place, A.R.; Hamann, M.T. Stereochemical studies of the karlotoxin class using nmr spectroscopy and DP4 chemical-shift analysis: Insights into their mechanism of action. Angew. Chem. Int. Ed. Engl. 2015, 54, 15705–15710. [Google Scholar] [CrossRef]
- Smith, S.G.; Goodman, J.M. Assigning stereochemistry to single diastereoisomers by Giao NMR calculation: The DP4 probability. J. Am. Chem. Soc. 2010, 132, 12946–12959. [Google Scholar] [CrossRef]
- Jongrungruangchok, S.; Kittakoop, P.; Yongsmith, B.; Bavovada, R.; Tanasupawat, S.; Lartpornmatulee, N.; Thebtaranonth, Y. Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 2004, 65, 2569–2575. [Google Scholar] [CrossRef] [PubMed]
No. | 1 | 3 | 5 | |||
---|---|---|---|---|---|---|
1 | 166.9 C | |||||
2 | 168.2 C | 166.9 C | ||||
2a | 99.1 C 1 | 97.8 C | ||||
3 | 91.4 C | 165.0 C | 166.3 C | |||
3a | 149.9 C | |||||
4 | 5.76, d (1.6) | 100.8 CH | 6.44, s | 103.2 CH | 6.33, s | 101.4 CH |
5 | 164.6 C | 163.9 C | 163.8 C | |||
6 | 6.34, s | 103.3 CH | 6.98, s | 106.9 CH | 6.37, s | 102.1 CH |
6a | 133.1 C | 137.2 C | ||||
7a | 103.5 C | 130.1 C | 118.1 C | |||
7 | 158.7 C | 150.8 C 1 | 6.89, dd (6.9, 2.6) | 42.0 CH | ||
8 | 1.76, s | 12.9 CH3 | 197.0 C | 3.67, m | 83.3 CH | |
9 | 3.12, d (18.0) 2.88, d (18.0) | 46.8 CH2 | 4.47, d (2.4) | 78.1 CH | ||
9a | 81.4 C | 153.1 C | ||||
10 | 1.70, s | 27.3 CH3 | 1.29, d (6.9) | 18.5 CH3 | ||
2′ | 169.2 C | |||||
3′ | 6.36, s | 129.8 CH | ||||
4′ | 200.1 C | |||||
5′ | 4.61, s | 78.2 CH |
No. | 11 | |
---|---|---|
2 | 173.2 C | |
3 | 3.26, d (17.6) 2.94, d (17.6) | 42.2 CH2 |
3a | 85.9 C | |
5 | 166.0 C | |
5a | 97.8 C | |
6 | 163.5 C | |
7 | 6.46, d (2.2) | 104.3 CH |
8 | 165.2 C | |
9 | 6.62, d (2.2) | 110.9 CH |
9a | 133.3 C | |
9b | 5.49, s | 76.9 CH |
10 | 1.51, s | 19.9 CH3 |
6-OH | 10.99, s | |
8-OH | 11.08, s |
No. | 13 | 14 | 15 | |||
---|---|---|---|---|---|---|
2 | 168.3 C | 167.8 C | 167.7 C | |||
2a | 98.8 C | 98.3 C | 98.1 C | |||
3 | 163.1 C | 163.3 C | 163.2 C | |||
4 | 6.29, s | 102.3 CH | 6.26, d (2.1) | 102.6 CH | 6.28, overlap | 102.7 CH |
5 | 165.1 C | 165.5 C | 165.8 C | |||
6 | 6.53, s | 103.4 CH | 6.47, d (2.1) | 103.3 CH | 6.53, d (2.2) | 103.8 CH |
6a | 139.4 C | 137.7 C | 138.2 C | |||
7a | 132.2 C | 131.4 C | 133.5 C | |||
7 | 6.14, d (3.1) | 130.3 CH | 6.05, d (2.5) | 130.3 CH | 6.28, overlap | 127.8 CH |
8 | 3.95, t (4.0) | 69.7 CH | 4.07, dd (7.9, 2.5) | 72.5 CH | 4.08, t (4.6) | 64.9 CH |
9 | 3.68, dt (7.9, 3.9) | 68.8 CH | 3.59, ddd (12.0, 7.9, 3.7) | 70.2 CH | 3.66, dt (12.3, 3.7) | 65.4 CH |
10 | β 2.24, dd (14.0, 3.5) α 1.93, dd (14.5, 8.1) | 38.7 CH2 | β 2.14, dd (12.0, 3.7) α 2.01, t (12.3) | 43.5 CH2 | β 2.21, t (12.0) α 1.90, dd (11.6, 3.3) | 38.4 CH2 |
10a | 80.9 C | 82.0 C | 81.6 C | |||
11 | 1.45, s | 27.4 CH3 | 1.48, s | 26.2 CH3 | 1.43, s | 25.8 CH3 |
3-OH | 11.22, s | 11.25, s | 11.28, s |
No. | 25 | 26 | ||
---|---|---|---|---|
1 | 4.56, dd (10.7, 5.4) 3.69, dd (13.4, 10.7) | 68.6 CH2 | 4.56, dd (10.7, 5.4) 3.67, m | 68.6 CH2 |
3 | 165.0 C | 164.9 C | ||
4 | 5.58, s | 101.8 CH | 5.59, s | 101.7 CH |
4a | 151.0 C | 150.9 C | ||
5 | 5.54, d (2.2) | 114.4 CH | 5.55, d (2.1) | 114.3 CH |
6 | 200.6 C | 200.5 C | ||
7 | 77.1 C | 77.0 C | ||
8 | 3.45, dd (10.1, 4.5) | 73.7 CH | 3.45, dd (10.1, 4.6) | 73.6 CH |
8a | 2.58, m | 37.7 CH | 2.59, m | 37.7 CH |
9 | 2.25, m | 44.2 CH2 | 2.32, dd (14.0, 6.8) 2.17, dd (14.0, 6.2) | 44.1 CH2 |
10 | 3.86, dq (12.1, 6.2) | 64.1 CH | 3.88, m | 64.0 CH |
11 | 1.07, d (6.2) | 18.6 CH3 | 1.07, d (6.2) | 18.6 CH3 |
12 | 1.10, s | 23.4 CH3 | 1.10, s | 23.3 CH3 |
7-OH | 4.93, s | 4.92, s | ||
8-OH | 5.33, d (4.5) | 5.31, d (4.6) | ||
10-OH | 4.69, d (5.0) | 4.69, d (5.2) |
No. | 27 | 28 | 29 | |||
---|---|---|---|---|---|---|
2 | 160.9 C | 161.9 C | 170.5 C | |||
3 | 5.75, s | 109.8 CH | 5.85, s | 90.3 CH | 126.5 C | |
4 | 176.9 C | 165.7 C | 3.09, dd (17.5, 8.6) 2.55, dd (17.0, 3.0) | 31.5 CH2 | ||
4a | 108.7 C 1 | 115.6 C | ||||
5 | 138.4 C | 7.10, d (2.8) | 106.8 CH | 5.03, q (7.1) | 77.4 CH | |
6 | 6.19, s | 120.0 CH | 153.7 C | |||
7 | 159.1 C | 7.06, dd (8.8, 2.9) | 120.7 CH | |||
7a | ||||||
8 | 75.3 C | 7.25, d (8.8) | 117.5 CH | |||
8a | - 2 | 146.0 C | ||||
9 | 2.22, s | 19.1 CH3 | ||||
10 | 2.48, s | 20.4 CH3 | ||||
1′ | 5.73, m | 128.7 CH | ||||
2′ | 5.83, m | 135.4 CH | ||||
3′ | 3.98, brs | 71.6 CH | ||||
4′ | 3.30, m | 66.2 CH2 | ||||
5′ | ||||||
1″ | 6.54, tt (7.6, 3.0) | 141.4 CH | ||||
2″ | 2.16, m | 23.3 CH2 | ||||
3″ | 1.02, t (7.5) | 12.9 CH3 | ||||
4-OMe | 3.99, s | 57.0 CH3 | ||||
6-OH | 9.90, brs | |||||
3′-OH | 4.92, brs | |||||
4′-OH | 4.64, brs |
Bacteria | Compounds | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chloramphenicol | 7 | 9 | 10 | 18 | 19 | 20 | 21 | 22 | 24 | 30 | 31 | |
MRSA | 8 | 64 | - | - | - | 64 | 64 | - | - | - | 64 | - |
PA | 4 | 16 | - | 32 | - | 16 | 4 | - | - | - | 32 | 32 |
EC | 0.25 | 32 | 32 | 0.5 | 0.5 | 8 | 4 | 32 | 32 | 8 | 4 | 64 |
KP | 8 | 64 | 64 | 64 | - | 64 | 64 | - | 64 | 64 | 64 | 64 |
VAl | 1 | - | 64 | - | - | 32 | 64 | 64 | 32 | - | - | 64 |
AH | 0.5 | 32 | 32 | 0.5 | 4 | 8 | 4 | - | 0.5 | 0.5 | 8 | - |
ML | 1 | 32 | 32 | - | - | 8 | 4 | - | - | - | 8 | - |
VAn | 1 | 64 | - | - | - | 8 | 64 | - | - | - | 16 | - |
VP | 1 | 32 | 32 | 1 | 2 | 8 | 4 | 64 | 0.5 | 64 | 32 | 32 |
VV | 4 | - | 32 | 16 | - | 8 | 4 | - | - | - | - | - |
VH | 2 | 32 | 16 | 0.5 | 32 | 16 | 8 | - | 32 | 64 | 8 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Li, X.-M.; Yang, S.-Q.; Wang, B.-G.; Li, X. Antibacterial Polyketides from the Deep-Sea Cold-Seep-Derived Fungus Talaromyces sp. CS-258. Mar. Drugs 2024, 22, 204. https://doi.org/10.3390/md22050204
Wu Z, Li X-M, Yang S-Q, Wang B-G, Li X. Antibacterial Polyketides from the Deep-Sea Cold-Seep-Derived Fungus Talaromyces sp. CS-258. Marine Drugs. 2024; 22(5):204. https://doi.org/10.3390/md22050204
Chicago/Turabian StyleWu, Zhenger, Xiao-Ming Li, Sui-Qun Yang, Bin-Gui Wang, and Xin Li. 2024. "Antibacterial Polyketides from the Deep-Sea Cold-Seep-Derived Fungus Talaromyces sp. CS-258" Marine Drugs 22, no. 5: 204. https://doi.org/10.3390/md22050204
APA StyleWu, Z., Li, X. -M., Yang, S. -Q., Wang, B. -G., & Li, X. (2024). Antibacterial Polyketides from the Deep-Sea Cold-Seep-Derived Fungus Talaromyces sp. CS-258. Marine Drugs, 22(5), 204. https://doi.org/10.3390/md22050204