The Role of Nitrate Supply in Bioactive Compound Synthesis and Antioxidant Activity in the Cultivation of Porphyra linearis (Rhodophyta, Bangiales) for Future Cosmeceutical and Bioremediation Applications
Abstract
:1. Introduction
2. Results
2.1. Nitrate Quantification: Nitrate Uptake Efficiency (NUE) and Nitrate Uptake Rate (NUR)
2.2. Effects of Nitrate Concentrations on Polyphenols, Soluble Proteins, and Carbohydrates
2.3. Effects of Nitrate Concentrations on Mycosporine-like Amino Acids (MAAs) Profiles
2.4. Effects of Nitrate Concentrations on Antioxidant Activity (ABTS Test)
2.5. Effects of Nitrate Concentrations on Total Carbon, Nitrogen and Sulfur
2.6. Principal Component Analysis (PCA) of BACs from P. linearis Extracts with Different Time Periods and Nitrate Concentrations
3. Discussion
4. Materials and Methods
4.1. Biological Material
4.2. Conditions of Cultivation
4.3. Nitrate Quantification: Nitrate Uptake Efficiency (NUE) and Nitrate Uptake Rate (NUR)
4.4. Bioactive Compounds (BACs) Extraction
4.5. Soluble Polyphenols
4.6. Soluble Proteins
4.7. Soluble Carbohydrates
4.8. Mycosporine-like Amino Acids (MAAs)
4.9. Antioxidant Activity
4.10. Total Carbon, Nitrogen, and Sulfur
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perez, R.; Kaas, R.; Campello, F.; Arbault, S.; Barbaroux, O. La Culture des Algues Marines Dans le Monde; Ifremer: Plouzane, France, 1992; p. 613. [Google Scholar]
- Blouin, N.; Xiugeng, F.; Peng, J.; Yarish, C.; Brawley, S.H. Seeding nets with neutral spores of the red alga Porphyra umbilicalis (L.) Kützing for use in integrated multi-trophic aquaculture (IMTA). Aquaculture 2007, 270, 77–91. [Google Scholar] [CrossRef]
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Tasade, M.G.; Ghaderiardakani, F.; Ilmjarv, T.; Laurans, M.; et al. Current status of the algae production industry in Europe: An emerging sector of the blue bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture-Opportunities and Challenges; Food and Agriculture Organization of the United Nations, UN FAO: Rome, Italy, 2014. [Google Scholar]
- Zhou, C.; Yu, X.; Zhang, Y.; He, R.; Ma, H. Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea. Carbohydr. Polym. 2012, 87, 2046–2051. [Google Scholar] [CrossRef]
- Guedes, É.A.; Silva, T.G.D.; Aguiar, J.S.; Barros, L.D.D.; Pinotti, L.M.; Sant’Ana, A.E. Cytotoxic activity of marine algae against cancerous cells. Rev. Bras. Farmacogn. 2013, 23, 668–673. [Google Scholar] [CrossRef]
- Mercurio, D.G.; Wagemaker, T.A.L.; Alves, V.M.; Benevenuto, C.G.; Gaspar, L.R.; Campos, P.M. In vivo photoprotective effects of cosmetic formulations containing UV filters, vitamins, Ginkgo biloba and red algae extracts. J. Photochem. Photobiol. B Biol. 2015, 153, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds compounds: An ecosustainable source of cosmetic ingredients? Cosmetics 2021, 8, 8. [Google Scholar] [CrossRef]
- Shick, J.M.; Dunlap, W.C. Mycosporine-like amino acids and related gadusols: Biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu. Rev. Physiol. 2002, 64, 223–262. [Google Scholar] [CrossRef]
- Raj, S.; Kuniyil, A.M.; Sreenikethanam, A.; Gugulothu, P.; Jeyakumar, R.B.; Bajhaiya, A.K. Microalgae as a source of mycosporine-like amino acids (MAAs); advances and future prospects. Int. J. Environ. Res. Public Health 2021, 18, 12402. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, R.P.; Sinha, R.P. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Advan. 2009, 27, 521–539. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Kumar, A.; Tyagi, M.B.; Sinha, R.P. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010, 2010, 592980. [Google Scholar] [CrossRef]
- Richa, R.; Kumari, S.; Singh, K.L.; Kannaujiya, V.K.; Singh, G.; Kesheri, M.; Sinha, R.P. Biotechnological potential of mycosporine-like amino acids and phycobiliproteins of cyanobacterial origin. Biotechnol. Bioinf. Bioeng. 2011, 1, 159–171. [Google Scholar]
- Bhatia, S.; Garg, A.; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A.P. Mycosporine and mycosporine-like amino acids: A paramount tool against ultraviolet irradiation. Phgo. Rev. 2011, 5, 138. [Google Scholar] [CrossRef]
- Athukorala, Y.; Trang, S.; Kwok, C.; Yuan, Y.V. Antiproliferative and antioxidant activities and mycosporine-like amino acid profiles of wild-harvested and cultivated edible Canadian marine red macroalgae. Molecules 2016, 21, 119. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, B.G.; Jin, H.; Lee, D.; Teoh, J.Y.; Kim, Y.J.; Moh, A.H.; Yoo, D.; Choi, W.; Hahn, J.S. Efficient production of natural sunscreens shinorine, porphyra-334, and mycosporine-2-glycine in Saccharomyces cerevisiae. Metab. Eng. 2023, 78, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Mallick, N. Mycosporine-like amino acids: Algal metabolites shaping the safety and sustainability profiles of commercial sunscreens. Algal Res. 2021, 58, 10425. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Álvarez-Gómez, F.; Bonomi-Barufi, J.; Vega, J.; Massocato, T.F.; Gómez-Pinchetti, J.L.; Korbee, N. Interactive effects of solar radiation and inorganic nutrients on biofiltration, biomass production, photosynthetic activity and the accumulation of bioactive compounds in Gracilaria cornea (Rhodophyta). Algal Res. 2022, 68, 102890. [Google Scholar] [CrossRef]
- Rosic, N.; Climstein, M.; Boyle, G.M.; Thanh Nguyen, D.; Feng, Y. Exploring mycosporine-likeamino acid uv-absorbing natural products for a new generation of environmentally friendly sunscreens. Mar. Drugs 2023, 21, 253. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Kraemer, G.; Yarish, C.; Sousa-Pinto, I. Nitrogen uptake by gametophytes of Porphyra dioica (Bangiales, Rhodophyta) under controlled-culture conditions. Eur. J. Phycol. 2008, 43, 107–118. [Google Scholar] [CrossRef]
- Holdt, S.L.; Edwards, M.D. Cost-effective IMTA: A comparison of the production efficiencies of mussels and seaweed. J. Appl. Phycol. 2014, 26, 933–945. [Google Scholar] [CrossRef]
- Pliego-Cortés, H.; Bedoux, G.; Boulho, R.; Taupin, L.; Freile-Pelegrín, Y.; Bourgougnon, N.; Robledo, D. Stress tolerance and photoadaptation to solar radiation in Rhodymenia pseudopalmata (Rhodophyta) through mycosporine-like amino acids, phenolic compounds, and pigments in an Integrated Multi-Trophic Aquaculture system. Algal Res. 2019, 41, 101542. [Google Scholar] [CrossRef]
- Cunningham, S.D.; Berti, W.R. Remediation of contaminated soils with green plants: An overview. Vitr. Cell Dev. Biol. Plant 1993, 29, 207–212. [Google Scholar] [CrossRef]
- Mariachiara, N.; Pierluigi, V. Nitrate uptake and storage in the seaweed Ulva rigida C Agardh in relation to nitrate availability and thallus nitrate content in a eutrophic coastal lagoon (Sacca di Goro, Po River Delta, Italy). J. Exp. Mar. Biol. Ecol. 2002, 269, 65–83. [Google Scholar]
- Chopin, T.; Bastarache, S.; Belyea, E.; Haya, K.; Sephton, D.; Martin, J.L.; Eddy, S.; Stewart, I. Development of the cultivation of Laminaria saccharina as the extractive inorganic componente of an integrated aquaculture system and monitoring of therapeutants and phycotoxins. J. Phycol. 2003, 39, 10. [Google Scholar] [CrossRef]
- Yang, Y.F.; Li, C.H.; Nie, X.P.; Tang, D.L.; Chung, I.K. Development of mariculture and its impacts in Chinese coastal waters. Rev. Fish Biol. Fish. 2004, 14, 11274–11291. [Google Scholar]
- Kraemer, G.P.; Carmona, R.; Chopin, T.; Neefus, C.; Tang, X.; Yarish, C. Evaluation of the bioremediatory potential of several species of the red alga Porphyra using short-term measurements of nitrogen uptake as a rapid bioassay. J. Appl. Phycol. 2004, 16, 489–497. [Google Scholar] [CrossRef]
- He, P.; Xu, S.; Zhang, H.; Wen, S.; Dai, Y.; Lin, S.; Yarish, C. Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea. Water Res. 2008, 42, 1281–1289. [Google Scholar] [CrossRef]
- Wu, Q.; Fu, X.P.; Sun, L.C.; Zhang, Q.; Liu, G.M.; Cao, M.J.; Cai, Q.F. Effects of physicochemical factors and in vitro gastrointestinal digestion on antioxidant activity of R—Phycoerythrin from red algae Bangia fusco-purpurea. Int. J. Food Sci. Technol. 2015, 50, 1445–1451. [Google Scholar] [CrossRef]
- Howarth, R.W.; Marino, R.; Lane, J.; Cole, J.J. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol. Oceanogr. 1988, 33, 669–687. [Google Scholar] [CrossRef]
- Krom, M.D.; Kress, N.; Brenner, S.; Gordon, I. Phos-phorus limitation of primary productivity in the Eastern Med-iterranean Sea. Limnol. Oceanogr. 1991, 36, 424–432. [Google Scholar] [CrossRef]
- García-Poza, S.; Leandro, A.; Cotas, C.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M. The evolution road of seaweed aquaculture: Cultivation technologies and the industry 4.0. Int. J. Environ. Res. Public Health 2020, 17, 6528. [Google Scholar] [CrossRef]
- Prinsi, B.; Negrini, N.; Morgutti, S.; Espen, L. Nitrogen starvation and nitrate or ammonium availability differently affect phenolic composition in green and purple basil. Agronomy 2020, 10, 498. [Google Scholar] [CrossRef]
- Pereira, D.T.; Schmidt, É.C.; Filipin, E.P.; Pilatti, F.K.; Ramlov, F.; Maraschin, M.; Bouzon, Z.L.; Simioni, C. Effects of ultraviolet radiation on the morphophysiology of the macroalga Pyropia acanthophora var. brasiliensis (Rhodophyta, Bangiales) cultivated at high concentrations of nitrate. Acta Physiol. Plant. 2020, 42, 1–14. [Google Scholar]
- Vermerris, W.; Nicholson, R. Phenolic Compound Biochemistry; IN Springer Science: London, UK, 2008; p. 267. [Google Scholar]
- Kazłowska, K.; Hsu, T.; Hou, C.C.; Yang, W.C.; Tsai, G.J. Anti-inflammatory properties of phenolic compounds and crude extract from Porphyra dentata. J. Ethnopharmacol 2010, 128, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Onofrejová, L.; Vašíčková, J.; Klejdus, B.; Stratil, P.; Mišurcová, L.; Kráčmar, S.; Kopecky, J.; Vacek, J. Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. J. Pharm. Biomed. Anal 2010, 51, 464–470. [Google Scholar] [CrossRef] [PubMed]
- De Quiros, A.R.B.; Lage-Yusty, M.A.; López-Hernández, J. Determination of phenolic compounds in macroalgae for human consumption. Food Chem. 2010, 121, 634–638. [Google Scholar] [CrossRef]
- Machu, L.; Misurcova, L.; Vavra Ambrozova, J.; Orsavova, J.; Mlcek, J.; Sochor, J.; Jurikova, T. Phenolic content and antioxidant capacity in algal food products. Molecules 2015, 20, 1118–1133. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ki, J.S. Molecular identification, differential expression and protective roles of iron/manganese superoxide dismutases in the green algae Closterium ehrenbergii against metal stress. Eur. J. Protistol. 2020, 74, 125689. [Google Scholar] [CrossRef] [PubMed]
- Lang, K.L. Investigação Química e Biológica da alga Vermelha Acanthophora spicifera (Vahl) Borgesen. Doctoral Thesis, Degree-Granting Federal University of Santa Catarina, Florianópolis, Brazil, 2006. [Google Scholar]
- Schneider, G.; Figueroa, F.L.; Vega, J.; Chaves, P.; Álvarez-Gómez, F.; Korbee, N.; Bonomi-Barufi, J. Photoprotection properties of marine photosynthetic organisms grown in high ultraviolet exposure areas: Cosmeceutical applications. Algal Res. 2020, 49, 101956. [Google Scholar] [CrossRef]
- Gröniger, A.; Hallier, C.; Häder, D.P. Influence of UV radiation and visible light on Porphyra umbilicalis: Photoinhibition and MAA concentration. J. Appl. Phycol. 1999, 11, 437–445. [Google Scholar] [CrossRef]
- Korbee, N.; Huovinen, P.; Figueroa, F.L.; Aguilera, J.; Karsten, U. Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar. Biol. 2005, 146, 645–654. [Google Scholar] [CrossRef]
- Korbee, N.; Figueroa, F.L.; Aguilera, J. Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J. Photochem. Photobiol. B Biol. 2005, 80, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Barufi, J.B.; Mata, M.T.; Oliveira, M.C.; Figueroa, F.L. Nitrate reduces the negative effect of UV radiation on photosynthesis and pigmentation in Gracilaria tenuistipitata (Rhodophyta): The photoprotection role of mycosporine-like amino acids. Phycologia 2012, 51, 636–648. [Google Scholar] [CrossRef]
- Peinado, N.K.; Abdala Díaz, R.T.; Figueroa, F.L.; Helbling, E.W. Ammonium and UV radiation stimulate the accumulation of mycosporine-like amino acids in Porphyra columbina (Rhodophyta) from Patagonia, Argentina. J. Phycol. 2004, 40, 248–259. [Google Scholar] [CrossRef]
- Carreto, J.I.; Carignan, M.O. Mycosporine-like amino acids: Relevant secondary metabolites. Chemical and ecological aspects. Mar. Drugs 2011, 9, 387–446. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, F.L.; Aguilera, J.; Niell, F.X. Red and blue light regulation of growth and photosynthetic metabolism in Porphyra umbilicalis (Bangiales, Rhodophyta). Eur. J. Phycol. 1995, 30, 11–18. [Google Scholar] [CrossRef]
- Pereira, R.; Yarish, C.; Sousa-Pinto, I. The influence of stocking density, light and temperature on the growth, production and nutrient removal capacity of Porphyra dioica (Bangiales, Rhodophyta). Aquaculture 2006, 252, 66–78. [Google Scholar] [CrossRef]
- Schmidt, E.C.; Kreusch, M.; Felix, M.R.D.L.; Pereira, D.T.; Costa, G.B.; Simioni, C.; Ourique, L.C.; Farias-Soares, F.L.; Steiner, N.; Chow, F.; et al. Effects of ultraviolet radiation (UVA + UVB) and copper on the morphology, ultrastructural organization and physiological responses of the red alga Pterocladiella capillacea. Photochem. Photobiol. 2015, 91, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Redfield, A.C.; Ketchum, R.B.A. The influence of organisms on the composition of seawater. Sea 1963, 2, 26–77. [Google Scholar]
- Turpin, D.H. Ammonium induced photosynthetic supre4ssio in ammonium limited Dunaliella tertiolecta (Chlorophyta). J. Phycol. 1991, 19, 70–76. [Google Scholar] [CrossRef]
- Duarte, C. Nutrient concentration of aquatic plants: Pattern accross the species. Limnol. Ocenogr. 1992, 37, 882–889. [Google Scholar] [CrossRef]
- Cornelisen, C.D.; Wing, S.R.T.; Clark, K.L.; Bowman, H.; Frew, R.D.; Hurd, C.L. Patterns in the δ13C and δ15N signature of Ulva pertusa: Interaction between physical and nutrient source pools. Limnol. Ocenogr. 2007, 52, 820–832. [Google Scholar] [CrossRef]
- De la Coba, F.; Aguilera, J.; Figueroa, F.L.; De Gálvez, M.V.; Herrera, E. Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen. J. Appl. Phycol. 2009, 21, 161–169. [Google Scholar] [CrossRef]
- Patel, S.N.; Sonani, R.R.; Jakharia, K.; Bhastana, B.; Patel, H.M.; Chaubey, M.G.; Singh, N.K.; Madamwar, D. Antioxidant activity and associated structural attributes of Halomicronema phycoerythrin. Int. J. Biol. Macromol. 2018, 111, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.; Santos, J.P.; Chow, F.; Ferreira, M.J.P.; dos Santos, D.Y. Comparative analysis of in vitro antioxidant capacities of mycosporine-like amino acids (MAAs). Algal Res. 2018, 34, 57–67. [Google Scholar] [CrossRef]
- Vega, J.; Schneider, G.; Moreira, B.R.; Herrera, C.; Bonomi-Barufi, J.; Figueroa, F.L. Mycosporine-like amino acids from red macroalgae: UV-photoprotectors with potential cosmeceutical applications. Appl. Sci. 2021, 11, 5112. [Google Scholar] [CrossRef]
- Moreira, B.R.; Veja, J.; Alarcón, A.D.A.; Bernal, J.S.B.; Abdala-Díaz, R.T.; Maraschin, M.; Figueroa, F.L.; Bonomi-Barufi, J. Anti-photoaging properties of red marine macroalgae: Screening of bioactive molecules to cosmeceutical applications. Algal Res. 2022, 68, 102893. [Google Scholar] [CrossRef]
- García-Robledo, E.; Corzo, A.; Papaspyrou, S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Mar. Chem. 2014, 162, 30–36. [Google Scholar] [CrossRef]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Umbreit, W.W.; Burris, R.H. Method for glucose determination and other sugars. In Manometric Techniques, 1st ed.; Burgess Publishing Co.: Minneapolis, MN, USA, 1964; p. 132. [Google Scholar]
- Chaves-Peña, P.; De La Coba, F.; Figueroa, F.L.; Korbee, N. Quantitative and qualitative HPLC analysis of mycosporine-like amino acids extracted in distilled water for cosmetical uses in four Rhodophyta. Mar. Drugs 2020, 18, 27. [Google Scholar] [CrossRef]
- Vega, J.; Bárcenas-Pérez, D.; Fuentes-Ríos, D.; López-Romero, J.M.; Hrouzek, P.; Figueroa, F.L.; Cheel, J. Isolation of mycosporine-like amino acids from red macroalgae and a marine lichen by high-performance countercurrent chromatography: A strategy to obtain biological UV-filters. Mar. Drugs 2023, 21, 357. [Google Scholar] [CrossRef] [PubMed]
- Karsten, U.; Sawall, T.; Hanelt, D.; Bischof, K.; Figueroa, F.L.; Flores-Moya, A.; Wiencke, C. An inventory of UV-absorbing mycosporine-like amino acids in macroalgae from polar to warm-temperate regions. Bot. Mar. 1998, 41, 443–453. [Google Scholar] [CrossRef]
- La Barre, S.; Roullier, C.; Boustie, J. Mycosporine-like amino acids (MAAs) in biological photosystems. In Outstanding Marine Molecules; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 333–360. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Chrapusta, E.; Kaminski, A.; Duchnik, K.; Bober, B.; Adamski, M.; Bialczyk, J. Mycosporine-like amino acids: Potential health and beauty ingredients. Mar. Drugs 2017, 15, 326. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, F.L. Mycosporine-like aminoacids form marine resource. Mar. Drugs 2021, 18, 27. [Google Scholar]
- Peng, J.; Guo, F.; Liu, S.; Fang, H.; Xu, Z.; Wang, T. Recent advances and future prospects of mycosporine-like amino acids. Molecules 2023, 28, 5588. [Google Scholar] [CrossRef]
- Singh, A.; Čížková, M.; Bišová, K.; Vitova, M. Exploring mycosporine-like amino acids (MAAs) as safe and natural protective agents against UV-induced skin damage. Antioxidants 2021, 10, 683. [Google Scholar] [CrossRef]
Nitrate Concentration | NUE % (0–2 Days) | NUE % (2–7 Days) | NUR mmol·g−1 DW·day−1 (0–2 Days) | NUR mmol·g−1 DW·day−1 (2–7 Days) |
---|---|---|---|---|
0 mM | - | - | - | - |
0.15 mM | 86.25 ± 1.66 a | 84.28 ± 2.96 ab | 0.11 ± 0.01 ab | 0.00 ± 0.00 d |
0.5 mM | 94.74 ± 2.64 a | 89.46 ± 5.15 a | 0.42 ± 0.15 a | 0.01 ± 0.002 d |
1.5 mM | 24.38 ± 7.57 b | 76.17 ± 6.94 b | 0.31 ± 0.11 ab | 0.29 ± 0.02 c |
3 mM | 8.30 ± 5.40 c | 49.63 ± 6.09 c | 0.20 ± 0.13 ab | 0.42 ± 0.05 a |
5 mM | 6.26 ± 3.79 c | 22.78 ± 1.50 d | 0.27 ± 0.16 ab | 0.37 ± 0.04 ab |
6.5 mM | 1.75 ± 1.39 c | 14.60 ± 1.10 d | 0.10 ± 0.08 b | 0.33 ± 0.02 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, D.T.; Korbee, N.; Vega, J.; Figueroa, F.L. The Role of Nitrate Supply in Bioactive Compound Synthesis and Antioxidant Activity in the Cultivation of Porphyra linearis (Rhodophyta, Bangiales) for Future Cosmeceutical and Bioremediation Applications. Mar. Drugs 2024, 22, 222. https://doi.org/10.3390/md22050222
Pereira DT, Korbee N, Vega J, Figueroa FL. The Role of Nitrate Supply in Bioactive Compound Synthesis and Antioxidant Activity in the Cultivation of Porphyra linearis (Rhodophyta, Bangiales) for Future Cosmeceutical and Bioremediation Applications. Marine Drugs. 2024; 22(5):222. https://doi.org/10.3390/md22050222
Chicago/Turabian StylePereira, Débora Tomazi, Nathalie Korbee, Julia Vega, and Félix L. Figueroa. 2024. "The Role of Nitrate Supply in Bioactive Compound Synthesis and Antioxidant Activity in the Cultivation of Porphyra linearis (Rhodophyta, Bangiales) for Future Cosmeceutical and Bioremediation Applications" Marine Drugs 22, no. 5: 222. https://doi.org/10.3390/md22050222
APA StylePereira, D. T., Korbee, N., Vega, J., & Figueroa, F. L. (2024). The Role of Nitrate Supply in Bioactive Compound Synthesis and Antioxidant Activity in the Cultivation of Porphyra linearis (Rhodophyta, Bangiales) for Future Cosmeceutical and Bioremediation Applications. Marine Drugs, 22(5), 222. https://doi.org/10.3390/md22050222