Viral Infection Leads to a Unique Suite of Allelopathic Chemical Signals in Three Diatom Host–Virus Pairs
Abstract
:1. Introduction
2. Results
2.1. Time Course of Infection
2.2. Defining the Oxylipidome
2.3. Growth Phase and Viral Infection Changes the Dissolved Lipidome
2.4. Oxylipins and Fatty Acids Associated with Each Diatom Host–Virus Pair
2.5. C. tenuissimus Produces a Distinct Suite of Oxylipins Depending on the Infecting Virus
2.6. Known Allelopathic Compounds Produced during Lysis
2.7. Comparing the Diatom Host–Virus Pairs
3. Discussion
3.1. Oxylipin Production Was Stimulated by Viral Infection and Distinct from the Lipidomic Signature of the Growth Phase
3.1.1. Lysis by ssRNA Viruses Results in Different Oxylipins Than ssDNA Viruses
3.1.2. Relative Quantification and the Dose-Dependent Bioactivity of Oxylipins
3.2. Novel Oxylipins
3.3. Potential Biomarkers for Viral Infection
3.4. Ecological Implications
3.4.1. Allelopathy
3.4.2. Dissolved Organic Matter Quality
3.4.3. Probability of Oxylipin Signaling in the Environment
3.4.4. Impacts of Oxylipins on Ocean Biogeochemistry
4. Materials and Methods
4.1. Culture Experiments Infecting Diatoms with Viruses
4.2. Analysis of the Dissolved Lipidome Samples
4.3. Lipidomic Workflow
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wichard, T.; Poulet, S.A.; Halsband-Lenk, C.; Albaina, A.; Harris, R.; Liu, D.; Pohnert, G. Survey of the Chemical Defence Potential of Diatoms: Screening of Fifty Species for α,β,γ,δ-unsaturated aldehydes. J. Chem. Ecol. 2005, 31, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Spite, M.; Clària, J.; Serhan, C.N. Resolvins, Specialized Proresolving Lipid Mediators, and Their Potential Roles in Metabolic Diseases. Cell Metab. 2013, 19, 21–36. [Google Scholar] [CrossRef] [PubMed]
- McConn, M.; Creelman, R.A.; Bell, E.; Mullet, J.E.; Browse, J. Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 1997, 94, 5473–5477. [Google Scholar] [CrossRef] [PubMed]
- Pohnert, G. Wound-Activated Chemical Defense in Unicellular Planktonic Algae. Angew. Chem. Int. Ed. 2000, 39, 4352–4354. [Google Scholar] [CrossRef]
- Johnson, M.D.; Edwards, B.R.; Beaudoin, D.J.; Van Mooy, B.A.S.; Vardi, A. Nitric oxide mediates oxylipin production and grazing defense in diatoms. Environ. Microbiol. 2019, 22, 629–645. [Google Scholar] [CrossRef] [PubMed]
- Bartual, A.; Ortega, M.J. Temperature differentially affects the persistence of polyunsaturated aldehydes in seawater. Environ. Chem. 2013, 10, 403–408. [Google Scholar] [CrossRef]
- Pacheco, L.F.C.d.M.; Uribe, E.; Pino, J.; Troncoso, J.; Quiróz, A. The Effect of UV Light and CO2 in the Production of Polyunsaturated Aldehydes in Skeletonema costatum (Bacillariophycea). Am. J. Plant Sci. 2014, 05, 3632–3641. [Google Scholar] [CrossRef]
- Ribalet, F.; Vidoudez, C.; Cassin, D.; Pohnert, G.; Ianora, A.; Miralto, A.; Casotti, R. High Plasticity in the Production of Diatom-derived Polyunsaturated Aldehydes under Nutrient Limitation: Physiological and Ecological Implications. Protist 2009, 160, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.; D’Ippolito, G.; Fontana, A.; Sarno, D.; D’Alelio, D.; Busseni, G.; Ianora, A.; Von Elert, E.; Carotenuto, Y. Density-dependent oxylipin production in natural diatom communities: Possible implications for plankton dynamics. ISME J. 2020, 14, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Ribalet, F.; Bastianini, M.; Vidoudez, C.; Acri, F.; Berges, J.; Ianora, A.; Miralto, A.; Pohnert, G.; Romano, G.; Wichard, T.; et al. Phytoplankton cell lysis associated with polyunsaturated aldehyde release in the Northern Adriatic Sea. PLoS ONE 2014, 9, e85947. [Google Scholar] [CrossRef]
- Lauritano, C.; Romano, G.; Roncalli, V.; Amoresano, A.; Fontanarosa, C.; Bastianini, M.; Braga, F.; Carotenuto, Y.; Ianora, A. New oxylipins produced at the end of a diatom bloom and their effects on copepod reproductive success and gene expression levels. Harmful Algae 2016, 55, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Miralto, A.; Barone, G.; Romano, G.; Poulet, S.A.; Ianora, A.; Russo, G.L.; Buttino, I.; Mazzarella, G.; Laabir, M.; Cabrini, M.; et al. The insidious effect of diatoms on copepod reproduction. Nature 1999, 402, 173–176. [Google Scholar] [CrossRef]
- Ribalet, F.; Berges, J.A.; Ianora, A.; Casotti, R. Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes. Aquat. Toxicol. 2007, 85, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Ribalet, F.; Intertaglia, L.; Lebaron, P.; Casotti, R. Differential effect of three polyunsaturated aldehydes on marine bacterial isolates. Aquat. Toxicol. 2008, 86, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Edwards, B.R.; Bidle, K.D.; Van Mooy, B.A.S. Dose-dependent regulation of microbial activity on sinking particles by polyunsaturated aldehydes: Implications for the carbon cycle. Proc. Natl. Acad. Sci. USA 2015, 112, 5909–5914. [Google Scholar] [CrossRef] [PubMed]
- Brugnano, C.; Granata, A.; Guglielmo, L.; Minutoli, R.; Zagami, G.; Ianora, A. The deleterious effect of diatoms on the biomass and growth of early stages of their copepod grazers. J. Exp. Mar. Biol. Ecol. 2016, 476, 41–49. [Google Scholar] [CrossRef]
- Lauritano, C.; Carotenuto, Y.; Vitiello, V.; Buttino, I.; Romano, G.; Hwang, J.-S.; Ianora, A. Effects of the oxylipin-producing diatom Skeletonema marinoi on gene expression levels of the calanoid copepod Calanus sinicus. Mar. Genom. 2015, 24, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Ianora, A.; Bastianini, M.; Carotenuto, Y.; Casotti, R.; Roncalli, V.; Miralto, A.; Romano, G.; Gerecht, A.; Fontana, A.; Turner, J.T. Non-volatile oxylipins can render some diatom blooms more toxic for copepod reproduction. Harmful Algae 2015, 44, 1–7. [Google Scholar] [CrossRef]
- Lavrentyev, P.J.; Franzè, G.; Pierson, J.J.; Stoecker, D.K. The effect of dissolved polyunsaturated aldehydes on microzooplankton growth rates in the Chesapeake Bay and Atlantic Coastal Waters. Mar. Drugs 2015, 13, 2834–2856. [Google Scholar] [CrossRef] [PubMed]
- Franzè, G.; Pierson, J.J.; Stoecker, D.K.; Lavrentyev, P.J. Diatom-produced allelochemicals trigger trophic cascades in the planktonic food web. Limnol. Oceanogr. 2017, 63, 1093–1108. [Google Scholar] [CrossRef]
- Laber, C.P.; Hunter, J.E.; Carvalho, F.; Collins, J.R.; Hunter, E.J.; Schieler, B.M.; Boss, E.; More, K.; Frada, M.; Thamatrakoln, K.; et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 2018, 3, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Mojica, K.D.A.; Huisman, J.; Wilhelm, S.W.; Brussaard, C.P.D. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 2016, 10, 500–513. [Google Scholar] [CrossRef] [PubMed]
- Tomaru, Y.; Toyoda, K.; Kimura, K. Occurrence of the planktonic bloom-forming marine diatom Chaetoceros tenuissimus Meunier and its infectious viruses in western Japan. Hydrobiologia 2017, 805, 221–230. [Google Scholar] [CrossRef]
- Bratbak, G.; Heldal, M.; Norland, S.; Thingstad, T.F. Viruses as Partners in Spring Bloom Microbial Trophodynamics. Appl. Environ. Microbiol. 1990, 56, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Ahlgren, N.A.; Perelman, J.N.; Yeh, Y.; Fuhrman, J.A. Multi-year dynamics of fine-scale marine cyanobacterial populations are more strongly explained by phage interactions than abiotic, bottom-up factors. Environ. Microbiol. 2019, 21, 2948–2963. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.W.; Suttle, C.A. Viruses and Nutrient Cycles in the Sea: Viruses play critical roles in the structure and function of aquatic food webs. Bioscience 1999, 49, 781–788. [Google Scholar] [CrossRef]
- Yamada, Y.; Tomaru, Y.; Fukuda, H.; Nagata, T. Aggregate formation during the viral lysis of a marine diatom. Front. Mar. Sci. 2018, 5, 167. [Google Scholar] [CrossRef]
- Lønborg, C.; Middelboe, M.; Brussaard, C.P.D. Viral lysis of Micromonas pusilla: Impacts on dissolved organic matter production and composition. Biogeochemistry 2013, 116, 231–240. [Google Scholar] [CrossRef]
- Zimmerman, A.E.; Howard-Varona, C.; Needham, D.M.; John, S.G.; Worden, A.Z.; Sullivan, M.B.; Waldbauer, J.R.; Coleman, M.L. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 2019, 18, 21–34. [Google Scholar] [CrossRef]
- Vincent, F.; Gralka, M.; Schleyer, G.; Schatz, D.; Cabrera-Brufau, M.; Kuhlisch, C.; Sichert, A.; Vidal-Melgosa, S.; Mayers, K.; Barak-Gavish, N.; et al. Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore blooms. Nat. Commun. 2023, 14, 510. [Google Scholar] [CrossRef]
- Wei, W.; Chen, X.; Weinbauer, M.G.; Jiao, N.; Zhang, R. Reduced bacterial mortality and enhanced viral productivity during sinking in the ocean. ISME J. 2022, 16, 1668–1675. [Google Scholar] [CrossRef] [PubMed]
- García-Marcos, A.; Pacheco, R.; Manzano, A.; Aguilar, E.; Tenllado, F. Oxylipin Biosynthesis Genes Positively Regulate Programmed Cell Death during Compatible Infections with the Synergistic Pair Potato Virus X-Potato Virus Y and Tomato Spotted Wilt Virus. J. Virol. 2013, 87, 5769–5783. [Google Scholar] [CrossRef] [PubMed]
- Villain, E.; Chanson, A.; Mainka, M.; Kampschulte, N.; Le Faouder, P.; Bertrand-Michel, J.; Brandolini-Bunlon, M.; Charbit, B.; Musvosvi, M.; Bilek, N.; et al. Integrated analysis of whole blood oxylipin and cytokine responses after bacterial, viral, and T cell stimulation reveals new immune networks. iScience 2023, 26, 107422. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Fang, J.; Zou, L.; Cui, L.; Liang, X.; Lim, S.G.; Dan, Y.-Y.; Ong, C.N. Omega-6-derived oxylipin changes in serum of patients with hepatitis B virus-related liver diseases. Metabolomics 2018, 14, 26. [Google Scholar] [CrossRef] [PubMed]
- Bera, S.; Blundell, R.; Liang, D.; Crowder, D.W.; Casteel, C.L. The Oxylipin Signaling Pathway Is Required for Increased Aphid Attraction and Retention on Virus-Infected Plants. J. Chem. Ecol. 2020, 46, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Andreou, A.; Brodhun, F.; Feussner, I. Biosynthesis of oxylipins in non-mammals. Prog. Lipid Res. 2009, 48, 148–170. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, A.; Carotenuto, Y.; Lamari, N.; Esposito, F.; D’Ippolito, G.; Fontana, A.; Romano, G.; Ianora, A.; Miralto, A.; Guisande, C. Diatom induction of reproductive failure in copepods: The effect of PUAs versus non volatile oxylipins. J. Exp. Mar. Biol. Ecol. 2011, 401, 13–19. [Google Scholar] [CrossRef]
- Esposito, R.; Ruocco, N.; Albarano, L.; Ianora, A.; Manfra, L.; Libralato, G.; Costantini, M. Combined Effects of Diatom-Derived Oxylipins on the Sea Urchin Paracentrotus lividus. Int. J. Mol. Sci. 2020, 21, 719. [Google Scholar] [CrossRef]
- Fontana, A.; D’Ippolito, G.; Cutignano, A.; Miralto, A.; Ianora, A.; Romano, G.; Cimino, G. Chemistry of oxylipin pathways in marine diatoms. Pure Appl. Chem. 2007, 79, 481–490. [Google Scholar] [CrossRef]
- D’Ippolito, G.; Cutignano, A.; Briante, R.; Febbraio, F.; Cimino, G.; Fontana, A. New C16 fatty-acid-based oxylipin pathway in the marine diatom Thalassiosira rotula. Org. Biomol. Chem. 2005, 3, 4065–4070. [Google Scholar] [CrossRef]
- D’ippolito, G.; Lamari, N.; Montresor, M.; Romano, G.; Cutignano, A.; Gerecht, A.; Cimino, G.; Fontana, A. 15S-Lipoxygenase metabolism in the marine diatom Pseudo-nitzschia delicatissima. New Phytol. 2009, 183, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.R.; Edwards, B.R.; Fredricks, H.F.; Van Mooy, B.A.S. LOBSTAHS: An Adduct-Based Lipidomics Strategy for Discovery and Identification of Oxidative Stress Biomarkers. Anal. Chem. 2016, 88, 7154–7162. [Google Scholar] [CrossRef] [PubMed]
- Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.-A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef] [PubMed]
- Rohart, F.; Eslami, A.; Matigian, N.; Bougeard, S.; Cao, K.-A.L. MINT: A multivariate integrative method to identify reproducible molecular signatures across independent experiments and platforms. BMC Bioinform. 2017, 18, 128. [Google Scholar] [CrossRef] [PubMed]
- Ribalet, F.; Wichard, T.; Pohnert, G.; Ianora, A.; Miralto, A.; Casotti, R. Age and nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms. Phytochemistry 2007, 68, 2059–2067. [Google Scholar] [CrossRef] [PubMed]
- Zulu, N.N.; Zienkiewicz, K.; Vollheyde, K.; Feussner, I. Current trends to comprehend lipid metabolism in diatoms. Prog. Lipid Res. 2018, 70, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kranzler, C.; Busono, D.; Carrillo, A.; Bidle, K.; Thamatrakoln, K. Virus infection of diatoms stimulates bacterial ectoproteolytic processing of organic matter. In Ocean Sciences Meeting. 2022. Available online: https://osm2022.secure-platform.com/a/solicitations/3/sessiongallery/297 (accessed on 15 May 2024).
- Gerecht, A.; Carotenuto, Y.; Ianora, A.; Romano, G.; Fontana, A.; D’Ippolito, G.; Jakobsen, H.H.; Nejstgaard, J.C. Oxylipin production during a mesocosm bloom of Skeletonema marinoi. J. Exp. Mar. Biol. Ecol. 2013, 446, 159–165. [Google Scholar] [CrossRef]
- Paul, C.; Reunamo, A.; Lindehoff, E.; Bergkvist, J.; Mausz, M.A.; Larsson, H.; Richter, H.; Wängberg, S.; Leskinen, P.; Båmstedt, U.; et al. Diatom derived polyunsaturated aldehydes do not structure the planktonic microbial community in a mesocosm study. Mar. Drugs 2012, 10, 775–792. [Google Scholar] [CrossRef] [PubMed]
- Avila, C.A.; Arevalo-Soliz, L.M.; Lorence, A.; Goggin, F.L. Expression of α-DIOXYGENASE 1 in tomato and arabidopsis contributes to plant defenses against aphids. Mol. Plant-Microbe Interact. 2013, 26, 977–986. [Google Scholar] [CrossRef]
- Vicente, J.; Cascón, T.; Vicedo, B.; García-Agustín, P.; Hamberg, M.; Castresana, C. Role of 9-lipoxygenase and α-dioxygenase oxylipin pathways as modulators of local and systemic defense. Mol. Plant 2012, 5, 914–928. [Google Scholar] [CrossRef]
- Wang, F.; Liigand, J.; Tian, S.; Arndt, D.; Greiner, R.; Wishart, D.S. CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. Anal. Chem. 2021, 93, 11692–11700. [Google Scholar] [CrossRef]
- Yi, Z.; Xu, M.; Di, X.; Brynjolfsson, S.; Fu, W. Exploring valuable lipids in diatoms. Front. Mar. Sci. 2017, 4, 17. [Google Scholar] [CrossRef]
- Ruocco, N.; Albarano, L.; Esposito, R.; Zupo, V.; Costantini, M.; Ianora, A. Multiple Roles of Diatom-Derived Oxylipins within Marine Environments and Their Potential Biotechnological Applications. Mar. Drugs 2020, 18, 342. [Google Scholar] [CrossRef] [PubMed]
- Nanjappa, D.; D’Ippolito, G.; Gallo, C.; Zingone, A.; Fontana, A. Oxylipin diversity in the diatom family Leptocylindraceae reveals DHA derivatives in marine diatoms. Mar. Drugs 2014, 12, 368–384. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Q.P.; Ge, Z.; Huang, B.; Dong, C. Impacts of biogenic polyunsaturated aldehydes on metabolism and community composition of particle-attached bacteria in coastal hypoxia. Biogeosciences 2021, 18, 1049–1065. [Google Scholar] [CrossRef]
- Ianora, A.; Miralto, A. Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: A review. Ecotoxicology 2009, 19, 493–511. [Google Scholar] [CrossRef] [PubMed]
- Eglinton, T.I.; Eglinton, G. Molecular proxies for paleoclimatology. Earth Planet. Sci. Lett. 2008, 275, 1–16. [Google Scholar] [CrossRef]
- Vardi, A.; Haramaty, L.; Van Mooy, B.A.S.; Fredricks, H.F.; Kimmance, S.A.; Larsen, A.; Bidle, K.D. Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc. Natl. Acad. Sci. USA 2012, 109, 19327–19332. [Google Scholar] [CrossRef] [PubMed]
- Roitman, S.; Hornung, E.; Flores-Uribe, J.; Sharon, I.; Feussner, I.; Béjà, O. Cyanophage-encoded lipid desaturases: Oceanic distribution, diversity and function. ISME J. 2017, 12, 343–355. [Google Scholar] [CrossRef]
- Volkman, J.K.; Barrett, S.M.; Blackburn, S.I.; Mansour, M.P.; Sikes, E.L.; Gelin, F. Microalgal biomarkers: A review of recent research developments. Org. Geochem. 1998, 29, 1163–1179. [Google Scholar] [CrossRef]
- de Vargas, C.; Audic, S.; Henry, N.; Decelle, J.; Mahé, F.; Logares, R.; Lara, E.; Berney, C.; Le Bescot, N.; Probert, I.; et al. Eukaryotic Plankton Diversity in the Sunlit Ocean. Science 2015, 348, 1261605. [Google Scholar] [CrossRef] [PubMed]
- Kannan, N.; Rao, A.S.; Nair, A. Microbial production of omega-3 fatty acids: An overview. J. Appl. Microbiol. 2021, 131, 2114–2130. [Google Scholar] [CrossRef]
- Dominguez-Huerta, G.; Zayed, A.A.; Wainaina, J.M.; Guo, J.; Tian, F.; Pratama, A.A.; Bolduc, B.; Mohssen, M.; Zablocki, O.; Pelletier, E.; et al. Diversity and ecological footprint of Global Ocean RNA viruses. Science 2022, 376, 1202–1208. [Google Scholar] [CrossRef]
- Vincent, F.; Vardi, A. Viral infection in the ocean—A journey across scales. PLOS Biol. 2023, 21, e3001966. [Google Scholar] [CrossRef] [PubMed]
- Mruwat, N.; Carlson, M.C.G.; Goldin, S.; Ribalet, F.; Kirzner, S.; Hulata, Y.; Beckett, S.J.; Shitrit, D.; Weitz, J.S.; Armbrust, E.V.; et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2020, 15, 41–54. [Google Scholar] [CrossRef]
- Vrana, I.; Gašparović, B.; Geček, S.; Godrijan, J.; Novak, T.; Kazazić, S.P.; Mlakar, M.; Kužat, N.; Pfannkuchen, M.; Pfannkuchen, D.M. Successful acclimation of marine diatoms Chaetoceros curvisetus/pseudocurvisetus to climate change. Limnol. Oceanogr. 2023, 68, S158–S173. [Google Scholar] [CrossRef]
- Kranzler, C.F.; Krause, J.W.; Brzezinski, M.A.; Edwards, B.R.; Biggs, W.P.; Maniscalco, M.; McCrow, J.P.; Van Mooy, B.A.S.; Bidle, K.D.; Allen, A.E.; et al. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nat. Microbiol. 2019, 4, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Nissimov, J.I.; Vandzura, R.; Johns, C.T.; Natale, F.; Haramaty, L.; Bidle, K.D. Dynamics of transparent exopolymer particle production and aggregation during viral infection of the coccolithophore, Emiliania huxleyi. Environ. Microbiol. 2018, 20, 2880–2897. [Google Scholar] [CrossRef]
- Bartual, A.; Cera, I.V.; Flecha, S.; Prieto, L. Effect of dissolved polyunsaturated aldehydes on the size distribution of transparent exopolymeric particles in an experimental diatom bloom. Mar. Biol. 2017, 164, 120. [Google Scholar] [CrossRef]
- Shirai, Y.; Tomaru, Y.; Takao, Y.; Suzuki, H.; Nagumo, T.; Nagasaki, K. Isolation and Characterization of a Single-Stranded RNA Virus Infecting the Marine Planktonic Diatom Chaetoceros tenuissimus Meunier. Appl. Environ. Microbiol. 2008, 74, 4022–4027. [Google Scholar] [CrossRef]
- Tomaru, Y.; Takao, Y.; Suzuki, H.; Nagumo, T.; Nagasaki, K. Isolation and Characterization of a Single-Stranded RNA Virus Infecting the Bloom-Forming Diatom Chaetoceros socialis. Appl. Environ. Microbiol. 2009, 75, 2375–2381. [Google Scholar] [CrossRef]
- Kimura, K.; Tomaru, Y. Isolation and Characterization of a Single-Stranded DNA Virus Infecting the Marine Diatom Chaetoceros sp. Strain SS628-11 Isolated from Western JAPAN. PLoS ONE 2013, 8, e82013. [Google Scholar] [CrossRef]
- Hummel, J.; Segu, S.; Li, Y.; Irgang, S.; Jueppner, J.; Giavalisco, P. Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. Front. Plant Sci. 2011, 2, 54. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef]
- Benton, H.P.; Want, E.J.; Ebbels, T.M.D. Correction of mass calibration gaps in liquid chromatography–mass spectrometry metabolomics data. Bioinformatics 2010, 26, 2488–2489. [Google Scholar] [CrossRef]
- Kuhl, C.; Tautenhahn, R.; Böttcher, C.; Larson, T.R.; Neumann, S. CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 2011, 84, 283–289. [Google Scholar] [CrossRef]
- Clasquin, M.F.; Melamud, E.; Rabinowitz, J.D.; Clasquin, M.F.; Melamud, E.; Rabinowitz, J.D. LC-MS Data Processing with MAVEN: A Metabolomic Analysis and Visualization Engine. Curr. Protoc. Bioinform. 2012, 37, 14.11.1–14.11.23. [Google Scholar] [CrossRef] [PubMed]
- Melamud, E.; Vastag, L.; Rabinowitz, J.D. Metabolomic Analysis and Visualization Engine for LC−MS Data. Anal. Chem. 2010, 82, 9818–9826. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Djoumbou-Feunang, Y.; Pon, A.; Karu, N.; Zheng, J.; Li, C.; Arndt, D.; Gautam, M.; Allen, F.; Wishart, D.S. CFM-ID 3.0: Significantly Improved ESI-MS/MS Prediction and Compound Identification. Metabolites 2019, 9, 72. [Google Scholar] [CrossRef]
- Tsugawa, H.; Ikeda, K.; Takahashi, M.; Satoh, A.; Mori, Y.; Uchino, H.; Okahashi, N.; Yamada, Y.; Tada, I.; Bonini, P.; et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020, 38, 1159–1163. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Fu, X.; Yin, H.-H.; Wu, M.-J.; He, X.; Jiang, Q.; Zhang, L.-T.; Liu, J.-Y. High Sensitivity and Wide Linearity LC-MS/MS Method for Oxylipin Quantification in Multiple Biological Samples. J. Lipid Res. 2022, 63, 100302. [Google Scholar] [CrossRef] [PubMed]
- Elloumi, A.; Mas-Normand, L.; Bride, J.; Reversat, G.; Bultel-Poncé, V.; Guy, A.; Oger, C.; Demion, M.; Le Guennec, J.-Y.; Durand, T.; et al. From MS/MS library implementation to molecular networks: Exploring oxylipin diversity with NEO-MSMS. Sci. Data 2024, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Liakh, I.; Pakiet, A.; Sledzinski, T.; Mika, A. Methods of the analysis of oxylipins in biological samples. Molecules 2020, 25, 349. [Google Scholar] [CrossRef] [PubMed]
- Hellhake, S.; Meckelmann, S.W.; Empl, M.T.; Rentmeister, K.; Wißdorf, W.; Steinberg, P.; Schmitz, O.J.; Benter, T.; Schebb, N.H. Non-targeted and targeted analysis of oxylipins in combination with charge-switch derivatization by ion mobility high-resolution mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 5743–5757. [Google Scholar] [CrossRef]
- Kuhlisch, C.; Deicke, M.; Ueberschaar, N.; Wichard, T.; Pohnert, G. A fast and direct liquid chromatography-mass spectrometry method to detect and quantify polyunsaturated aldehydes and polar oxylipins in diatoms. Limnol. Oceanogr. Methods 2016, 15, 70–79. [Google Scholar] [CrossRef]
Sample | Timepoint | Classification | N |
---|---|---|---|
C. tenuissimus 2–10 | 0 | T = 0 | 3 |
1 d | Exponential | 3 | |
3 d | (Early) Stationary | 3 | |
4 d | Stationary | 3 | |
26 d | Decline | 3 | |
C. tenuissimus + CtenDNAV | 1 d | Early Infection | 3 |
3 d | Mid Infection | 3 | |
4 d | Lysis | 3 | |
C. tenuissimus + CtenRNAV | 1 d | Early Infection | 3 |
3 d | Lysis | 3 | |
C. socialis L4 | 0 | T = 0 | 3 |
1 d | Exponential | 3 | |
3 d | Stationary | 3 | |
21 d | Decline | 3 | |
C. socialis + CsfrRNAV | 1 d | Early Infection | 3 |
3 d | Lysis | 3 |
Diatom Species | Chiral Level | Positional Level | This Study | Functional Group Level | This Study | Structural Level | This Study |
---|---|---|---|---|---|---|---|
Sm, Tr | (7E)-9-hydroxy-7-hexaenoic acid | 9-HHME | x | HHME | x | FFA C16:1 +1O | x |
(7E)-9-oxo-7-hexadecaenoic acid | 9-oxoHME | oxoHME | x | FFA C16:2 +1O | x | ||
(6Z, 9S, 10E, 12Z)-9-hydroxy-6,10,12-hexadecatrienoic acid | 9-HHTrE | x | HHTrE | x | FFA C16:3 +1O | x | |
Sm | (6Z, 9S, 10E, 12Z)-9-hydroperoxy-6,10,12-hexadecatrienoic acid | 9-HpHTrE | x | HpHTrE | x | FFA C16:3 +2O | x |
(6Z, 9S, 10E, 12Z, 15E)-9-hydroperoxy-6,10,12,15-hexadecatetraenoic acid | 9-HpHTE | x | HpHTE | x | FFA C16:4 +2O | x | |
Sm | (6Z, 9RS, 10SR, 11SR, 12Z)-11-hydroxy-9,10-epoxyhexadeca-6,12-dienoic acid | 11,9-HepHDE | HHDE | x | FFA C16:3 +2O | x | |
Sm, Pd, Sp | (5Z, 8Z, 11Z, 13E, 15S, 17Z)-15-hydroxy-5,8,11,13,17-eicosapentaenoic acid | 15-HEPE | x | HEPE | x | FFA C20:5 +1O | x |
Sm | (5Z, 8Z, 11Z, 13E, 15S, 17Z)-15-hydroperoxy-5,8,11,13,17-eicosapentaenoic acid | 15-HpEPE | x | HpEPE | x | FFA C20:5 +2O | x |
Sm | (5R, 6E, 8Z, 11Z, 14Z, 17Z)-5-hydroxy-6,8,11,14,17-eicosapentaenoic acid | 5-HEPE | HEPE | x | FFA C20:5 +1O | x | |
Sm | (5R, 6E, 8Z, 11Z, 14Z, 17Z)-5-hydroperoxy-6,8,11,14,17-eicosapentaenoic acid | 5-HpEPE | HpEPE | x | FFA C20:5 +2O | x | |
Sm, Tr, Pd, Sc | (5Z, 8Z, 11Z, 13RS, 14RS, 15SR, 17Z)-13-hydroxy-14,15-epoxyeicosa-5,8,11,17-tetraenoic acid | 13,14-HepETE | x | HepETE | n.a. | FFA C20:5 +2O | x |
Sm | (5Z, 7E, 9S, 11Z, 14Z, 17Z)-9-hydroxy-5,7,11,14,17-eicosapentaenoic acid | 9-HEPE | HEPE | x | FFA C20:5 +1O | x | |
Sm | (5Z, 7E, 9S, 11Z, 14Z, 17Z)-9-hydroperoxy-5,7,11,14,17-eicosapentaenoic acid | 9-HpEPE | HpEPE | x | FFA C20:5 +2O | x | |
Cs | (5Z, 7SR, 8RS, 9SR, 11Z, 14Z, 17Z)-7-hydroxy-8,9-epoxy-5,11,14,17-eicosatetraenoic acid | 7,8-HepETE | HepETE | n.a. | FFA C20:5 +2O | x | |
Cs | (5Z, 8Z, 11Z, 15E, 17Z)-14-hydroxy-(5,8,11,15,17)-eicosapentaenoic acid | 14-HEPE | HEPE | x | FFA C20:5 +1O | x | |
Ca | (5Z, 8Z, 11Z, 15E, 17Z)-14-hydroperoxy-(5,8,11,15,17)-eicosapentaenoic acid | 14-HpEPE | HpEPE | x | FFA C20:5 +2O | x | |
Ca | (5Z, 8Z, 11Z, 14SR, 15RS, 16SR, 17Z)-16-hydroxy-14,15-epoxy-5,8,11,17-eicosatetraenoic acid | 16,14-HepETE | HepETE | n.a. | FFA C20:5 +2O | x |
LOBSTAHS Annotation | Positional-Level Annotation |
---|---|
FFA_ 14:2 +1O_mz_239.165_RT_1.71 | |
FFA_ 14:2 +1O_mz_239.165_RT_2.25 | |
FFA_ 14:2 +1O_mz_239.165_RT_2.56 | |
FFA_ 16:2 +1O_mz_267.1966_RT_3.46 | 6-oxoHME |
FFA_ 16:3 +2O_mz_281.1759_RT_2.23 | 9-HpHTrE |
FFA_ 16:3 +3O_mz_297.1707_RT_1.52 | |
FFA_ 16:3 +3O_mz_297.1708_RT_2.13 | |
FFA_ 16:4 +1O_mz_263.1652_RT_2.46 | 9-HHTE |
FFA_ 16:4 +2O_mz_279.1602_RT_1.85 | 9-HpHTE |
FFA_ 20:1 +1O_mz_325.2749_RT_8.57 | |
FFA_ 20:2 +1O_mz_323.2593_RT_7.89 | |
FFA_ 20:3 +1O_mz_321.2435_RT_6.98 | 15-HETrE |
FFA_ 20:3 +3O_mz_353.2335_RT_2.14 | |
FFA_ 20:4 +1O_mz_319.2279_RT_5.95 | 9-HETE |
FFA_ 20:4 +4O_mz_367.2126_RT_1.58 | |
FFA_ 20:5 +2O_mz_333.2073_RT_2.08 | 11,14-diHEPE |
FFA_ 22:4 +1O_mz_347.2593_RT_7.77 | |
FFA_ 22:4 +3O_mz_379.2492_RT_2.47 | |
FFA_ 22:5 +1O_mz_345.2436_RT_7.12 | |
FFA_ 22:5 +1O_mz_345.2436_RT_7.67 | |
FFA_ 22:5 +2O_mz_361.2388_RT_2.91 | |
FFA_ 22:5 +3O_mz_377.2335_RT_2.21 | |
FFA_ 22:5 +4O_mz_393.2286_RT_3.65 | |
FFA_ 22:6 +3O_mz_375.2173_RT_1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edwards, B.R.; Thamatrakoln, K.; Fredricks, H.F.; Bidle, K.D.; Van Mooy, B.A.S. Viral Infection Leads to a Unique Suite of Allelopathic Chemical Signals in Three Diatom Host–Virus Pairs. Mar. Drugs 2024, 22, 228. https://doi.org/10.3390/md22050228
Edwards BR, Thamatrakoln K, Fredricks HF, Bidle KD, Van Mooy BAS. Viral Infection Leads to a Unique Suite of Allelopathic Chemical Signals in Three Diatom Host–Virus Pairs. Marine Drugs. 2024; 22(5):228. https://doi.org/10.3390/md22050228
Chicago/Turabian StyleEdwards, Bethanie R., Kimberlee Thamatrakoln, Helen F. Fredricks, Kay D. Bidle, and Benjamin A. S. Van Mooy. 2024. "Viral Infection Leads to a Unique Suite of Allelopathic Chemical Signals in Three Diatom Host–Virus Pairs" Marine Drugs 22, no. 5: 228. https://doi.org/10.3390/md22050228
APA StyleEdwards, B. R., Thamatrakoln, K., Fredricks, H. F., Bidle, K. D., & Van Mooy, B. A. S. (2024). Viral Infection Leads to a Unique Suite of Allelopathic Chemical Signals in Three Diatom Host–Virus Pairs. Marine Drugs, 22(5), 228. https://doi.org/10.3390/md22050228