New Secondary Metabolites from Marine-Derived Fungus Talaromyces minnesotensis BTBU20220184
Abstract
:1. Introduction
2. Results
2.1. Structure Determination
2.2. Biological Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Microbial Material, Fermentation, Extraction, and Purification
3.3. Biological Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Manohar, C.S.; Raghukumar, C. Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol. Lett. 2013, 341, 69–78. [Google Scholar] [CrossRef]
- Behera, A.D.; Das, S. Ecological insights and potential application of marine filamentous fungi in environmental restoration. Rev. Environ. Sci. Bio. 2023, 22, 281–318. [Google Scholar] [CrossRef]
- Jones, E.B.G.; Suetrong, S.; Sakayaroj, J.; Bahkali, A.H.; Abdel-Wahab, M.A.; Boekhout, T.; Pang, K.L. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers. 2015, 73, 1–72. [Google Scholar] [CrossRef]
- Stolk, A.C.; Samson, R.A. The genus Talaromyces–studies on Talaromyces and related genera II. Stud. Mycol. 1972, 2, 1–65. [Google Scholar]
- Wang, X.-C.; Zhuang, W.-Y. New species of Talaromyces (Trichocomaceae, Eurotiales) from Southwestern China. J. Fungi 2022, 8, 647. [Google Scholar] [CrossRef]
- Zang, W.; Li, M.; Sun, J.Q.; Gao, C.H.; Wang, L. Two new species of Talaromyces Sect. Trachyspermi Discovered in China. Mycopathologia 2023, 188, 793–804. [Google Scholar] [CrossRef]
- Jiang, X.Z.; Yu, Z.D.; Ruan, Y.M.; Wang, L. Three new species of Talaromyces sect. Talaromyces discovered from soil in China. Sci. Rep. 2018, 8, 4932. [Google Scholar] [CrossRef]
- Han, P.J.; Sun, J.Q.; Wang, L. Two new sexual Talaromyces species discovered in etuary soil in China. J. Fungi 2021, 8, 36. [Google Scholar] [CrossRef]
- Wei, S.; Xu, X.; Wang, L. Four new species of Talaromyces section Talaromyces discovered in China. Mycologia 2021, 113, 492–508. [Google Scholar] [CrossRef]
- Yilmaz, N.; López-Quintero, C.A.; Vasco-Palacios, A.M.; Frisvad, J.C.; Theelen, B.; Boekhout, T.; Samson, R.A.; Houbraken, J. Four novel Talaromyces species isolated from leaf litter from Colombian Amazon rain forests. Mycol. Prog. 2016, 15, 1041–1056. [Google Scholar] [CrossRef]
- Luo, Y.; Lu, X.H.; Bi, W.; Liu, F.; Gao, W.W. Talaromyces rubrifaciens, a new species discovered from heating, ventilation and air conditioning systems in China. Mycologia 2016, 108, 773–779, Erratum in Mycologia 2019, 111, 1072. https://doi.org/10.1080/00275514.2019.1678303. [Google Scholar] [CrossRef]
- Lan, D.; Wu, B. Chemistry and bioactivities of secondary metabolites from the genus Talaromyces. Chem. Biodivers. 2020, 17, e2000229. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.J.; Xiao, Y.; Li, Q.; Lai, Y.X.; Dai, B.B.; Zhang, M.; Kang, X.; Tong, Q.Y.; Wang, J.P.; Chen, C.M.; et al. Cytotoxic ergosteroids from a strain of the fungus Talaromyces adpressus. J. Nat. Prod. 2023, 86, 2081–2090. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, M.; Zhang, X.T.; Li, L.Q.; Zheng, M.J.; Kang, J.B.; Liu, F.; Zhou, Q.; Li, X.N.; Sun, W.G.; et al. Talaroclauxins A and B: Duclauxin-ergosterol and duclauxin-polyketide hybrid metabolites with complicated skeletons from Talaromyces stipitatus. Chin. Chem. Lett. 2024, 35, 108193. [Google Scholar] [CrossRef]
- Cai, J.; Zhou, X.M.; Wang, B.; Zhang, X.L.; Luo, M.Y.; Huang, L.T.; Wang, R.X.; Chen, Y.H.; Li, X.Y.; Luo, Y.P.; et al. Bioactive polyketides and meroterpenoids from the mangrove-derived fungus Talaromyces flavus TGGP35. Front. Microbiol. 2024, 15, 1342843. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, B.; Tan, Q.; Chen, Y.; Chen, T.; Zou, G.; Sun, B.; Wang, B.; Yuan, J.; She, Z. 4-Hydroxy-2-pyridone derivatives with antitumor activity produced by mangrove endophytic fungus Talaromyces sp. CY-3. Eur. J. Med. Chem. 2024, 269, 116314. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.J.; Zhou, C.X.; Liao, H.; Li, Q.; Bao, A.L.; Chen, C.M.; He, F.; Wu, P.; Sun, W.G.; Zhu, H.C.; et al. Enantiomeric α-pyrone derivatives with immunosuppressive activity from Talaromyces adpressus. Phytochemistry 2024, 218, 113931. [Google Scholar] [CrossRef]
- Nicoletti, R.; Bellavita, R.; Falanga, A. The outstanding chemodiversity of marine-derived Talaromyces. Biomolecules 2023, 13, 1021. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Dong, Y.; Wei, S.; Zhang, X.; Zhang, K.; Xu, X. New antibacterial secondary metabolites from a marine-derived Talaromyces sp. Strain BTBU20213036. Antibiotics 2022, 11, 222. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, X.; Lin, R.; Yang, H.; Song, F.; Xu, X.; Wang, L. New secondary metabolites from the marine-derived fungus Talaromyces mangshanicus BTBU20211089. Mar. Drugs 2022, 20, 79. [Google Scholar] [CrossRef]
- Cai, R.; Wu, Y.; Chen, S.; Cui, H.; Liu, Z.; Li, C.; She, Z. Peniisocoumarins A–J: Isocoumarins from Penicillium commune QQF-3, an endophytic fungus of the mangrove plant Kandelia candel. J. Nat. Prod. 2018, 81, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Bond, T.J.; Herald, D.L.; Penny, M.; Doubek, D.L.; Williams, M.D.; Pettit, R.K.; Hooper, J.N.A. Isolation and structure of spongilipid from the Republic of Singapore marine porifera Spongiacf. hispida. Can. J. Chem. 1997, 75, 920–925. [Google Scholar] [CrossRef]
- Feng, C.-C.; Chen, G.-D.; Li, X.-X.; Tang, J.-S.; Liu, X.-Z.; Li, Y.; Yao, X.-S.; Gao, H. Three new glucosides from a cold-adapted fungal strain Mucor sp. J. Asian Nat. Prod. Res. 2013, 15, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Mallampudi, N.A.; Choudhury, U.M.; Mohapatra, D.K. Total synthesis of (−)-citreoisocoumarin, (−)-citreoisocoumarinol, (−)-12-epi-citreoisocoumarinol, and (−)-mucorisocoumarins A and B using a gold(I)-catalyzed cyclization strategy. J. Org. Chem. 2020, 85, 4122–4129. [Google Scholar] [CrossRef]
- Larsen, T.O.; Breinholt, J. Dichlorodiaportin, diaportinol, and diaportinic acid: three novel isocoumarins from Penicillium nalgiovense. J. Nat. Prod. 1999, 62, 1182–1184. [Google Scholar] [CrossRef] [PubMed]
- Lopes, T.I.B.; Coelho, R.G.; Yoshida, N.C.; Honda, N.K. Radical-scavenging activity of Orsellinates. Chem. Pharm. Bull. 2008, 56, 1551–1554. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.Q.; Lu, X.M.; Fang, Y.C.; Zhu, T.J.; Gu, Q.Q.; Zhu, W.M. Two new 5-hydroxy-2-pyrone derivatives isolated from a marine-derived fungus Aspergillus flavus. J. Antibiot. 2008, 61, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 7th ed.; approved standard; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Han, J.; Yang, N.; Wei, S.; Jia, J.; Lin, R.; Li, J.; Bi, H.; Song, F.; Xu, X. Dimeric hexylitaconic acids from the marine-derived fungus Aspergillus welwitschiae CUGBMF180262. Nat. Prod. Res. 2022, 36, 578–585. [Google Scholar] [CrossRef]
- Wang, Q.; Song, F.; Xiao, X.; Huang, P.; Li, L.; Monte, A.; Abdel-Mageed, W.M.; Wang, J.; Guo, H.; He, W.; et al. Abyssomicins from the South China Sea deep-sea sediment Verrucosispora sp.: Natural thioether Michael addition adducts as antitubercular prodrugs. Angew. Chem. Int. Ed. Engl. 2013, 52, 1231–1234. [Google Scholar] [CrossRef]
- Han, J.J.; Wang, H.Y.; Zhang, R.; Dai, H.Q.; Chen, B.S.; Wang, T.; Sun, J.Z.; Wang, W.Z.; Song, F.H.; Li, E.R.; et al. Cyclic tetrapeptides with synergistic antifungal activity from the fungus Aspergillus westerdijkiae using LC-MS/MS-based molecular networking. Antibiotics 2022, 11, 166. [Google Scholar] [CrossRef] [PubMed]
Pos | 1 | 2 | 3 | |||
---|---|---|---|---|---|---|
δC, Type | δH, (J in Hz) | δC, Type | δH, (J in Hz) | δC, Type | δH, (J in Hz) | |
1 | 198.5, C | 201.0, C | 201.2, C | |||
2 | 136.7, C | 38.8, CH2 | 3.06, t (7.0) | 38.8, CH2 | 3.06, t (7.0) | |
3 | 154.0, C | 202.8, C | 202.9, C | |||
3a | 134.8, C | 136.8, C | 136.5, C | |||
4 | 152.6, C | 155.2, C | 155.2, C | |||
5 | 126.8, CH | 7.50, d (1.5) | 121.7, C | 7.68, d (1.0) | 121.8, CH | 7.68, d (1.5) |
6 | 134.4, C | 132.8, C | 133.7, C | |||
7 | 115.4, CH | 7.51, d (1.5) | 122.0, C | 8.07, d (1.0) | 122.0, CH | 8.08, d (1.5) |
7a | 133.1, C | 137.3, C | 137.3, C | |||
8 | 20.7, CH2 | 2.44, m | 20.4, CH2 | 1.90, quint (7.0) | 20.5, CH2 | 1.90, quint (7.0) |
9 | 32.9, CH2 | 2.46, m | 33.7, CH2 | 2.35, t (7.0) | 33.9, CH2 | 2.35, t (7.0) |
10 | 175.3, C | 175.5, C | 177.2, C | |||
11 | 168.9, C | 168.6, C | 169.3, C | |||
1′ | 110.7, C | 112.2, C | 112.2, C | |||
2′ | 156.7, C | 163.3, C | 163.3, C | |||
3′ | 107.6, CH | 6.39, d (8.0) | 108.1, CH | 6.28, d (8.5) | 108.1, CH | 6.28, d (8.0) |
4′ | 130.9, CH | 7.04, t (8.0) | 137.4, CH | 7.21, t (8.5) | 137.4, CH | 7.21, t (8.0) |
5′ | 107.6, CH | 6.39, d (8.0) | 108.1, CH | 6.28, d (8.5) | 108.1, CH | 6.28, d (8.0) |
6′ | 156.7, C | 163.3, C | 163.3, C | |||
10-OCH3 | 52.1, CH3 | 3.60, s | 52.1, CH3 | 3.64, s |
Pos | 4 | 5 | 6 | |||
---|---|---|---|---|---|---|
δC, Type | δH, (J in Hz) | δC, Type | δH, (J in Hz) | δC, Type | δH, (J in Hz) | |
1 | 167.9, C | 167.5, C | 110.0, CH | 6.89, s | ||
2 | - | - | 158.4, C | |||
3 | 157.9, C | 154.0, C | 119.5, C | |||
4 | 101.2, CH | 6.94, s | 103.6, CH | 7.04, s | 131.3, CH | 9.17, s |
4a | 133.5, C | 133.0, C | 118.6, C | |||
5 | 132.9, C | 133.2, C | 154.0, C | |||
6 | 161.1, C | 161.1, C | 120.7, C | |||
7 | 99.7, CH | 6.63, s | 100.1, CH | 6.66, s | 160.5, C | |
8 | 161.8, C | 161.9, C | 104.4, CH | 6.76, s | ||
8a | 99.3, C | 99.3, C | 140.4, C | |||
9a | 30.7, CH2 | 2.63, m | 39.4, CH2 | 3.15, dd (15.0, 4.0) | 207.0, C | |
9b | 2.88, dd (15.0, 9.5) | |||||
10 | 30.8, CH2 | 1.90, tt (7.0) | 60.4, CH | 4.32, m | 27.2, CH3 | 2.76, s |
11 | 61.7, CH2 | 3.63, m | 66.8, CH2 | 3.78, m | 10.9, CH3 | 2.34, s |
1′ | 105.9, CH | 4.70, d (7.5) | 106.0, CH | 4.70, d (7.5) | 107.1, CH | 4.78, d (7.5) |
2′ | 75.6, CH | 3.50, m | 75.6, CH | 3.51, dd (9.0, 7.5) | 75.8, CH | 3.69, m |
3′ | 77.8, CH | 3.42, m | 77.8, CH | 3.44, m | 78.2, CH | 3.47, m |
4′ | 71.2, CH | 3.42, m | 71.2, CH | 3.44, m | 71.4, CH | 3.47, m |
5′ | 78.2, CH | 3.17, m | 78.1, CH | 3.17, m | 77.9, CH | 3.13, m |
6′a | 62.5, CH2 | 3.76, dd (11.5, 2.5) | 62.4, CH2 | 3.76, dd (11.5, 2.5) | 62.6, CH2 | 3.76, dd (11.5, 2.5) |
6′b | 3.66, dd (11.5, 5.0) | 3.67, dd (11.5, 4.5) | 3.67, m | |||
6-OCH3 | 56.8, CH3 | 3.94, s | 56.9, CH3 | 3.94, s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Wang, J.; Song, F.; Jia, R.; Wang, L.; Xu, X.; Yang, N. New Secondary Metabolites from Marine-Derived Fungus Talaromyces minnesotensis BTBU20220184. Mar. Drugs 2024, 22, 237. https://doi.org/10.3390/md22060237
Wang W, Wang J, Song F, Jia R, Wang L, Xu X, Yang N. New Secondary Metabolites from Marine-Derived Fungus Talaromyces minnesotensis BTBU20220184. Marine Drugs. 2024; 22(6):237. https://doi.org/10.3390/md22060237
Chicago/Turabian StyleWang, Weiliang, Jingjing Wang, Fuhang Song, Renming Jia, Long Wang, Xiuli Xu, and Na Yang. 2024. "New Secondary Metabolites from Marine-Derived Fungus Talaromyces minnesotensis BTBU20220184" Marine Drugs 22, no. 6: 237. https://doi.org/10.3390/md22060237
APA StyleWang, W., Wang, J., Song, F., Jia, R., Wang, L., Xu, X., & Yang, N. (2024). New Secondary Metabolites from Marine-Derived Fungus Talaromyces minnesotensis BTBU20220184. Marine Drugs, 22(6), 237. https://doi.org/10.3390/md22060237