The Identification of Peptide Inhibitors of the Coronavirus 3CL Protease from a Fucus ceranoides L. Hydroalcoholic Extract Using a Ligand-Fishing Strategy
Abstract
:1. Introduction
2. Results
2.1. Inhibitory Effects of FCHE and PF-00835231 against Free 3CLpro
2.2. Enzymatic Activity of 3CLpro-Grafted Magnetic Particles (3CLpro-MPs)
2.3. Dynamic Light Scattering (DLS) and Zeta Potential of 3CLpro-MPs
2.4. Immobilization Efficiency
2.5. Proof of Concept of LIGAND Fishing with the Chromogenic Substrate (TSAVLQ-pNA)
2.6. Inhibitory Effect of E1 + E2 + E3 Mix of Eluents against Free 3CLpro and HRMS Identification of Peptides in Eluate Mix
2.7. Molecular Docking
2.8. An Evaluation of the Inhibitory Activity of Synthesized Peptides (PEPs 1-7) Identified through the Ligand-Fishing Approach
3. Discussion
4. Materials and Methods
4.1. Seaweed Material
4.2. Fucus ceranoides L. Extraction
4.3. SARS-CoV-2 3CLpro Enzymatic Assays
4.4. FCHE Inhibitory Effects against 3CLpro
4.5. 3CLpro Immobilization on N-Hydroxysuccinimide (NHS)-Functionalized Magnetic Particles
4.6. Determination of Immobilization Efficiency
4.7. Enzymatic Activity of 3CLpro-Grafted Magnetic Particles (3CLpro-MPs)
4.8. Fishing the Chromogenic Substrate (TSAVLQ-pNA) as Proof of Concept of the Ligand-Fishing Procedure
4.9. Ligand Fishing of 3CLPro Inhibitors in FCHE Using 3CLpro-MPs
4.10. Ultra-Performance Liquid Chromatography Coupled to Ultraviolet Spectrometry and High-Resolution Mass Spectrometry (UPLC-DAD-MS/MS)
4.11. Peptide Sequence Determination
4.12. 3CLpro Inhibition by the Mix of Eluates (E1 + E2 + E3) Obtained through the Ligand-Fishing Assay
4.13. Peptide Synthesis and Inhibitory Activity
4.14. Dynamic Light Scattering (DLS) and Zeta Potential Analysis
4.15. Molecular Docking
4.16. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hillary, V.E.; Ceasar, S.A. An Update on COVID-19: SARS-CoV-2 Variants, Antiviral Drugs, and Vaccines. Heliyon 2023, 9, e13952. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.L.; Haidar, G.; Mellors, J.W. COVID-19: Challenges of Viral Variants. Annu. Rev. Med. 2023, 74, 31–53. [Google Scholar] [CrossRef]
- Taglialatela-Scafati, O. New Hopes for Drugs against COVID-19 Come from the Sea. Mar. Drugs 2021, 19, 104. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal Structure of SARS-CoV-2 Main Protease Provides a Basis for Design of Improved α-Ketoamide Inhibitors. Science 2020, 368, 409–412. [Google Scholar] [CrossRef]
- Mandal, A.; Jha, A.K.; Hazra, B. Plant Products as Inhibitors of Coronavirus 3CL Protease. Front. Pharmacol. 2021, 12, 583387. [Google Scholar] [CrossRef]
- Zhuo, R.; Liu, H.; Liu, N.; Wang, Y. Ligand Fishing: A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products. Molecules 2016, 21, 1516. [Google Scholar] [CrossRef] [PubMed]
- Catarino, M.D.; Silva, A.M.S.; Cardoso, S.M. Phycochemical Constituents and Biological Activities of Fucus spp. Mar. Drugs 2018, 16, 249. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Chen, X.; Hong, A. Virtual Screening of Approved Clinic Drugs with Main Protease (3CLpro) Reveals Potential Inhibitory Effects on SARS-CoV-2. J. Biomol. Struct. Dyn. 2022, 40, 685–695. [Google Scholar] [CrossRef]
- Muramatsu, T.; Takemoto, C.; Kim, Y.-T.; Wang, H.; Nishii, W.; Terada, T.; Shirouzu, M.; Yokoyama, S. SARS-CoV 3CL Protease Cleaves Its C-Terminal Autoprocessing Site by Novel Subsite Cooperativity. Proc. Natl. Acad. Sci. USA 2016, 113, 12997–13002. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine Natural Products. Nat. Prod. Rep. 2018, 35, 8–53. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Torres, M.D.; González-Muñoz, M.J.; Domínguez, H. Potential of Intensification Techniques for the Extraction and Depolymerization of Fucoidan. Algal Res. 2018, 30, 128–148. [Google Scholar] [CrossRef]
- Pradhan, B.; Nayak, R.; Patra, S.; Bhuyan, P.P.; Behera, P.K.; Mandal, A.K.; Behera, C.; Ki, J.-S.; Adhikary, S.P.; MubarakAli, D.; et al. A State-of-the-Art Review on Fucoidan as an Antiviral Agent to Combat Viral Infections. Carbohydr. Polym. 2022, 291, 119551. [Google Scholar] [CrossRef] [PubMed]
- Vilas Boas, L.C.P.; Campos, M.L.; Berlanda, R.L.A.; de Carvalho Neves, N.; Franco, O.L. Antiviral Peptides as Promising Therapeutic Drugs. Cell. Mol. Life Sci. 2019, 76, 3525–3542. [Google Scholar] [CrossRef] [PubMed]
- André, R.; Guedes, L.; Melo, R.; Ascensão, L.; Pacheco, R.; Vaz, P.D.; Serralheiro, M.L. Effect of Food Preparations on In Vitro Bioactivities and Chemical Components of Fucus Vesiculosus. Foods 2020, 9, 955. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Galan, C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, J.; Liu, Z. Enhanced Activity of Immobilized or Chemically Modified Enzymes. ACS Catal. 2015, 5, 4503–4513. [Google Scholar] [CrossRef]
- Yin, Y.; Xiao, Y.; Lin, G.; Xiao, Q.; Lin, Z.; Cai, Z. An Enzyme–Inorganic Hybrid Nanoflower Based Immobilized Enzyme Reactor with Enhanced Enzymatic Activity. J. Mater. Chem. B 2015, 3, 2295–2300. [Google Scholar] [CrossRef]
- Prikryl, P.; Lenfeld, J.; Horak, D.; Ticha, M.; Kucerova, Z. Magnetic Bead Cellulose as a Suitable Support for Immobilization of α-Chymotrypsin. Appl. Biochem. Biotechnol. 2012, 168, 295–305. [Google Scholar] [CrossRef]
- Babick, F. Dynamic Light Scattering (DLS). In Characterization of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 137–172. ISBN 978-0-12-814182-3. [Google Scholar]
- Trindade Ximenes, I.A.; de Oliveira, P.C.O.; Wegermann, C.A.; de Moraes, M.C. Magnetic Particles for Enzyme Immobilization: A Versatile Support for Ligand Screening. J. Pharm. Biomed. Anal. 2021, 204, 114286. [Google Scholar] [CrossRef]
- Sahoo, B.; Sahu, S.K.; Pramanik, P. A Novel Method for the Immobilization of Urease on Phosphonate Grafted Iron Oxide Nanoparticle. J. Mol. Catal. B Enzym. 2011, 69, 95–102. [Google Scholar] [CrossRef]
- Poorakbar, E.; Shafiee, A.; Saboury, A.A.; Rad, B.L.; Khoshnevisan, K.; Ma’mani, L.; Derakhshankhah, H.; Ganjali, M.R.; Hosseini, M. Synthesis of Magnetic Gold Mesoporous Silica Nanoparticles Core Shell for Cellulase Enzyme Immobilization: Improvement of Enzymatic Activity and Thermal Stability. Process Biochem. 2018, 71, 92–100. [Google Scholar] [CrossRef]
- Vauthier, M.; Schmutz, M.; Serra, C.A. One-Step Elaboration of Janus Polymeric Nanoparticles: A Comparative Study of Different Emulsification Processes. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127059. Available online: https://www.sciencedirect.com/science/article/pii/S0927775721009286 (accessed on 8 November 2023). [CrossRef]
- Heydari, H.; Golmohammadi, R.; Mirnejad, R.; Tebyanian, H.; Fasihi-Ramandi, M.; Moghaddam, M.M. Antiviral Peptides against Coronaviridae Family: A Review. Peptides 2021, 139, 170526. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.-R.; Huang, H.; Huang, Y.-D.; Rao, C.-M.; Zhao, Y.; Liu, J.-S.; Wu, L.; Wei, D.-Q. Synthesis and Activity of an Octapeptide Inhibitor Designed for SARS Coronavirus Main Proteinase. Peptides 2006, 27, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Akaji, K.; Konno, H.; Mitsui, H.; Teruya, K.; Shimamoto, Y.; Hattori, Y.; Ozaki, T.; Kusunoki, M.; Sanjoh, A. Structure-Based Design, Synthesis, and Evaluation of Peptide-Mimetic SARS 3CL Protease Inhibitors. J. Med. Chem. 2011, 54, 7962–7973. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Xiong, Y.; Zhu, G.; Zhang, Y.; Zhang, Y.; Huang, P.; Ge, G. The SARS-CoV-2 Main Protease (Mpro): Structure, Function, and Emerging Therapies for COVID-19. MedComm 2022, 3, e151. [Google Scholar] [CrossRef]
- Hubbard, R.E.; Kamran Haider, M. Hydrogen Bonds in Proteins: Role and Strength. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2010; ISBN 978-0-470-01617-6. [Google Scholar]
- Amin, S.A.; Banerjee, S.; Ghosh, K.; Gayen, S.; Jha, T. Protease Targeted COVID-19 Drug Discovery and Its Challenges: Insight into Viral Main Protease (Mpro) and Papain-like Protease (PLpro) Inhibitors. Bioorganic Med. Chem. 2021, 29, 115860. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, A.T.; Damoc, E.; Makarov, A.A.; Samgina, T.Y. Discrimination of Leucine and Isoleucine in Peptides Sequencing with Orbitrap Fusion Mass Spectrometer. Anal. Chem. 2014, 86, 7017–7022. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.L.; Collin, O.L.; Jackson, G.P. Metastable Atom-activated Dissociation Mass Spectrometry: Leucine/Isoleucine Differentiation and Ring Cleavage of Proline Residues. J. Mass Spectrom. 2009, 44, 1211–1223. [Google Scholar] [CrossRef]
- Boudrant, J.; Woodley, J.M.; Fernandez-Lafuente, R. Parameters Necessary to Define an Immobilized Enzyme Preparation. Process Biochem. 2020, 90, 66–80. [Google Scholar] [CrossRef]
- Albarghouthi, M.; Fara, D.A.; Saleem, M.; El-Thaher, T.; Matalka, K.; Badwan, A. Immobilization of Antibodies on Alginate-Chitosan Beads. Int. J. Pharm. 2000, 206, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.H.; Jung, J.-H.; Kim, M.-K.; Lim, S.; Choi, J.-M.; Chung, B.; Kim, D.-W.; Kim, D. The Inhibitory Effects of Plant Derivate Polyphenols on the Main Protease of SARS Coronavirus 2 and Their Structure–Activity Relationship. Molecules 2021, 26, 1924. [Google Scholar] [CrossRef] [PubMed]
- Miranda de Souza Duarte-Filho, L.A.; Ortega de Oliveira, P.C.; Yanaguibashi Leal, C.E.; de Moraes, M.C.; Picot, L. Ligand Fishing as a Tool to Screen Natural Products with Anticancer Potential. J. Sep. Sci. 2023, 46, 2200964. [Google Scholar] [CrossRef] [PubMed]
- Roepstorff, P.; Fohlman, J. Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides. Biomed. Mass Spectrom. 1984, 11, 601. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible docking 1. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [PubMed]
- Liebeschuetz, J.W.; Cole, J.C.; Korb, O. Pose Prediction and Virtual Screening Performance of GOLD Scoring Functions in a Standardized Test. J. Comput. Aided Mol. Des. 2012, 26, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Maupetit, J.; Derreumaux, P.; Tufféry, P. Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. J. Chem. Theory Comput. 2014, 10, 4745–4758. [Google Scholar] [CrossRef]
- Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to the APBS Biomolecular Solvation Software Suite. Protein Sci. 2018, 27, 112–128. [Google Scholar] [CrossRef]
- Skwarecki, A.S.; Nowak, M.G.; Milewska, M.J. Amino Acid and Peptide-Based Antiviral Agents. ChemMedChem 2021, 16, 3106–3135. [Google Scholar] [CrossRef]
PDI | Zeta Potential (mV) | Mean Particle Size (nm) | |
---|---|---|---|
MP | 0.1622 ± 0.026 | −35.06 ± 0.493 | 1311.72 ± 6.58 |
3CLpro-MP | 0.1298 ± 0.058 | −35.06 ± 0.321 | 1535.65 ± 5.12 |
Ligand | Score |
---|---|
Co-crystallographic peptide ligand (Ac-SAVLH) | 83.11 |
PEP 1 (VVGVVVY) | 93.91 |
PEP 2 (VEIEFFKY) | 113.37 |
PEP 3 (VELEFFKY) | 100.73 |
PEP 4 (EVIEFFKYIE) | 121.87 |
PEP 5 (EVLEFFKYIE) | 106.07 |
PEP 6 (EVIEFFKYLE) | 103.18 |
PEP 7 (EVLEFFKYLE) | 99.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte Filho, L.A.M.d.S.; Yanaguibashi Leal, C.E.; Bodet, P.-E.; Beserra de Alencar Filho, E.; Almeida, J.R.G.d.S.; Porta Zapata, M.; Achour, O.; Groult, H.; Gouveia Veloso, C.A.; Viegas Júnior, C.; et al. The Identification of Peptide Inhibitors of the Coronavirus 3CL Protease from a Fucus ceranoides L. Hydroalcoholic Extract Using a Ligand-Fishing Strategy. Mar. Drugs 2024, 22, 244. https://doi.org/10.3390/md22060244
Duarte Filho LAMdS, Yanaguibashi Leal CE, Bodet P-E, Beserra de Alencar Filho E, Almeida JRGdS, Porta Zapata M, Achour O, Groult H, Gouveia Veloso CA, Viegas Júnior C, et al. The Identification of Peptide Inhibitors of the Coronavirus 3CL Protease from a Fucus ceranoides L. Hydroalcoholic Extract Using a Ligand-Fishing Strategy. Marine Drugs. 2024; 22(6):244. https://doi.org/10.3390/md22060244
Chicago/Turabian StyleDuarte Filho, Luiz Antonio Miranda de Souza, Cintia Emi Yanaguibashi Leal, Pierre-Edouard Bodet, Edilson Beserra de Alencar Filho, Jackson Roberto Guedes da Silva Almeida, Manon Porta Zapata, Oussama Achour, Hugo Groult, Carlos Arthur Gouveia Veloso, Claudio Viegas Júnior, and et al. 2024. "The Identification of Peptide Inhibitors of the Coronavirus 3CL Protease from a Fucus ceranoides L. Hydroalcoholic Extract Using a Ligand-Fishing Strategy" Marine Drugs 22, no. 6: 244. https://doi.org/10.3390/md22060244
APA StyleDuarte Filho, L. A. M. d. S., Yanaguibashi Leal, C. E., Bodet, P. -E., Beserra de Alencar Filho, E., Almeida, J. R. G. d. S., Porta Zapata, M., Achour, O., Groult, H., Gouveia Veloso, C. A., Viegas Júnior, C., Bourgougnon, N., & Picot, L. (2024). The Identification of Peptide Inhibitors of the Coronavirus 3CL Protease from a Fucus ceranoides L. Hydroalcoholic Extract Using a Ligand-Fishing Strategy. Marine Drugs, 22(6), 244. https://doi.org/10.3390/md22060244