Optimizing the Extraction of Bioactive Compounds from Porphyra linearis (Rhodophyta): Evaluating Alkaline and Enzymatic Hydrolysis for Nutraceutical Applications
Abstract
:1. Introduction
2. Results
2.1. Response Surface Model
2.2. Effects on the Quantification of Photosynthetic Pigments: Phycobiliproteins
2.3. Effects on the Quantification of Polyphenols, Proteins, and Carbohydrates
2.4. Effects on the Profiles of Mycosporine-like Amino Acids (MAAs)
2.5. Effects on Antioxidant Activity (ABTS Assay)
2.6. Comparison between the Optimal Extractions from Alkaline and Enzymatic Hydrolysis Tests
2.7. Comparison between the Optimal Extractions from the Present Study and other References with Good Extraction Results for PE, Phenols, and MAAs
2.8. Principal Component Analysis and Analyses of BACs from P. linearis Extracts Based on Alkaline and Enzymatic Hydrolysis Tests
Compound | Specie | Concentration (mg·g−1) | Extraction Solvent | GHS (Safety) | Protocol | Costs | Reference |
---|---|---|---|---|---|---|---|
PE | Porphyra linearis | 4.12 ± 0.45 | Sodium carbonate 2.5% in water | 0 | 1.5 h at 80 °C | + | present study |
Porphyra linearis | 12.20 ± 3.70 | ‘Miura’ cocktail in sodium citrate buffer 0.1 M, pH 4.5 | 0 | 2 h at 28 °C | ++ | present study | |
Porphyra spp. | 8.32 ± 0.29 | Phosphate buffer (pH = 6.8) | 0 | 15 min of centrifugation | + | [60] | |
Porphyra leucosticta | 6.11 ± 0.39 | N,N-dimethylformamide | 4 | 24 h at 4 °C | + | [61] | |
Polyphenols | Porphyra linearis | 3.53 ± 0.64 | Sodium carbonate 2.5% in water | 0 | 1.5 h at 80 °C | + | present study |
Porphyra linearis | 3.08 ± 0.22 | ‘Miura’ cocktail in sodium citrate buffer 0.1 M, pH 4.5 | 0 | 2 h at 28 °C | ++ | present study | |
Pyropia acanthophora var. brasiliensis | 9.09 ± 0.34 | 80% Methanol | 3 | 1 h at room temperature | ++ | [62] | |
Porphyra umbilicalis | 15.50 ± 0.50 | 70% Acetone | 3 | 24 h at 4 °C | ++ | [63] | |
MAAs | Porphyra linearis | 20.25 ± 4.80 | Water | 0 | 1.5 h at 80 °C | + | present study |
Porphyra linearis | 20.75 ± 0.05 | ‘Miura’ cocktail in sodium citrate buffer 0.1 M, pH 4.5 | 0 | 2 h at 28 °C | ++ | present study | |
Porphyra umbilicalis | approx. 10.00 | 20% Methanol | 3 | 2 h at 45 °C and 10 min of centrifugation at 4 °C, evaporated in a vacuum centrifuge for 24 h, and redissolved in 100% methanol | +++ | [64] | |
Porphyra umbilicalis | approx. 15.00 | 20% Methanol | 3 | 2.5 h at 45 °C, redissolved in 100% methanol, evaporated to dryness at 45 °C, and redissolved in distilled water | +++ | [65] | |
Porphyra columbina | 10.60 | 20% Methanol | 3 | 2 h at 45 °C and 10 min of centrifugation at 4 °C, evaporated in a vacuum centrifuge for 24 h, and redissolved in 100% methanol | +++ | [66] | |
Porphyra haitanensis | approx. 8.00 | 100% Methanol | 3 | 24 h at 4 °C | ++ | [67] | |
Pyropia columbina | 10.40 ± 1.10 | 20% Methanol | 3 | 2.5 h at 45 °C, redissolved in 100% methanol, evaporated to dryness at 45 °C, and redissolved in distilled water | +++ | [68] | |
Pyropia acanthophora | 6.65 | 20% Methanol | 3 | 2 h at 45 °C and 10 min of centrifugation at 4 °C, evaporated in a vacuum centrifuge for 24 h, and redissolved in 100% methanol | +++ | [69] | |
Porphyra umbilicalis | 5.20 ± 0.40 | Water | 3 | Extracts dried under vacuum, and re-suspended in 100% methanol | ++ | [70] |
3. Discussion
4. Materials and Methods
4.1. Biological Material
4.2. Alkaline Hydrolysis
4.3. Enzymatic Hydrolysis
4.4. Determination of Bioactive Compounds (BACs)
4.4.1. Phycobiliproteins
4.4.2. Soluble Proteins
4.4.3. Soluble Polyphenols
4.4.4. Soluble Carbohydrates
4.4.5. Mycosporine-like Amino Acids (MAAs)
4.5. Antioxidant Activity
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Sahoo, D.; Tang, X.; Yarish, C. Porphyra—The economic seaweed as a new experimental system. Curr. Sci. 2002, 83, 1313–1316. [Google Scholar]
- Blouin, N.A.; Brodie, J.A.; Grossman, A.C.; Xu, P.; Brawley, S.H. Porphyra: A marine crop shaped by stress. Trends Plant Sci. 2011, 16, 29–37. [Google Scholar] [CrossRef]
- Cao, J.; Wang, J.; Wang, S.; Xu, X. Porphyra species: A mini-review of its pharmacological and nutritional properties. J. Med. Food 2016, 19, 111–119. [Google Scholar] [CrossRef]
- Venkatraman, K.L.; Mehta, A. Health benefits and pharmacological effects of Porphyra species. Plant Foods Hum. Nutr. 2019, 74, 10–17. [Google Scholar] [CrossRef]
- Vega, J.; Álvarez-Gómez, F.; Güenaga, L.; Figueroa, F.L.; Gómez-Pinchetti, J.L. Antioxidant activity of extracts from marine macroalgae, wild-collected and cultivated, in an integrated multi-trophic aquaculture system. Aquaculture 2020, 522, 735088. [Google Scholar] [CrossRef]
- Figueroa, F.L. Mycosporine-like aminoacids form marine resource. Mar. Drugs 2021, 18, 27. [Google Scholar]
- Pagels, F.; Guedes, A.C.; Amaro, H.M.; Kijjoa, A.; Vasconcelos, V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnol. Adv. 2019, 37, 422–443. [Google Scholar] [CrossRef]
- Benedetti, S.; Benvenuti, F.; Pagliarani, S.; Francogli, S.; Scoglio, S.; Canestrari, F. Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci. 2004, 75, 2353–2362. [Google Scholar] [CrossRef] [PubMed]
- Fratelli, C.; Burck, M.; Amarante, M.C.A.; Braga, A.R.C. Antioxidant potential of nature's “something blue”: Something new in the marriage of biological activity and extraction methods applied to C-phycocyanin. Trends Food Sci. Technol. 2021, 107, 309–323. [Google Scholar] [CrossRef]
- Ismail, G.A.; El-Sheekh, M.M.; Samy, R.M.; Gheda, S.F. Antimicrobial, antioxidant, and antiviral activities of biosynthesized silver nanoparticles by phycobiliprotein crude extract of the cyanobacteria Spirulina platensis and Nostoc linckia. Bionanoscience 2021, 11, 355–370. [Google Scholar] [CrossRef]
- Que, Z. Oral Medicament of Viral Infection Preventing Agent. CN Patent 1524574, 1 September 2004. [Google Scholar]
- Chueh, C.C. Method of Allophycocyanin Inhibition of Enterovirus and Influenza Virus Reproduction Resulting in Cytopathic Effect. U.S. Patent 6,346,408, 12 February 2002. [Google Scholar]
- Li, W.; Su, H.N.; Pu, Y.; Chen, J.; Liu, L.N.; Liu, Q.; Qin, S. Phycobiliproteins: Molecular structure, production, applications, and prospects. Biotechnol. Adv. 2019, 37, 340–353. [Google Scholar] [CrossRef] [PubMed]
- Braune, S.; Krüger-Genge, A.; Kammerer, S.; Jung, F.; Küpper, J.H. Phycocyanin from Arthrospira platensis as potential anti-cancer drug: Review of in vitro and in vivo studies. Life 2021, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, G.; Sampathkumar, P.; Kavisri, M.; Moovendhan, M. Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. Int. J. Biol. Macromol. 2020, 153, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Romay, C.; Gonzalez, R.; Ledon, N.; Remirez, D.; Rimbau, V. C-phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr. Protein Pept. Sci. 2003, 4, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Wu, Y.; Wang, G.; Jia, T.; Zhang, Y. Purification and bioactivities of phycocyanin. Crit. Rev. Food Sci. Nutr. 2017, 57, 3840–3849. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.W.; Yang, T.S.; Chen, M.J.; Chang, Y.C.; Wang, I.C.; Ho, C.L.; Lai, Y.J.; Yu, C.C.; Chou, J.C.; Chao, L.K.; et al. Purification and immunomodulating activity of C-phycocyanin from Spirulina platensis cultured using power plant flue gas. Process. Biochem. 2014, 49, 1337–1344. [Google Scholar] [CrossRef]
- Min, S.K.; Park, J.S.; Luo, L.; Kwon, Y.S.; Lee, H.C.; Shim, H.J.; Kim, I.D.; Lee, J.K.; Shin, H.S. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model. Sci. Rep. 2015, 5, 14418. [Google Scholar] [CrossRef] [PubMed]
- Gammoudi, S.; Athmouni, K.; Nasri, A.; Diwani, N.; Grati, I.; Belhaj, D.; Bouaziz-Ketata, H.; Fki, L.; Feki, A.E.; Ayadi, H. Optimization, isolation, characterization and hepatoprotective effect of a novel pigment-protein complex (phycocyanin) producing microalga: Phormidium versicolor NCC-466 using response surface methodology. Int. J. Biol. Macromol. 2019, 137, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Kuskoski, E.M.; Fett, R.; Asuero, A.G.; Troncoso, A.M. Propiedades químicas y farmacológicas del fruto guaraná (Paullinia cupana). Vitae 2005, 12, 45–52. [Google Scholar]
- Amsler, C.D.; Fairhead, V.A. Defensive and sensory chemical ecology of brown algae. Adv. Bot. Res. 2006, 43, 1–91. [Google Scholar]
- Kazłowska, K.; Hsu, T.; Hou, C.C.; Yang, W.C.; Tsai, G.J. Anti-inflammatory properties of phenolic compounds and crude extract from Porphyra dentata. J. Ethnopharmacol 2010, 128, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Sushanth, V.R.; Rajashekhar, M. Antioxidant and antimicrobial activities in the four species of marine microalgae isolated from Arabian Sea of Karnataka Coast. Indian J. GeoMarine Sci. 2015, 44, 69–75. [Google Scholar]
- Hwang, E.S.; Do Thi, N. Effects of extraction and processing methods on antioxidant compound contents and radical scavenging activities of laver (Porphyra tenera). Prev. Nutr. Food Sci. 2014, 19, 40. [Google Scholar] [CrossRef] [PubMed]
- Naveen, J.; Baskaran, R.; Baskaran, V. Profiling of bioactives and in vitro evaluation of antioxidant and antidiabetic property of polyphenols of marine algae Padina tetrastromatica. Algal Res. 2021, 55, 102250. [Google Scholar] [CrossRef]
- Custódio, L.; Soares, F.; Pereira, H.; Barreira, L.; Vizetto-Duarte, C.; Rodrigues, M.J.; Rauter, A.P.; Alberício, F.; Varela, J. Fatty acid composition and biological activities of Isochrysis galbana T-ISO, Tetraselmis sp. and Scenedesmus sp.: Possible application in the pharmaceutical and functional food industries. J. Appl. Phycol. 2014, 26, 151–161. [Google Scholar]
- Wang, H.; Ki, J.S. Molecular identification, differential expression and protective roles of iron/manganese superoxide dismutases in the green algae Closterium ehrenbergii against metal stress. Eur. J. Protistol. 2020, 74, 125689. [Google Scholar] [CrossRef] [PubMed]
- Lang, K.L. Investigação Química e Biológica da Alga Vermelha Acanthophora spicifera (Vahl) Borgesen. Ph.D Thesis, Federal University of Santa Catarina, Florianópolis, Brazil, 2006. [Google Scholar]
- Zhou, C.; Yu, X.; Zhang, Y.; He, R.; Ma, H. Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea. Carbohydr. Polym. 2012, 87, 2046–2051. [Google Scholar] [CrossRef]
- Khan, B.M.; Qiu, H.M.; Xu, S.Y.; Liu, Y.; Cheong, K.L. Physicochemical characterization and antioxidant activity of sulphated polysaccharides derived from Porphyra haitanensis. Int. J. Biol. Macromol. 2020, 145, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.F.; Li, Y.T.; Xia, W.; Wang, C.; Xie, Y.Y.; Wang, Y.B.; Zhou, T.; Fu, L.L. Degraded polysaccharides from Porphyra haitanensis: Purification, physico-chemical properties, antioxidant and immunomodulatory activities. Glycoconj. J. 2021, 38, 573–583. [Google Scholar] [CrossRef]
- Wang, F.; Kong, L.M.; Xie, Y.Y.; Wang, C.; Wang, X.L.; Wang, Y.B.; Fu, L.L.; Zhou, T. Purification, structural characterization, and biological activities of degraded polysaccharides from Porphyra yezoensis. J. Food Biochem. 2021, 45, 13661. [Google Scholar] [CrossRef]
- Meitian, X.; Junling, Y.; Haiying, L.; Fengxiang, T.; Chun, M.; Xianai, S.; Yanghao, G. Extraction of Porphyra haitanensis polysaccharides and its anti-influenza virus activity. J. Fuzhou Univ. 2003, 5, 631–635. [Google Scholar]
- Liu, Z.; Gao, T.; Yang, Y.; Meng, F.; Zhan, F.; Jiang, Q.; Sun, X. Anti-cancer activity of porphyran and carrageenan from red seaweeds. Molecules 2019, 24, 4286. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhou, C.; Yang, H.; Huang, X.; Ma, H.; Qin, X.; Hu, J. Effect of ultrasonic treatment on the degradation and inhibition cancer cell lines of polysaccharides from Porphyra yezoensis. Carbohydr. Polym. 2015, 117, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.T.; Xu, H.L.; Zhang, L.X.; Zhang, J.P.; Guo, Y.F.; Gu, J.W.; He, P.M. In vivo protective effect of Porphyra yezoensis polysaccharide against carbon tetrachloride induced hepatotoxicity in mice. Regul. Toxicol. Pharm. 2007, 49, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Xue, Y.T. Optimization of microwave assisted extraction, chemical characterization and antitumor activities of polysaccharides from Porphyra haitanensis. Carbohydr. Polym. 2019, 206, 179–186. [Google Scholar] [CrossRef]
- Yanagido, A.; Ueno, M.; Jiang, Z.; Cho, K.; Yamaguchi, K.; Kim, D.; Oda, T. Increase in anti-inflammatory activities of radical-degraded porphyrans isolated from discolored nori (Pyropia yezoensis). Int. J. Biol. Macromol. 2018, 117, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.X.; Chen, X.Q.; Cheong, K.L. Current trends in marine algae polysaccharides: The digestive tract, microbial catabolism, and prebiotic potential. Int. J. Biol. Macromol. 2020, 151, 344–354. [Google Scholar] [CrossRef]
- Shick, J.M.; Dunlap, W.C. Mycosporine-like amino acids and related gadusols: Biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Ann. Rev. Physiol. 2002, 64, 223–262. [Google Scholar] [CrossRef]
- Raj, S.; Kuniyil, A.M.; Sreenikethanam, A.; Gugulothu, P.; Jeyakumar, R.B.; Bajhaiya, A.K. Microalgae as a source of mycosporine-like amino acids (MAAs); advances and future prospects. Int. J. Environ. Res. Public Health 2021, 18, 12402. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Sinha, R.P. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Adv. 2009, 27, 521–539. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Kumar, A.; Tyagi, M.B.; Sinha, R.P. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010, 2010, 592980. [Google Scholar] [CrossRef] [PubMed]
- Richa, R.; Kumari, S.; Singh, K.L.; Kannaujiya, V.K.; Singh, G.; Kesheri, M.; Sinha, R.P. Biotechnological potential of mycosporine-like amino acids and phycobiliproteins of cyanobacterial origin. Biotechnol. Bioinf. Bioeng. 2011, 1, 159–171. [Google Scholar]
- Oren, A.; Gunde-Cimerman, N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol. Lett. 2007, 269, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Garg, A.; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A.P. Mycosporine and mycosporine-like amino acids: A paramount tool against ultra violet irradiation. Pharmacogn. Rev. 2011, 5, 138. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.S.; Hwang, J.; Park, M.; Seo, H.H.; Kim, H.S.; Lee, J.H.; Moh, S.H.; Lee, T.K. Anti-inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity. Mar. Drugs 2014, 12, 5174–5187. [Google Scholar] [CrossRef] [PubMed]
- Wada, N.; Sakamoto, T.; Matsugo, S. Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants 2015, 4, 603–646. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, H.; Waditee-Sirisattha, R. Antioxidative, anti-inflammatory, and anti-aging properties of mycosporine-like amino acids: Molecular and cellular mechanisms in the protection of skin-aging. Mar. Drugs 2019, 17, 222. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.V.; Westcott, N.D.; Hu, C.; Kitts, D.D. Mycosporine-like amino acid composition of the edible red alga, Palmaria palmata (dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick. Food Chem. 2009, 112, 321–328. [Google Scholar] [CrossRef]
- Athukorala, Y.; Trang, S.; Kwok, C.; Yuan, Y.V. Antiproliferative and antioxidant activities and mycosporine-like amino acid profiles of wild-harvested and cultivated edible Canadian marine red macroalgae. Molecules 2016, 21, 119. [Google Scholar] [CrossRef]
- Schmid, D.; Schürch, C.; Zülli, F. UVA-screening compounds from red algae protect against photoageing. Personal Care 2004, 1, 29–31. [Google Scholar]
- Schmid, D.; Schürch, C.; Zülli, F. Mycosporine-like amino acids from red algae protect against premature skin-aging. Euro Cosmet. 2006, 9, 1–4. [Google Scholar]
- Hartmann, A.; Gostner, J.; Fuchs, J.E.; Chaita, E.; Aligiannis, N.; Skaltsounis, L.; Ganzera, M. Inhibition of collagenase by mycosporine-like amino acids from marine sources. Planta Med. 2015, 81, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, B.G.; Jin, H.; Lee, D.; Teoh, J.Y.; Kim, Y.J.; Moh, A.H.; Yoo, D.; Choi, W.; Hahn, J.S. Efficient production of natural sunscreens shinorine, porphyra-334, and mycosporine-2-glycine in Saccharomyces cerevisiae. Metab. Eng. 2023, 78, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Mallick, N. Mycosporine-like amino acids: Algal metabolites shaping the safety and sustainability profiles of commercial sunscreens. Algal Res. 2021, 58, 10425. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Álvarez-Gómez, F.; Bonomi-Barufi, J.; Vega, J.; Massocato, T.F.; Gómez-Pinchetti, J.L.; Korbee, N. Interactive effects of solar radiation and inorganic nutrients on biofiltration, biomass production, photosynthetic activity and the accumulation of bioactive compounds in Gracilaria cornea (Rhodophyta). Algal Res. 2022, 68, 102890. [Google Scholar] [CrossRef]
- Rosic, N.; Climstein, M.; Boyle, G.M.; Thanh Nguyen, D.; Feng, Y. Exploring mycosporine-likeamino acid uv-absorbing natural products for a new generation of environmentally friendly sunscreens. Mar. Drugs 2023, 21, 253. [Google Scholar] [CrossRef] [PubMed]
- Osório, C.; Machado, S.; Peixoto, J.; Bessada, S.; Pimentel, F.B.; Alves, R.; Oliveira, M.B.P. Pigments content (chlorophylls, fucoxanthin and phycobiliproteins) of different commercial dried algae. Separations 2020, 7, 33. [Google Scholar] [CrossRef]
- Korbee, N.; Figueroa, F.L.; Aguilera, J. Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J. Photochem. Photobiol. B Biol. 2005, 80, 71–78. [Google Scholar] [CrossRef]
- Pereira, D.T.; Schmidt, É.C.; Filipin, E.P.; Pilatti, F.K.; Ramlov, F.; Maraschin, M.; Bouzon, Z.L.; Simioni, C. Effects of ultraviolet radiation on the morphophysiology of the macroalga Pyropia acanthophora var. brasiliensis (Rhodophyta, Bangiales) cultivated at high concentrations of nitrate. Acta Physiol. Plant. 2020, 42, 61. [Google Scholar]
- Tala, F.; Chow, F. Ecophysiological characteristics of Porphyra spp. (Bangiophyceae, Rhodophyta): Seasonal and latitudinal variations in northern-central Chile. J. Appl. Phycol. 2014, 26, 2159–2171. [Google Scholar] [CrossRef]
- Schneider, G.; Figueroa, F.L.; Vega, J.; Chaves, P.; Álvarez-Gómez, F.; Korbee, N.; Bonomi-Barufi, J. Photoprotection properties of marine photosynthetic organisms grown in high ultraviolet exposure areas: Cosmeceutical applications. Algal Res. 2020, 49, 101956. [Google Scholar] [CrossRef]
- Gröniger, A.; Hallier, C.; Häder, D.P. Influence of UV radiation and visible light on Porphyra umbilicalis: Photoinhibition and MAA concentration. J. Appl. Phycol. 1999, 11, 437–445. [Google Scholar] [CrossRef]
- Huovinen, P.; Gómez, I.; Figueroa, F.L.; Ulloa, N.; Morales, V.; Lovengreen, C. Ultraviolet-absorbing mycosporine-like aminoacids in red macroalgae from Chile. Bot. Mar. 2004, 47, 21–29. [Google Scholar] [CrossRef]
- Jiang, H.; Gao, K.; Helbling, E.W. UV-absorbing compounds in Porphyra haitanensis (Rhodophyta) with special reference to effects of desiccation. J. Appl. Phycol. 2008, 20, 387–395. [Google Scholar] [CrossRef]
- Navarro, N.P.; Mansilla, A.; Figueroa, F.L.; Korbee, N.; Jofre, J.; Plastino, E. Short-term effects of solar UV radiation and NO3-supply on the accumulation of mycosporine-like amino acids in Pyropia columbina (Bangiales, Rhodophyta) under spring ozone depletion in the sub-Antarctic region, Chile. Bot. Mar. 2014, 57, 9–20. [Google Scholar] [CrossRef]
- Briani, B.; Sissini, M.N.; Lucena, L.A.; Batista, M.B.; Costa, I.O.; Nunes, J.M.C.; Schmitz, C.; Ramlov, F.; Maraschin, M.; Korbee, N.K.; et al. Mycosporine like amino acids (MAAs) in red marine algae and their relations with abiotic factors along southern Atlantic coast. J. Phycol. 2018, 50, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Vega, J.; Bonomi-Barufi, J.; Gómez-Pinchetti, J.L.; Figueroa, F.L. Cyanobacteria and red macroalgae as potential source of antioxidants and UV radiation absorbing compounds for cosmeceutical applications. Mar. Drugs 2020, 18, 659. [Google Scholar] [CrossRef] [PubMed]
- Frei, E.; Preston, R.D. Non-cellulosic structural polysaccharides in algal cell walls-II. Association of xylan and mannan in Porphyra umbilicalis. Proc. R. Socie. London. Series B Biol. Sci. 1964, 160, 314–327. [Google Scholar]
- Siegel, B.Z.; Siegel, S.M. The chemical composition of algal cell walls. Crit. Rev. Microbiol. 1973, 3, 1–26. [Google Scholar] [CrossRef]
- Baldan, B.; Andolfo, P.; Navazio, L.; Tolomio, C.; Mariani, P. Cellulose in algal cell wall: An “in situ” localization. Eur. J. Histochem. 2001, 45, 51–56. [Google Scholar] [CrossRef]
- Hemmingson, J.A.; Nelson, W.A. Cell wall polysaccharides are informative in Porphyra species taxonomy. J. Appl. Phycol. 2002, 14, 357–364. [Google Scholar] [CrossRef]
- Huang, Y.; Hong, A.; Zhang, D.; Li, L. Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris. Environ. Technol. 2014, 35, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Michalak, I.; Chojnacka, K. Algal extracts: Technology and advances. Eng. Life Sci. 2014, 14, 581–591. [Google Scholar] [CrossRef]
- D’hondt, E.; Martin-Juarez, J.; Bolado, S.; Kasperoviciene, J.; Koreiviene, J.; Sulcius, S.; Elst, K.; Bastiaens, L. Cell disruption technologies. In Microalgae-Based Biofuels and Bioproducts; Woodhead Publishing: Sawston, UK, 2017; Volume 1, pp. 133–154. [Google Scholar]
- Parmar, A.; Singh, N.K.; Dhoke, R.; Madamwar, D. Influence of light on phycobiliprotein production in three marine cyanobacterial cultures. Acta Physiol. Plant. 2013, 35, 1817–1826. [Google Scholar] [CrossRef]
- Devi, S.; Dhaka, A.; Singh, J. Acid and alkaline hydrolysis technologies for bioethanol production: An overview. Int. J. Adv. Technol. Eng. Sci. 2016, 4, 94–106. [Google Scholar]
- Lorenzo-Hernando, A.; Ruiz-Vegas, J.; Vega-Alegre, M.; Bolado-Rodríguez, S. Recovery of proteins from biomass grown in pig manure microalgae-based treatment plants by alkaline hydrolysis and acidic precipitation. Bioresour. Technol. 2019, 273, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Kannaujiya, V.K.; Sundaram, S.; Sinha, R.P.; Kannaujiya, V.K.; Sundaram, S.; Sinha, R.P. Structural and functional significance of phycobiliproteins. In Phycobiliproteins Recent Development and Future Applications, 1st ed.; Springer: Singapore, 2017; pp. 21–44. [Google Scholar]
- Figueroa, F.L.; Aguilera, J.; Niell, F.X. Red and blue light regulation of growth and photosynthetic metabolism in Porphyra umbilicalis (Bangiales, Rhodophyta). Eur. J. Phycol. 1995, 30, 11–18. [Google Scholar] [CrossRef]
- Korbee, N.; Huovinen, P.; Figueroa, F.L.; Aguilera, J.; Karsten, U. Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar. Biol. 2005, 146, 645–654. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, H.; Zhi, Z.; Zhang, H.; Linhardt, R.J.; Zhang, F.; Chen, S.; Ye, X. Extraction temperature is a decisive factor for the properties of pectin. Food Hydrocol. 2021, 112, 106160. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Ummat, V.; Tiwari, B.; Rajauria, G. Exploring ultrasound, microwave and ultrasound–microwave assisted extraction technologies to increase the extraction of bioactive compounds and antioxidants from brown macroalgae. Mar. Drugs 2020, 18, 172. [Google Scholar] [CrossRef]
- Onofrejová, L.; Vašíčková, J.; Klejdus, B.; Stratil, P.; Mišurcová, L.; Kráčmar, S.; Kopecky, J.; Vacek, J. Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. J. Pharm. Biomed. Anal 2010, 51, 464–470. [Google Scholar] [CrossRef]
- De Quiros, A.R.B.; Lage-Yusty, M.A.; López-Hernández, J. Determination of phenolic compounds in macroalgae for human consumption. Food Chem. 2010, 121, 634–638. [Google Scholar] [CrossRef]
- Machu, L.; Misurcova, L.; Vavra Ambrozova, J.; Orsavova, J.; Mlcek, J.; Sochor, J.; Jurikova, T. Phenolic content and antioxidant capacity in algal food products. Molecules 2015, 20, 1118–1133. [Google Scholar] [CrossRef]
- de la Coba, F.; Aguilera, J.; Korbee, N.; de Gálvez, M.V.; Herrera-Ceballos, E.; Álvarez-Gómez, F.; Figueroa, F.L. UVA and UVB photoprotective capabilities of topical formulations containing mycosporine-like amino acids (MAAs) through different biological effective protection factors (BEPFs). Mar. Drugs 2019, 17, 55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tashiro, Y.; Matsukawa, S.; Ogawa, H. Influence pH and temperature on the ultraviolet-absorbing properties of poorphyra-334. Fish. Sci. 2005, 71, 1382–1384. [Google Scholar] [CrossRef]
- Conde, F.R.; Churio, M.S.; Previtali, C.M. Experimental study of the excited-state properties and photostability of the mycosporine-like amino acid and palythine in aqueous solution. Photochem. Photobiol. Sci. 2007, 6, 669–674. [Google Scholar] [CrossRef]
- Sinha, R.P.; Klisch, M.; Gröniger, A.; Häder, D.P. Mycosporine like amino acids in the marine red alga Gracilaria cornea—Effects of UV and heat. Environ. Exp. Bot. 2000, 43, 33–43. [Google Scholar] [CrossRef]
- Starr, R.C.; Zeikus, J.A. UTEX—The culture collection of algae at the University of Texas at Austin. J. Phycol. 1987, 29, 1–106. [Google Scholar] [CrossRef]
- Boedeker, C.; Karsten, U. The occurrence of mycosporine-like amino acids in the gametophytic and sporophytic stages of Bangia (Bangiales, Rhodophyta). Phycologia 2005, 44, 403–408. [Google Scholar] [CrossRef]
- Friedlander, S.F.; Melton, L.D.; Brown, M.T. Ascorbic acid in the New Zealand seaweeds Porphyra columbina Mont. & Porphyra subtumens J. Ag. (Rhodophyceae). Jpn. J. Phycol 1989, 37, 295–301. [Google Scholar]
- Ferraces-Casais, P.; Lage-Yusty, M.A.; Rodríguez-Bernaldo de Quirós, A.; López-Hernández, J. Evaluation of bioactive compounds in fresh edible seaweeds. Food Anal. Methods 2012, 5, 828–834. [Google Scholar] [CrossRef]
- Peinado, N.K.; Abdala Díaz, R.T.; Figueroa, F.L.; Helbling, E.W. Ammonium and UV radiation stimulate the accumulation of mycosporine-like amino acids in Porphyra columbina (Rhodophyta) from Patagonia, Argentina. J. Phycol. 2004, 40, 248–259. [Google Scholar] [CrossRef]
- Kursar, T.A.; Van der Meer, J.; Alberte, R.S. Light-harvesting system of the red alga Gracilaria tikvahiae. I. Biochemical analyses of pigment mutations. Plant Physiol. 1983, 73, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Umbreit, W.W.; Burris, R.H. Method for glucose determination and other sugars. In Manometric Techniques, 1st ed.; Burgess Publishing Co.: Minneapolis, MN, USA, 1964; 132p. [Google Scholar]
- Chaves-Peña, P.; De La Coba, F.; Figueroa, F.L.; Korbee, N. Quantitative and qualitative HPLC analysis of mycosporine-like amino acids extracted in distilled water for cosmetical uses in four Rhodophyta. Mar. Drugs 2020, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Vega, J.; Bárcenas-Pérez, D.; Fuentes-Ríos, D.; López-Romero, J.M.; Hrouzek, P.; Figueroa, F.L.; Cheel, J. Isolation of mycosporine-like amino acids from red macroalgae and a marine lichen by high-performance countercurrent chromatography: A strategy to obtain biological UV-filters. Mar. Drugs 2023, 21, 357. [Google Scholar] [CrossRef] [PubMed]
- Karsten, U.; Sawall, T.; Hanelt, D.; Bischof, K.; Figueroa, F.L.; Flores-Moya, A.; Wiencke, C. An inventory of UV-absorbing mycosporine-like amino acids in macroalgae from polar to warm-temperate regions. Bot. Mar. 1998, 41, 443–453. [Google Scholar] [CrossRef]
- La Barre, S.; Roullier, C.; Boustie, J. Mycosporine-like amino acids (MAAs) in biological photosystems. In Outstanding Marine Molecules; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 333–360. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Treatments | PE (mg·g−1DW) | PC (mg·g−1DW) |
---|---|---|
Water; 45 °C | 4.44 ± 0.53 a | 0.75 ± 0.08 bcd |
Water; 80 °C | 3.56 ± 0.34 abc | 0.64 ± 0.12 bcd |
Alkaline Hydrolysis (1%); 45 °C | 3.04 ± 0.16 bcd | 0.73 ± 0.02 bcd |
Alkaline Hydrolysis (1%); 80 °C | 3.64 ± 0.96 abc | 0.87 ± 0.17 abc |
Alkaline Hydrolysis (2.5%); 45 °C | 2.39 ± 0.25 cde | 0.59 ± 0.03 cd |
Alkaline Hydrolysis (2.5%); 80 °C | 4.12 ± 0.45 ab | 1.10 ± 0.15 ab |
Alkaline Hydrolysis (5.25%); 45 °C | 1.32 ± 0.03 ef | 0.37 ± 0.04 d |
Alkaline Hydrolysis (5.25%); 80 °C | 4.29 ± 0.54 ab | 1.24 ± 0.24 a |
Alkaline Hydrolysis (10.5%); 45 °C | 0.78 ± 0.37 f | 0.27 ± 0.17 d |
Alkaline Hydrolysis (10.5%); 80 °C | 1.73 ± 0.06 def | 0.66 ± 0.34 bcd |
Enzymatic Hydrolysis; Control | 3.67 ± 1.76 | 3.26 ± 1.19 |
Enzymatic Hydrolysis; Miura | 12.20 ± 3.70 * | 6.71 ± 1.69 * |
Treatments | Phenols (mg·g−1DW) | Proteins (mg·g−1DW) | Carbohydrates (mg·g−1DW) |
---|---|---|---|
Water; 45 °C | 1.37 ± 0.07 bc | 3.57 ± 0.40 cd | 40.35 ± 7.98 e |
Water; 80 °C | 2.10 ± 0.19 b | 1.39 ± 0.16 f | 49.25 ± 2.63 de |
Alkaline Hydrolysis (1%); 45 °C | 1.09 ± 0.40 c | 2.47 ± 0.61 ef | 69.48 ± 8.40 c |
Alkaline Hydrolysis (1%); 80 °C | 3.19 ± 0.41 a | 4.91 ± 0.24 ab | 65.07 ± 7.47 cd |
Alkaline Hydrolysis (2.5%); 45 °C | 1.71 ± 0.47 bc | 2.91 ± 0.57 de | 56.52 ± 7.20 cde |
Alkaline Hydrolysis (2.5%); 80 °C | 3.53 ± 0.64 a | 5.63 ± 0.40 a | 116.50 ± 5.98 a |
Alkaline Hydrolysis (5.25%); 45 °C | 1.61 ± 0.21 bc | 2.85 ± 0.25 de | 61.49 ± 8.73 cd |
Alkaline Hydrolysis (5.25%); 80 °C | 2.09 ± 0.25 b | 4.47 ± 0.48 bc | 112.32 ± 6.41 a |
Alkaline Hydrolysis (10.5%); 45 °C | 1.45 ± 0.10 bc | 2.02 ± 0.10 ef | 61.84 ± 7.07 cd |
Alkaline Hydrolysis (10.5%); 80 °C | 1.97 ± 0.14 bc | 2.64 ± 0.19 de | 89.51 ± 7.53 b |
Enzymatic Hydrolysis; Control | 1.81 ± 0.17 | 24.17 ± 6.12 | 87.97 ± 17.34 |
Enzymatic Hydrolysis; Miura | 3.08 ± 0.22 * | 55.63 ± 7.31 * | 192.07 ± 24.60 * |
Treatments | Palythine (mg·g−1DW) | Asterina-330 (mg·g−1DW) | Shinorine (mg·g−1DW) | Porphyra-334 (mg·g−1DW) | Total MAAs (mg·g−1DW) |
---|---|---|---|---|---|
Water; 45 °C | - | - | 0.92 ± 0.04 a | 14.13 ± 1.18 b | 15.05 ± 1.22 b |
Water; 80 °C | 0.010 ± 0.0001 a | - | 1.20 ± 0.31 a | 19.04 ± 4.48 a | 20.25 ± 4.80 a |
Alkaline Hydrolysis (1%); 45 °C | - | - | 0.41 ± 0.14 b | 10.47 ± 0.85 bc | 10.88 ± 0.62 bc |
Alkaline Hydrolysis (1%); 80 °C | - | - | - | 0.24 ± 0.09 e | 0.24 ± 0.08 e |
Alkaline Hydrolysis (2.5%); 45 °C | 0.013 ± 0.004 a | 0.013 ± 0.003 a | 0.11 ± 0.05 bc | 6.36 ± 0.10 cd | 6.50 ± 0.15 cd |
Alkaline Hydrolysis (2.5%); 80 °C | - | - | - | - | - |
Alkaline Hydrolysis (5.25%); 45 °C | - | - | 0.07 ± 0.03 bc | 3.91 ± 0.29 de | 3.98 ± 0.31 de |
Alkaline Hydrolysis (5.25%); 80 °C | - | - | - | - | - |
Alkaline Hydrolysis (10.5%); 45 °C | - | - | 0.03 ± 0.01 c | 1.63 ± 0.26 e | 1.66 ± 0.94 e |
Alkaline Hydrolysis (10.5%); 80 °C | - | - | - | - | - |
Enzymatic Hydrolysis; Control | - | - | - | 15.85 ± 2.12 | 15.85 ± 2.12 |
Enzymatic Hydrolysis; Miura | - | - | - | 20.75 ± 0.05 * | 20.75 ± 0.05 * |
Treatments | ABTS (µmol TEAC·g−1 DW) |
---|---|
Water; 45 °C | 31.26 ± 4.09 ef |
Water; 80 °C | 23.37 ± 1.68 f |
Alkaline Hydrolysis (1%); 45 °C | 72.64 ± 6.15 e |
Alkaline Hydrolysis (1%); 80 °C | 208.31 ± 13.62 ab |
Alkaline Hydrolysis (2.5%); 45 °C | 123.63 ± 16.68 d |
Alkaline Hydrolysis (2.5%); 80 °C | 236.85 ± 31.26 a |
Alkaline Hydrolysis (5.25%); 45 °C | 150.02 ± 18.81 cd |
Alkaline Hydrolysis (5.25%); 80 °C | 182.68 ± 16.79 bc |
Alkaline Hydrolysis (10.5%); 45 °C | 164.33 ± 8.27 cd |
Alkaline Hydrolysis (10.5%); 80 °C | 222.4 ± 9.22 ab |
Enzymatic Hydrolysis; Control | 45.62 ± 5.61 |
Enzymatic Hydrolysis; Miura | 61.45 ± 7.39 * |
Treatments | PE (mg·g−1DW) | PC (mg·g−1DW) | Phenols (mg·g−1DW) | Proteins (mg·g−1DW) | Carbohydrates (mg·g−1DW) | ABTS (µM TEAC·g−1DW) | Total MAAs (mg·g−1DW) | Treatments |
---|---|---|---|---|---|---|---|---|
Alkaline Hydrolysis (2.5%); 80 °C | 4.12 ± 0.45 | 1.10 ± 0.15 | 3.53 ± 0.64 | 5.63 ± 0.40 | 116.50 ± 5.98 | 236.85 ± 31.26 * | 20.25 ± 4.80 | Water; 80 °C |
Enzymatic Hydrolysis; Miura | 12.20 ± 3.70 * | 6.71 ± 1.69 * | 3.08 ± 0.22 | 55.63 ± 7.31 * | 192.07 ± 24.60 * | 61.45 ± 7.39 | 20.75 ± 0.05 | Enzymatic Hydrolysis; Miura |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, D.T.; García-García, P.; Korbee, N.; Vega, J.; Señoráns, F.J.; Figueroa, F.L. Optimizing the Extraction of Bioactive Compounds from Porphyra linearis (Rhodophyta): Evaluating Alkaline and Enzymatic Hydrolysis for Nutraceutical Applications. Mar. Drugs 2024, 22, 284. https://doi.org/10.3390/md22060284
Pereira DT, García-García P, Korbee N, Vega J, Señoráns FJ, Figueroa FL. Optimizing the Extraction of Bioactive Compounds from Porphyra linearis (Rhodophyta): Evaluating Alkaline and Enzymatic Hydrolysis for Nutraceutical Applications. Marine Drugs. 2024; 22(6):284. https://doi.org/10.3390/md22060284
Chicago/Turabian StylePereira, Débora Tomazi, Paz García-García, Nathalie Korbee, Julia Vega, Francisco J. Señoráns, and Félix L. Figueroa. 2024. "Optimizing the Extraction of Bioactive Compounds from Porphyra linearis (Rhodophyta): Evaluating Alkaline and Enzymatic Hydrolysis for Nutraceutical Applications" Marine Drugs 22, no. 6: 284. https://doi.org/10.3390/md22060284
APA StylePereira, D. T., García-García, P., Korbee, N., Vega, J., Señoráns, F. J., & Figueroa, F. L. (2024). Optimizing the Extraction of Bioactive Compounds from Porphyra linearis (Rhodophyta): Evaluating Alkaline and Enzymatic Hydrolysis for Nutraceutical Applications. Marine Drugs, 22(6), 284. https://doi.org/10.3390/md22060284