Bioactive Angucyclines/Angucyclinones Discovered from 1965 to 2023
Abstract
:1. Introduction
2. Bioactive Angucyclines/Angucyclinones
2.1. Cytotoxic and Antibacterial or Antifungal Activities
2.1.1. Marine-Derived Angucyclines/Angucyclinones
2.1.2. Terrestrial-Derived Angucyclines/Angucyclinones
2.1.3. Angucyclines/Angucyclinones from Other Sources
2.2. Cytotoxicities
2.2.1. Marine-Derived Angucyclines/Angucyclinones
2.2.2. Terrestrial-Derived Angucyclines/Angucyclinones
2.2.3. Angucyclines/Angucyclinones from Other Sources
2.3. Antibacterial or Antifungal Activities
2.3.1. Marine-Derived Angucyclines/Angucyclinones
2.3.2. Terrestrial-Derived Angucyclines/Angucyclinones
2.3.3. Angucyclines/Angucyclinones from Other Sources
2.4. Other Bioactivities
2.4.1. Marine-Derived Angucyclines/Angucyclinones
2.4.2. Terrestrial-Derived Angucyclines/Angucyclinones
2.4.3. Angucyclines/Angucyclinones from Other Sources
Cytotoxic Activities | |||
---|---|---|---|
Compound No. | Producer | Model of Bioactivities | Reference |
1 | Chainia purpurogena | EHRLICH ascites | [16] |
2 | Streptomyces sp. HB202 | HepG2, HT-29, GXF251L, LXF529L, MAXF401NL, MEXF462NL, PAXF1657L, RXF486L | [17] |
5 | Streptomyces sp. QD01-2 S. gilvotanarens NRRL 11382 Mutant strain of S. cyanogenus | MCF-7, K562, P388 Sarcoma 180, P388, Ehrlich carcinoma, Meth I fibrosarcoma, MH134 LL/2, MCF-7, NCI-H460 | [18] [31] [108,109] |
6 | S. gilvotanarens NRRL 11382 | Sarcoma 180, P388 | [31] |
7–9 | S. fradiae PTZ0025 | HCT-15, SW620, C6 | [19] |
10 | Micromonospora rosaria SCSIO N160 Streptomyces sp. XZHG99T Streptomyces sp. IB201691-2A | SF-268, MCF-7, NCI-H460 A549, H157, MCF-7, MDA-MB-231, HepG2 Huh7.5, SW620, A549 | [20] [61] [62] |
11 | M. rosaria SCSIO N160 Micromonospora sp. | SF-268, MCF-7, NCI-H460 Kuramochi, OVCAR4, MOSE, MOE | [20] [78] |
12, 14–16 | M. echinospora SCSIO 04089 | SF-268, MCF-7, HepG2 | [21] |
13 | M. echinospora SCSIO 04089 | HepG2 | [21] |
18, 19 | S. pratensis KCB-132 | LS180 | [22] |
(+)-21 | S. pratensis KCB-132 | NCI-H460 | [24] |
(–)-21 | S. pratensis KCB-132 | NCI-H460, HepG2 | [24] |
22 | S. pratensis KCB-132 | Colon 38, HeLa cells | [24] |
25, 26 | S. ardesiacus 156VN-095 | ACHN, HCT-15, MDA-MB-231, NCI-H23, NUGC-3, PC-3 | [27] |
28 | S. ardesiacus 156VN-095 Streptomyces sp. BCC45596 | ACHN, HCT-15, MDA-MB-231, NCI-H23, NUGC-3, PC-3 KB, MCF-7, NCIH187, Vero | [27] [28] |
29–31 | Streptomyces sp. BCC45596 | KB, MCF-7, NCIH187, Vero | [28] |
33 | Streptomyces sp. SCSIO 11594 | A594, CNE2, HepG2, MCF-7 | [29] |
34, 35 | S. lusitanus SCSIO LR32 | MDA-MB-435, MDA-MB-231, NCI-H460, HCT-116, HepG2, MCF10A | [30] |
36 | S. nodosus MH190-16F3 Streptomyces sp. KY40-1 | P388/S, P388/ADR, L-1210, A-549, HT-29 PC3, H-460 | [32,33] [93] |
37 | S. nodosus MH190-16F3 S. lusitanus SCSIO LR32 Streptomyces sp. Streptomyces sp. OC1610.4 Streptomyces sp. Streptomyces sp. KY40-1 | P388/S, P388/ADR, L-1210, A-549, HT-29 Jurkat T cells HepG-2, SMMC-7721, PLC-PRF-5 MCF-7, MDA-MB-231, BT-474, MDA-MB-231 SW480, SW620, LoVo, HT-29, QSG-7701, CRC PC3, H-460 | [32,33] [13] [76] [81] [82] [93] |
38 | Amycolatopsis sp. HCa1 | HeLa | [89] |
40 | S. nodosus MH190-16F3 | P388/S, P388/ADR | [32] |
41, 42 | S. antibioticus Tü 6040 | HMO2, MCF-7 | [34,35] |
43–46 | S. capoamus | M1 | [36] |
47 | S. griseoincarnatus S. lusitanus SCSIO LR32 | P388 B16, HepG2, SW-1990, HeLa | [38] [75] |
48–50 | S. venezuelae ISP5230 | MDA-MB-435, T-47D | [39] |
59 | Streptomyces sp. AC113 Streptomyces sp. CB01913 | B16, HT29 SF295, H226, M14 | [44] [63] |
60, 61 | Streptomyces sp. AC113 | B16, HT29 | [44] |
64 | Streptomyces sp. Acta 3034 | HepG2, NIH 3T3 | [51] |
65, 66 | Saccharopolyspora BCC 21906 | KB, MCF-7, NCI-H187 | [52] |
69–71 | S. salbus | HCT-116 | [53] |
72 | S. chattanoogensis L10 (CGMCC 2644) | MCF-7 | [54] |
73 | S. chattanoogensis L10 (CGMCC 2644) | MCF-7, HepG2 | [54] |
75 | S. blastomycetica F4-20 | BGC823, HeLa | [56] |
76, 77 | S. bulli GJA1, Gardenia jasminoides | OV90, ES2 | [57] |
78 | Dermatophilaceae Aptenodytes NJES-13T | HL-60, Bel-7402, A549 | [58] |
80 | Micromonospora sp. | Kuramochi, MOSE, MOE | [78] |
82–84, 86 | Streptomyces sp. XZHG99T | A549, H157, MCF7, MDA-MB-231, HepG2 | [61] |
85 | Streptomyces sp. XZHG99T Streptomyces sp. OC1610.4 Streptomyces sp. Streptomyces sp. KY002 | A549, H157, MCF7, MDA-MB-231, HepG2 MCF-7, MDA-MB-231, BT-474, MDA-MB-231 SW480, SW620, LoVo, HT-29, QSG-7701, CRC H-460 and MCF-7 | [61] [81] [82] [92] |
87 | Streptomyces sp. XZHG99T Streptomyces sp. OC1610.4 Streptomyces sp. Streptomyces sp. KY40-1 | A549, H157, MCF7, MDA-MB-231, HepG2 MCF-7, MDA-MB-231, BT-474, MDA-MB-231 SW480, SW620, LoVo, HT-29, QSG-7701, CRC PC3, H-460 | [61] [81] [82] [93] |
88 | Streptomyces sp. IB201691-2A | Huh7.5, SW620 | [62] |
89 | Streptomyces sp. IB201691-2A | Huh7.5, SW620, A549 | [62] |
90 | Streptomyces sp. CB01913 | SF295, H226 | [63] |
92 | Streptomyces sp. CB01913 | SF295, H226, M14 | [63] |
93 | S. lividans TK23 | HL-60 | [64] |
94 | Nocardia lurida | 9KB, 9PS | [65] |
95 | N. lurida | 9KB, 9PS, 9ASK | [65,66] |
96 | Streptomyces matensis A-6621 | KB | [67] |
97–99 | Nocardia sp. IFM 0089 | L1210, P388, P388/ADR | [68] |
100 | S. murayamaensis | CHO | [69] |
102 | S. murayamaensis Salinispora pacifica DPJ-0019 | CHO K562, LNCaP, HCT-116, HeLa | [69] [118] |
104, 105 | Unknown actinomycetes | Most of the cancer cells | [71] |
106 | S. aureofaciens CCM 3239 | A2788, A2780/CP, MDA-MB-231, MCF-7 | [72] |
107, 108 | Streptomyces sp. CNH990 | HCT-116 | [73] |
109 | Saccharopolyspora taberi PEM-06-F23-019B | MDA-MB-231, HT-29, A-549 | [74] |
110–112 | S. lusitanus SCSIO LR32 | B16, HepG2, SW-1990, HeLa | [75] |
113, 115 | S. lusitanus SCSIO LR32 | Jurkat T cells | [13] |
114 | S. lusitanus SCSIO LR32 S. albogriseolus subsp. No. 1894 | Jurkat T cells Jurkat T-cells, A549, HCT-116, Capan-1 | [13] [13,99] |
116 | S. lusitanus SCSIO LR32 | MDA-MB-435, MDA-MB-231, NCI-H460, HCT-116, HepG2, MCF10A | [30] |
117 | Streptomyces sp. M268 | HL-60, A549, BEL-7402 | [77] |
118 | Micromonospora sp. | L1210, MOSE, MOE | [78] |
119 | Streptomyces sp. SS13I | PC3, H1975 | [79] |
120 | Streptomyces sp. HN-A124 | A2780 | [80] |
121 | Streptomyces sp. OC1610.4 | MCF-7, MDA-MB-231, BT-474, MDA-MB-231 | [81] |
122 | Streptomyces sp. XS-16 | MDA-MB-231, K562, ASPC-1, H69AR, H69 | [83] |
123–128 | Actinomadura sp. KD439 | P388 | [84] |
129 | Streptomyces sp. SUD119 | SK-HEP1 | [85] |
130 | Streptomyces sp. SUD119 | HCT-116, MDA-MB-231, SNU638, A549, SK-HEP1 | [85] |
131, 132 | Streptomyces sp. HDN15129 | HL-60, K562, SH-SY5Y, BEL-7402, U87, ASPC-1, HCT-116 | [86] |
133 | Streptomyces sp. CNZ-748 | PMP501-1, PMP457-2 | [87] |
134, 135 | Streptomyces sp. CNZ-748 | PMP501-1, PMP457-2, ABX023-1, C09-1 | [87] |
136, 137 | Streptomyces sp. M7_15 | SJCRH30 | [88] |
138, 141 | Amycolatopsis sp. HCa1 | HeLa | [89] |
140 | Amycolatopsis sp. HCa1 | SPC-A-1, HeLa | [89] |
142 | Amycolatopsis sp. HCa1 | SGC-7901, HeLa | [89] |
143 | Streptomyces sp. Om-4842 | P388 | [90] |
144–149 | S. griseorubiginosus No. Q144-2 | VCR-resistant P388 | [91] |
150–154 | Streptomyces sp. KY40-1 | PC3, H-460 | [93] |
155 | S. polyformus sp. nov. YIM 33176 Mutant strain of S. cyanogenus | 37 different human tumor cells LL/2, MCF-7, NCI-H460 | [94] [108,109] |
156, 157 | Streptomyces sp. N05WA963 | SW620, YES-4, U251SP, K562, MDA-MB-231, T-98 | [95] |
158 | Streptomyces sp. N05WA963 | SW620, YES-4, U251SP, K562, MDA-MB-231, T-98 | [95] |
159 | Streptomyces sp.Acta 2930 | NIH-3T3, HepG2, HT-29 | [96] |
160 | Streptomyces sp. PU-MM59 | PC3, A549 | [97] |
161–169 | Mutant strain of S. cyanogenus | LL/2, MCF-7, NCI-H460 | [108,109] |
164, 167, 173–175, 177 | S. cyanogenus S-136 | MCF-7, MDA-MB-231 | [114] |
172 | S. cyanogenus S-136 | MDA-MB-231 | [114] |
181–184 | S. cyanogenus K62 | MCF-7, MDA-MB-231 | [115] |
185, 186 | Mutant strain of S. lividans TK24 | Several cancer cells | [109,116] |
187 | S. murayamaensis | K562 | [69,117] |
188–191 | S. pacifica DPJ-0019 (NRRL 50168) | K562, LNCaP, HCT-116, HeLa | [118] |
193 | Unknown actinomycetes | SF-268, MCF-7, HepG2, A549 | [119] |
195 | Amycolatopsis orientalis subsp. vinearia | Ehrlich ascites carcinoma | [120] |
Antibacterial or antifungal activities | |||
1 | Chainia purpurogena | Gram-positive bacteria except M. tuberculosis | [16] |
2 | Streptomyces sp. HB202 | B. subtilis DSM 347, B. epidermidis DSM 20660, D. hominis DSM 7083, K. pneumoniae, P. aeruginosa DSM 50071, S. aureus ATCC 12600, S. aureus, S. epidermidis DSM 20044, S. lentus DSM 6672 | [17] |
3, 4 | Streptomyces sp. QD01-2 | S. aureus, B. subtilis, Escherichia coli, Candida albicans | [18] |
5, 6 | Streptomyces sp. QD01-2 S. gilvotanarens NRRL 11382 | S. aureus, B. subtilis, Escherichia coli, Candida albicans S. aureus ATCC 6538P, B. subtilis No. 10707 | [18] [31] |
7–9 | S. fradiae PTZ0025 | S. aureus | [19] |
10 | M. rosaria SCSIO N160 S. cellulosae YIM PH20352 Streptomyces sp. XZHG99T Streptomyces sp. IB201691-2A | E. coli ATCC 25922, S. aureus ATCC 29213, B. thuringiensis SCSIO BT01, B. subtilis SCSIO BS01 P. cucumerina, Alternaria panax, F. oxysporum, F. solani, M. smegmatis, S. aureus S. carnosus DSMZ 20501, Erwinia persicina DSMZ 19328 S. carnosus DSMZ 20501, M. smegmatis DSMZ 43286 | [20] [59,60] [61] [62] |
11 | M. rosaria SCSIO N160 | E. coli ATCC 25922, S. aureus ATCC 29213, B. thuringiensis SCSIO BT01, B. subtilis SCSIO BS01 | [20] |
12 | M. echinospora SCSIO 04089 | S. aureus ATCC 29213, B. thuringensis SCSIO BT01, B. subtilis 1064, M. luteus SCSIO ML01, MRSA shhs-A1 | [21] |
15 | M. echinospora SCSIO 04089 | M. luteus SCSIO ML01, | [21] |
17 | S. pratensis KCB-132 | A variety of bacteria and fungi | [22] |
18, 19 | S. pratensis KCB-132 | B. cereus, C. lagenarium | [22] |
20 | S. pratensis KCB-132 | S. aureus CMCC 26003 | [23] |
(–)-21 | Streptomyces sp. KCB-132 | B. cereus CMCC 32210 | [24] |
23 | Streptomyces sp. KCB-132 | S. aureus, Enterococcus faecium | [25] |
24 | S. pratensis KCB-132 | E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, E. species | [26] |
25–27 | S. ardesiacus 156VN-095 | B. subtilis KCTC 1021, M.s luteus KCTC 1915, S. aureus KCTC 1927 | [27] |
28–30 | Streptomyces sp. BCC45596 | M. tuberculosis, P. falciparum | [28] |
31 | Streptomyces sp. BCC45596 S. cellulosae YIM PH20352 | M. tuberculosis, P. falciparum A. panax | [28] [59,60] |
32, 33 | Streptomyces sp. SCSIO 11594 | E. faecalis ATCC29212 | [29] |
34 | S. lusitanus SCSIO LR32 | M. luteus | [30] |
36–39 | Streptomyces nodosus MH190-16F3 | S. aureus FDA209P, S. aureus, M. 1ysodeikticus IFO 3333, M. luteus PCI1001, B. subtilis PCI 219 | [32] |
41, 42 | S. antibioticus Tü 6040 | B. brevis DSM30 | [34,35] |
43–46 | S. violaceolatus | S. aureus FDA 209P, B. subtilis ATCC 6633, B. cereus IAM 1729, M. luteus ATCC 9341 | [36] |
46 | S. capoamus | P. chrysogentrrn ATCC 10002, T. mentagrophytes | [37] |
47 | S. griseoincarnatus | S. aureus FDA 209P, M. luteus ATCC 9341, B. cereus IAM 1729 | [38] |
48–56 | S. venezuelae ISP5230 | S. aureus C622 (ATCC25923), S. aureus 305, S. aureus BeckerCP8 (ATCC49525), S. aureus BeckerLyc12CP336 (ATCC55804), S. epidermidis C960 (ATCC14990), S. epidermidis C621 (clinical isolate), B. subtilis C971 (ATCC6633), S. aureus C623(MRSA) | [39] |
57, 58 | S. venezuelae ISP5230 | MRSA, S. warneri, VRE | [43] |
59 | Streptomyces sp. AC113 Streptomyces sp. CB01913 | P. aeruginosa CCM 3955, S. aureus CCM 3953, E. coli CCM 3988, L. monocytogenes NCTC 4886, B. subtilis CCM 2216, B. cereus S. aureus ATCC 25923, B. subtilis ATCC 23857, M. smegmatis ATCC 607 | [44] [63] |
60–61 | Streptomyces sp. AC113 | P. aeruginosa CCM 3955, S. aureus CCM 3953, E. coli CCM 3988, L. monocytogenes NCTC 4886, B. subtilis CCM 2216, B. cereus | [44] |
62–64 | Streptomyces sp. Acta 3034 | B. subtilis | [51] |
65–67 | Saccharopolyspora BCC 21906 | M. tuberculosis | [52] |
68 | Saccharopolyspora BCC 21906 Streptomyces spp. GW19/1251 and GW10/1118 | M. tuberculosis B. subtilis, S. viridochromogenes Tü57, S. aureus, E. coli | [52] [134] |
69–71 | S. salbus | MRSA, B. subillis RM125 | [53] |
73 | S. chattanoogensis L10 (CGMCC 2644) | B. subtilis ATCC 67736 | [54] |
75 | S. blastomycetica F4-20 | Valsa mali, C. orbiculare, F. graminearumat | [56] |
76 | S. bulliGJA1, Gardenia jasminoides | MRSA | [57] |
78, 79 | D. Aptenodytes NJES-13T | S. aureus, B. subtilis, C. albicans | [58] |
80 | S. cellulosae YIM PH20352 | P. cucumerina, A. panax, F. oxysporum, F. solani with | [59,60] |
81 | S. cellulosae YIM PH20352 | P. cucumerina, A. panax | [59,60] |
82 | S. lusitanus OUCT16-27 | E. faecium, E. faecalis, S. aureus | [126] |
88, 89 | Streptomyces sp. IB201691-2A | S. carnosus DSMZ 20501, E. persicina DSMZ 19328, M. smegmatis DSMZ 43286 | [62] |
90, 92 | Streptomyces sp. CB01913 | S. aureus ATCC 25923, B. subtilis ATCC 23857, M. smegmatis ATCC 607 | [63] |
93 | S. lividans TK23 S. albus J1074 | S. aureus, C. albicans B. subtilis DSM 1092, M. luteus DSM 20030 | [64] [140] |
94, 95 | N. lurida | Gram-positive bacteria | [65] |
96 | S. matensis A-6621 | S. aureus 209P-JC, Sepidermidis IID 866, E. faecium ATCC8043, B. cereus S 1101, B. subtilis ATCC6633 | [67] |
97–99 | Nocardia sp. IFM 0089 | S. aureus 209P, S. aureus MRSAIFM 62971, M. smegmatis ATCC607, M. luteus IFM 2066 | [68] |
100–103 | S. murayamaensis | Gram-positive bacteria | [70] |
104 | Unknown actinomycetes | MRSA, VRE | [71] |
106 | S. aureofaciens CCM 3239 | B. subtilis, S. aureus | [72] |
116 | S. lusitanus OUCT16-27 | E. faecium, E. faecalis, S. aureus | [126] |
136 | S. griseus NTK 97 | B. subtilis DSM 10, S. aureus DSM 20231 | [147] |
140–142 | Nocardia. sp. M-53 | Bacillus, Staphylococcus, Micrococcus, Cotrnebacterium, Mycobacteriu | [131] |
196 | Streptomyces sp. B6219 | S. viridochromogenes Tü57 | [121] |
197–199 | S. espanaensis AN113 | B. subtilis, E. faecium, Xanthomonas sp. pv. Badrii | [122] |
200, 201 | S. pratensis NA-ZhouS1’s | P. aeruginosa CMCC (B) 10104, MRSA, K. pneumonia CMCC (B) 46117, E. coli CMCC (B) 44102, B. subtilis CMCC (B) 63501 | [123] |
202–204 | Nocardiopsis sp. HB-J378 | MRSA | [124] |
205 | Nocardiopsis sp. HB-J378 | MRSA, VRE, B. cereus | [125] |
206, 207 | Nocardiopsis sp. HB-J378 | MRSA | [124] |
208–210 | Saccharothrix sp. D09 | H. pylori | [127] |
211, 212 | Streptomyces sp. BHB-032 | S. aureus CMCC 26003, Nocardia, B. cereus CMCC 32210, B. subtilis CMCC 63501 | [128] |
213–215 | M. rosaria SCSIO N160 | E. coli ATCC 25922, S. aureus ATCC 29213, B. thuringensis SCSIOBT01, B. subtilis SCSIO BS01, C. albicans ATCC 10231. | [129] |
216 | M. rosaria SCSIO N160 in a heterologous host S. coelicolor YF11 | K. pneumoniae ATCC 13883, A. hydrophila ATCC 7966, S. aureus ATCC 29213 | [130] |
217, 218 | Streptomyces sp. DSM 4769 | S. aureus H 503, S. pyogenes | [132] |
219, 220 | Streptomyces sp. WK-6326 | B. subtillis, M. luteus, B. subtillis, S. aureus, M. luteus, M. smegmatis | [133] |
221 | Streptomyces spp. GW19/1251 and GW10/1118 | B. subtilis, S. viridochromogenes Tü57, S. aureus, E. coli, Chlorella vulgaris, C. sorokiniana | [134] |
222 | Streptosporangium sp. Sg3 | M. luteus ATCC 9314, B. subtilis ATCC 6633, S. aureus CIP 7625, L. monocytogenes CIP 82110, M. smegmatis ATCC 607 | [135,136] |
223 | Streptomyces sp. MK844-mF10 | S. aureus, B. subtilis | [137] |
224 | Kitasatospora sp. | S. aureus Newman, P. anomala, M. hiemalis, E. coli ToIC | [139] |
225 | S. albus J1074 | B. subtilis DSM 1092, M. luteus DSM 20030 | [140] |
226 | S. albus J1074 | S. aureus Newman | [140] |
227, 228 | Streptomyces sp. KMC004 | M. luteus, E. hirae, MRSA | [141] |
229–232 | Actinoallomurus sp. ID145698 | S. aureus ATCC 6538P, S. pyogenes L49, E. faecalis L560, E. faecium L569 | [142] |
233, 234 | Actinobacterium PAL114 | M. flavus ATCC 9314, L. monocytogenes ATCC 13932 | [143] |
235 | S. fimbriatum | S. epidermidis ATCC 12228, MRSA, S. aureus ATCC 25923 | [144] |
236 | Actinomycetes RI104-LiC106 | M. luteus | [145] |
237–240 | Streptomyces sp. TK08046 | S. parasitica | [146] |
241 | Streptomyces sp. TK08046 | S. parasitica, S. aureus, B. subtilis, D. pulexwith | [146] |
242 | S. tsusimaensis MI310-38F7 | S. aureus Smith, S. aureus MS9610 (multi-resistant), M. luteus PCI 1001, B. subtilis NRRLB-558 | [148] |
243 | Actinomadura sp. RB29 | VRE, M. vaccae | [149] |
244, 245 | S. indonesiensis DSM41759 | MRSA | [150] |
Enzyme inhibitory activities | |||
1 | C. purpurogena | Dopamine S-hydroxylase inhibition | [16] |
42 | S. coelicolor YF11 M1152 S. antibioticus Tü 6040 | DNA gyrase inhibition | [167] |
192–194 | Unknown actinomycetes | α-glucosidase inhibition | [119] |
254 | Streptomyces sp. KCB15JA014 | IDO1 inhibition | [155] |
255 | Streptomycete Acta 1362 | PTP1B inhibition | [156] |
266 | Unknown actinomycetes | Tyrosine hydroxylase inhibition, dopamine β-hydroxylase inhibition, tryptophan 5-mono-oxygenase inhibition | [163,164,165] |
267, 268 | Actinomyces MK290-AF1, | FPTase inhibition | [166] |
269 | S. coelicolor YF11 M1152 S. antibioticus Tü 6040 | DNA gyrase inhibition | [167] |
270, 273 | Streptomyces sp. DSM 17045 | Antagonize rosiglitazone-induced peroxisome PPAR-γ activation | [168] |
274–276 | High-throughput screening of microbial | IDO1 inhibition | [169] |
Other activities | |||
34 | Streptomyces sp. #AM1699 | Nitric oxide inhibition | [160] |
74 | Mutant strain of S. chattanoogensis L10 (CGMCC 2644) | Antioxidant activity | [55] |
96 | S. matensis A-6621 | Platelet aggregation inhibition | [170] |
143 | Streptomyces sp. P294 | Platelet aggregation inhibition | [36] |
208 | Unknown actinomycetes | Nitric oxide inhibition | [128] |
213 | M. rosaria SCSIO N160 | Antioxidant activity | [129] |
219, 220 | Streptomyces sp. WK-6326 | IL-4 inhibition | [133] |
242 | Unknown actinomycetes | P. burgneri inhibition | [162] |
246 | A. heciospongiae EG49 | T. brucei brucei inhibition | [151] |
247, 248 | A. heciospongiae EG49 | Antioxidant activity | [152] |
249–252 | Actinokineospora sp. EG49 with Rhodococcus sp. UR59 | Antimalarial activity | [153] |
253 | Actinokineospora sp. | T. brucei TC221 inhibition | [154] |
256 | S. griseus | Glutaminergic agonist | [157] |
257 | Streptomyces sp. KCB15JA151 | Cell proliferation inhibition | [158] |
258, 259 | Streptomyces sp. KIB-M10 | Human T-cell proliferation inhibition | [159] |
260, 261 | Streptomyces sp. #AM1699 | Nitric oxide inhibition | [160] |
262, 263 | Unknown actinomycetes | P. falciparum K1 inhibition | [161] |
264 | Streptomyces sp. P294 | P. burgneri inhibition | [36] |
265 | Streptomyces sp. DSM 4769 | DNA viruses Herpes simplex I and II | [132] |
277–279 | S. matensis A-6621 | Platelet aggregation inhibition | [170] |
280, 281 | Streptomyces sp. P371 | Inhibitory activity against pentagastrin-stimulated acid secretion, protective activity against HCl/ethanol- and indomethacin-induced gastric lesions | [171] |
280 | Streptomyces sp. P371 | CCK B/gastrin receptor antagonist | [172] |
282, 283 | Streptomyces sp. | SH-SY5Y neuroblastoma cells protection | [173] |
3. Biosynthesis of Landomycins
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2017, 34, 235–294. [Google Scholar] [CrossRef] [PubMed]
- Jakubiec-Krzesniak, K.; Rajnisz-Mateusiak, A.; Guspiel, A.; Ziemska, J.; Solecka, J. Secondary Metabolites of Actinomycetes and their Antibacterial, Antifungal and Antiviral Properties. Pol. J. Microbiol. 2018, 67, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Procópio, R.E.; Silva, I.R.; Martins, M.K.; Azevedo, J.L.; Araújo, J.M. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 2012, 16, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Sivalingam, P.; Hong, K.; Pote, J.; Prabakar, K. Extreme Environment Streptomyces: Potential Sources for New Antibacterial and Anticancer Drug Leads. Int. J. Microbiol. 2019, 2019, 5283948. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Z.X.; Li, P.M.; Qian, P.Y.; Liu, L.L. Structural identification of pyridinopyrone compounds with anti-neuroinflammatory activity from Streptomyces sulphureus DSM 40104. Front. Microbiol. 2023, 14, 1205118. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.F.; Razmilic, V.; Gomez-Escribano, J.P.; Andrews, B.; Asenjo, J.; Bibb, M. The “gifted” actinomycete Streptomyces leeuwenhoekii. Antonie. Van. Leeuwenhoek 2018, 111, 1433–1448. [Google Scholar] [CrossRef] [PubMed]
- Vysloužilová, D.; Kováč, O. The Chemistry of Angucyclines. ChemPlusChem 2024, 89, e202400307. [Google Scholar] [CrossRef]
- Dann, M.; Lefemine, D.V.; Barbatschi, F.; Shu, P.; Kunstmann, M.P.; Mitscher, L.A.; Bohonos, N. Tetrangomycin, a new quinone antibiotic. Antimicrob. Agents Chemother 1965, 5, 832–835. [Google Scholar] [PubMed]
- Kharel, M.K.; Pahari, P.; Shepherd, M.D.; Tibrewal, N.; Nybo, S.E.; Shaaban, K.A.; Rohr, J. Angucyclines: Biosynthesis, mode-of-action, new natural products, and synthesis. Nat. Prod. Rep. 2012, 29, 264–325. [Google Scholar] [CrossRef]
- Xu, X.; Chang, Y.; Chen, Y.; Zhou, L.; Zhang, F.; Ma, C.; Che, Q.; Zhu, T.; Pfeifer, B.A.; Zhang, G.; et al. Biosynthesis of Atypical Angucyclines Unveils New Ring Rearrangement Reactions Catalyzed by Flavoprotein Monooxygenases. Org. Lett. 2024, 26, 7489–7494. [Google Scholar] [CrossRef] [PubMed]
- Rohr, J.; Thiericke, R. Angucycline group antibiotics. Nat. Prod. Rep. 1992, 9, 103–137. [Google Scholar] [CrossRef]
- Zhu, X.; Duan, Y.; Cui, Z.; Wang, Z.; Li, Z.; Zhang, Y.; Ju, J.; Huang, H. Cytotoxic rearranged angucycline glycosides from deep sea-derived Streptomyces lusitanus SCSIO LR32. J. Antibiot. 2017, 70, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Duan, Y.; Zhu, X.; Yan, X. Angucycline/angucyclinone natural products research (2010–2020). Chin. J. Biotech. 2021, 37, 2147–2165. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. The BMJ. 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Kitahara, T.; Okami, Y. Studies on marine microorganisms. IV. A new antibiotic SS-228 Y produced by Chainia isolated from shallow sea mud. J. Antibiot. 1975, 28, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Schneemann, I.; Kajahn, I.; Ohlendorf, B.; Zinecker, H.; Erhard, A.; Nagel, K.; Wiese, J.; Imhoff, J.F. Mayamycin, a Cytotoxic Polyketide from a Streptomyces Strain Isolated from the Marine Sponge Halichondria panicea. J. Nat. Prod. 2010, 73, 1309–1312. [Google Scholar] [CrossRef]
- Hou, J.; Liu, P.; Qu, H.; Fu, P.; Wang, Y.; Wang, Z.; Li, Y.; Teng, X.; Zhu, W. Gilvocarcin HE: A new polyketide glycoside from Streptomyces sp. J. Antibiot. 2012, 65, 523–526. [Google Scholar] [CrossRef]
- Xin, W.; Ye, X.; Yu, S.; Lian, X.; Zhang, Z. New capoamycin-type antibiotics and polyene acids from marine Streptomyces fradiae PTZ0025. Mar. Drugs 2012, 10, 2388–2402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Z.; Li, S.; Lu, Y.; Chen, Y.; Zhang, H.; Zhang, G.; Zhu, Y.; Zhang, G.; Zhang, W. Fluostatins I–K from the South China Sea-derived Micromonospora rosaria SCSIO N160. J. Nat. Prod. 2012, 75, 1937–1943. [Google Scholar] [CrossRef]
- Fang, Z.; Jiang, X.; Zhang, Q.; Zhang, L.; Zhang, W.; Yang, C.; Zhang, H.; Zhu, Y.; Zhang, C. S-Bridged Thioether and Structure-Diversified Angucyclinone Derivatives from the South China Sea-Derived Micromonospora echinospora SCSIO 04089. J. Nat. Prod. 2020, 83, 3122–3130. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Fu, X.; Li, Z.; Guo, L.; Kou, L.; Liu, M.; Xie, Z. (+)- and (–)-actinoxocine, and actinaphthorans A–B, C-ring expansion and cleavage angucyclinones from a marine-derived Streptomyces sp. Org. Chem. Front. 2019, 6, 3925–3928. [Google Scholar] [CrossRef]
- Zhang, S.; LuKou, L.; Qiao-LiQu, B.; GennaroXie, Z. Isolation, stereochemical study, and racemization of (+/–)-pratenone A, the first naturally occurring 3-(1-naphthyl)-2-benzofuran-1(3H)-one polyketide from a marine-derived actinobacterium. Chirality 2020, 32, 299–307. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, L.; Yang, Q.; Xu, B.; Fu, X.; Liu, M.; Li, Z.; Zhang, S.; Xie, Z. Antibacterial and cytotoxic bridged and ring cleavage angucyclinones from a marine Streptomyces sp. Front. Chem. 2020, 8, 586. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Yang, Q.; Wang, G.; Zhang, S.; Liu, M.; Pan, X.; Pescitelli, G.; Xie, Z. Ring D-modified and highly reduced angucyclinones from marine sediment-derived Streptomyces sp. Front. Chem. 2021, 9, 756962. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Zhang, S.; Wang, G.; Yang, Q.; Guo, L.; Pescitelli, G.; Xie, Z. Atypical Angucyclinones with Ring Expansion and Cleavage from a Marine Streptomyces sp. J. Org. Chem. 2022, 87, 15998–16010. [Google Scholar] [CrossRef]
- Anh, C.V.; Kwon, J.; Kang, J.S.; Lee, H.; Heo, C.; Shin, H.J. New Angucycline Glycosides from a Marine-Derived Bacterium Streptomyces ardesiacus. Int. J. Mol. Sci. 2022, 23, 13779. [Google Scholar] [CrossRef] [PubMed]
- Supong, K.; Thawai, C.; Suwanborirux, K.; Choowong, W.; Supothina, S.; Pittayakhajonwut, P. Antimalarial and antitubercular C-glycosylated benz[α]anthraquinones from the marine-derived Streptomyces sp. BCC45596. Phytochem. Lett. 2012, 5, 651–656. [Google Scholar] [CrossRef]
- Song, Y.; Liu, G.; Li, J.; Huang, H.; Zhang, X.; Zhang, H.; Ju, J. Cytotoxic and antibacterial angucycline- and prodigiosin- analogues from the deep-sea derived Streptomyces sp. SCSIO 11594. Mar. Drugs 2015, 13, 1304–1316. [Google Scholar] [CrossRef]
- Lai, Z.; Yu, J.; Ling, H.; Song, Y.; Yuan, J.; Ju, J.; Tao, Y.; Huang, H. Grincamycins I–K, Cytotoxic Angucycline Glycosides Derived from Marine-Derived Actinomycete Streptomyces lusitanus SCSIO LR32. Planta Med. 2018, 84, 201–207. [Google Scholar] [CrossRef]
- Morimoto, M.; Okubo, S.; Tomita, F.; Marumo, H. Gilvocarcins, new antitumor antibiotics. 3. Antitumor activity. J. Antibiot. 1981, 34, 701–707. [Google Scholar] [CrossRef]
- Uchida, T.; Imoto, M.; Watanabe, Y.; Miura, K.; Dobashi, T.; Matsuda, N.; Sawa, T.; Naganawa, H.; Hamada, M.; Takeuchi, T.; et al. Saquayamycins, new aquayamycin-group antibiotics. J. Antibiot. 1985, 38, 1171–1181. [Google Scholar] [CrossRef]
- Henkel, T.; Zeeck, A. Derivatives of saquayamycins A and B. Regio- and diastereoselective addition of alcohols to the L-aculose moiety. J. Antibiot. 1990, 43, 830–837. [Google Scholar] [CrossRef]
- Schimana, J.; Walker, M.; Zeeck, A.; Fiedler, H. Simocyclinones: Diversity of metabolites is dependent on fermentation conditions. J. Ind. Microbiol. Biotechnol. 2001, 27, 144–148. [Google Scholar] [CrossRef]
- Schimana, J.; Fiedler, H.P.; Groth, I.; Suessmuth, R.; Beil, W.; Walker, M.; Zeeck, A. Simocyclinones, novel cytostatic angucyclinone antibiotics produced by Streptomyces antibioticus Tü 6040. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 2010, 32, 301–307. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Iwakiri, T.; Imamura, K.; Seto, H.; Otake, N. Studies on the isotetracenone antibiotics. II. Kerriamycins A, B and C, new antitumor antibiotics. J. Antibiot. 1985, 38, 960–963. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Iwakiri, T.; Imamura, K.; Seto, H.; Otake, N. Studies on the isotetracenone antibiotics. I. Capoamycin, a new antitumor antibiotic. J. Antibiot. 1985, 38, 957–959. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Iwakiri, T.; Imamura, K.; Seto, H.; Otake, N. Studies on the isotetracenone antibiotics. III. A new isotetracenone antibiotic, grincamycin. J. Antibiot. 1987, 40, 1785–1787. [Google Scholar] [CrossRef]
- Jakeman, D.L.; Bandi, S.; Graham, C.L.; Reid, T.R.; Wentzell, J.R.; Douglas, S.E. Antimicrobial activities of jadomycin B and structurally related analogues. Antimicrob. Agents Ch. 2009, 3, 1245–1247. [Google Scholar] [CrossRef]
- Bonitto, E.P.; McKeown, B.T.; Goralski, K.B. Jadomycins: A potential chemotherapy for multi-drug-resistant metastatic breast cancer. Pharmacol. Res. Perspect. 2021, 9, e00886. [Google Scholar] [CrossRef]
- Issa, M.E.; Hall, S.R.; Dupuis, S.N.; Graham, C.L.; Jakeman, D.L.; Goralski, K.B. Jadomycins are cytotoxic to ABCB1-, ABCC1-, and ABCG2-overexpressing MCF7 breast cancer cells. Anticancer Drugs. 2014, 25, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Farina, C.F.; McCormick, N.; Robertson, A.W.; Clement, H.; Jee, A.; Ampaw, A.; Chan, N.L.; Syvitski, R.T.; Jakeman, D.L. Investigations into the binding of jadomycin DS to human topoisomerase IIβ by WaterLOGSY NMR spectroscopy. Org. Biomol. Chem. 2015, 13, 10324–10327. [Google Scholar] [CrossRef]
- Forget, S.M.; Robertson, A.W.; Overy, D.P.; Kerr, R.G.; Jakeman, D.L. Furan and Lactam Jadomycin Biosynthetic Congeners Isolated from Streptomyces venezuelae ISP5230 Cultured with Nε-Trifluoroacetyl-L-lysine. J. Nat. Prod. 2017, 80, 1860–1866. [Google Scholar] [CrossRef] [PubMed]
- Maruna, M.; Sturdikova, M.; Liptaj, T.; Godany, A.; Muckova, M.; Certik, M.; Pronayova, N.; Proksa, B. Isolation, structure, elucidation and biological activity of angucycline antibiotics from an epiphytic yew Streptomycete. J. Basic Microbiol. 2010, 50, 135–142. [Google Scholar] [CrossRef]
- Macleod, J.M.; Forget, S.M.; Jakeman, D.L. The Expansive Library of Jadomycins. Can. J. Chem. 2018, 96, 495–501. [Google Scholar] [CrossRef]
- de Koning, C.B.; Ngwira, K.J.; Rousseau, A.L. Biosynthesis, synthetic studies, and biological activities of the jadomycin alkaloids and related analogues. Alkaloids Chem. Biol. 2020, 84, 125–199. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.R.; Blundon, H.L.; Ladda, M.A.; Robertson, A.W.; Martinez-Farina, C.F.; Jakeman, D.L.; Goralski, K.B. Jadomycin breast cancer cytotoxicity is mediated by a copper-dependent, reactive oxygen species-inducing mechanism. Pharmacol. Res. Perspect. 2015, 3, e00110. [Google Scholar] [CrossRef]
- Hall, S.R.; Toulany, J.; Bennett, L.G.; Martinez-Farina, C.F.; Robertson, A.W.; Jakeman, D.L.; Goralski, K.B. Jadomycins Inhibit Type II Topoisomerases and Promote DNA Damage and Apoptosis in Multidrug-Resistant Triple-Negative Breast Cancer Cells. J. Pharmacol. Exp. Ther. 2017, 363, 196–210. [Google Scholar] [CrossRef] [PubMed]
- McKeown, B.T.; Relja, N.J.; Hall, S.R.; Gebremeskel, S.; MacLeod, J.M.; Veinotte, C.J.; Bennett, L.G.; Ohlund, L.B.; Sleno, L.; Jakeman, D.L.; et al. Pilot study of jadomycin B pharmacokinetics and anti-tumoral effects in zebrafish larvae and mouse breast cancer xenograft models. Can. J. Physiol. Pharmacol. 2022, 100, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, E.; Shimizu, Y.; Akagi, Y.; Komatsu, T. Synthesis and in Vitro Cytotoxicity Evaluation of Jadomycins. Chem. Pharm. Bull. 2023, 71, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Kalyon, B.; Tan, G.A.; Pinto, J.M.; Foo, C.; Wiese, J.; Imhoff, J.F.; Suessmuth, R.D.; Sabaratnam, V.; Fiedler, H. Langkocyclines: Novel angucycline antibiotics from Streptomyces sp. Acta 3034. J. Antibiot. 2013, 66, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Boonlarppradab, C.; Suriyachadkun, C.; Rachtawee, P.; Choowong, W. Saccharosporones A, B and C, cytotoxic antimalarial angucyclinones from Saccharopolyspora sp. BCC 21906. J. Antibiot. 2013, 66, 305–309. [Google Scholar] [CrossRef]
- Kang, H.; Brady, S.F. Mining soil metagenomes to better understand the evolution of natural product structural diversity: Pentangular polyphenols as a case study. J. Am. Chem. Soc. 2014, 136, 18111–18119. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, Q.; Bu, Q.; Guo, Y.; Liu, S.; Liu, Y.; Du, Y.; Li, Y. Genome Mining-Directed Activation of a Silent Angucycline Biosynthetic Gene Cluster in Streptomyces chattanoogensis. ChemBioChem 2015, 16, 496–502. [Google Scholar] [CrossRef]
- Li, Z.; Bu, Q.; Wang, J.; Liu, Y.; Chen, X.; Mao, X.; Li, Y. Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB. J. Zhejiang Univ. Sci. B 2019, 20, 983–994. [Google Scholar] [CrossRef]
- Yan, H.; Li, Y.; Zhang, X.Y.; Zhou, W.Y.; Feng, T.J. A new cytotoxic and anti-fungal C-glycosylated benz[α]anthraquinone from the broth of endophytic Streptomyces blastomycetica strain F4-20. J. Antibiot. 2017, 70, 301–303. [Google Scholar] [CrossRef]
- Kim, J.W.; Kwon, Y.; Bang, S.; Kwon, H.E.; Park, S.; Lee, Y.H.; Deyrup, S.; Song, G.; Lee, D.; Joo, H.S. Unusual bridged angucyclinones and potent anticancer compounds from Streptomyces bulli GJA1. Org. Biomol. Chem. 2020, 18, 8443–8449. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.Z.; Wang, S.H.; Gao, H.M.; Ge, Y.M.; Dai, J.; Zhang, X.L.; Yang, Q. Characterization of Bioactivities and Biosynthesis of Angucycline/Angucyclinone Derivatives Derived from Gephyromycinifex aptenodytis gen. nov., sp. nov. Mar. Drugs 2021, 20, 34. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Y.; Bao, K.; Miao, C.; Zhao, L.; Chen, Y.; Wu, S.; Li, Y. Purification and characterization of anti-phytopathogenic fungi angucyclinone from soil-derived Streptomyces cellulosae. Folia Microbiol. 2022, 67, 517–522. [Google Scholar] [CrossRef]
- Xu, X.D.; Zhao, Y.; Bao, K.; Miao, C.P.; Tang, S.K.; Wu, S.H.; Li, Y.Q. Isolation, Structure Elucidation and Antifungal Activity of Angucycline Antibiotics from Streptomycete cellulosae. Appl. Biochem. Microbiol. 2023, 59, 456–461. [Google Scholar] [CrossRef]
- Bao, J.; He, F.; Li, Y.; Fang, L.; Wang, K.; Song, J.; Zhou, J.; Li, Q.; Zhang, H. Cytotoxic antibiotic angucyclines and actinomycins from the Streptomyces sp. XZHG99T. J. Antibiot. 2018, 71, 1018–1024. [Google Scholar] [CrossRef]
- Voitsekhovskaia, I.; Paulus, C.; Dahlem, C.; Rebets, Y.; Nadmid, S.; Zapp, J.; Axenov-Gribanov, D.; Ruckert, C.; Timofeyev, M.; Kalinowski, J.; et al. Baikalomycins A–C, new aquayamycin-type angucyclines isolated from lake baikal derived Streptomyces sp. IB201691-2A. Microorganisms 2020, 8, 680. [Google Scholar] [CrossRef]
- Ma, M.; Rateb, M.E.; Teng, Q.; Yang, D.; Shen, B. Angucyclines and Angucyclinones from Streptomyces sp. CB01913 Featuring C-Ring Cleavage and Expansion. J. Nat. Prod. 2015, 78, 2471–2480. [Google Scholar] [CrossRef]
- Sakai, K.; Takao, R.; Koshino, H.; Futamura, Y.; Osada, H.; Takahashi, S. 6,9-Dihydroxytetrangulol, a novel angucyclinone antibiotic accumulated in kiqO gene disruptant in the biosynthesis of kinanthraquinone. J. Antibiot. 2021, 74, 593–595. [Google Scholar] [CrossRef] [PubMed]
- Theriault, R.J.; Rasmussen, R.R.; Kohl, W.L.; Prokop, J.F.; Hutch, T.B.; Barlow, G.J. Benzanthrins A and B, a new class of quinone antibiotics. I. Discovery, fermentation and antibacterial activity. J. Antibiot. 1986, 39, 1509–1514. [Google Scholar] [CrossRef]
- Rasmussen, R.R.; Nuss, M.E.; Scherr, M.H.; Mueller, S.L.; Mcalpine, J.B.; Mitscher, L.A. benzanthrins a and b, a new class of quinone antibiotics ii. isolation, elucidation of structure and potential antitumor activity. J. Antibiot. 1986, 39, 1515–1526. [Google Scholar] [CrossRef]
- Kawashima, A.; Yoshimura, Y.; Goto, J.; Nakaike, S.; Mizutani, T.; Hanada, K.; Omura, S. PI-083, a new platelet aggregation inhibitor. J. Antibiot. 1988, 41, 1913–1914. [Google Scholar] [CrossRef]
- Nemoto, A.; Tanaka, Y.; Karasaki, Y.; Komaki, H.; Yazawa, K.; Mikami, Y.; Tojo, T.; Kadowaki, K.; Tsuda, M.; Kadowaki, K. Brasiliquinones A, B and C, New benz[α]anthraquinone Antibiotics from Nocardia brasiliensis. J. Antibiot. 1997, 50, 18–21. [Google Scholar] [CrossRef]
- Hasinoff, B.B.; Wu, X.; Yalowich, J.C.; Goodfellow, V.; Laufer, R.S.; Adedayo, O.; Dmitrienko, G.I. Kinamycins A and C, bacterial metabolites that contain an unusual diazo group, as potential new anticancer agents: Antiproliferative and cell cycle effects. Anti-Cancer Drugs 2006, 17, 825–837. [Google Scholar] [CrossRef]
- Omura, S.; Nakagawa, A.; Yamada, H.; Hata, T.; Furusaki, A.; Watanabe, T. Structure of Kinamycin C, and the Structural Relationship among Kinamycin A, B, C, and D. Chem. Pharm. Bull. 1971, 19, 2428–2430. [Google Scholar] [CrossRef]
- Wada, S.-I.; Sawa, R.; Iwanami, F.; Nagayoshi, M.; Kubota, Y.; Iijima, K.; Hayashi, C.; Shibuya, Y.; Hatano, M.; Igarashi, M.; et al. Structures and biological activities of novel 4′-acetylated analogs of chrysomycins A and B. J. Antibiot. 2017, 70, 1078–1082. [Google Scholar] [CrossRef]
- Matulova, M.; Feckova, L.; Novakova, R.; Mingyar, E.; Kormanec, J. A Structural Analysis of the Angucycline-Like Antibiotic Auricin from Streptomyces lavendulae Subsp. Lavendulae CCM 3239 Revealed Its High Similarity to Griseusins. J. Antibiot. 2019, 8, 102. [Google Scholar] [CrossRef]
- Martin, G.D.A.; Tan, L.T.; Jensen, P.R.; Dimayuga, R.E.; Fairchild, C.R.; Raventos-Suarez, C.; Fenical, W. Marmycins A and B, cytotoxic pentacyclic C-glycosides from a marine sediment-derived actinomycete related to the genus Streptomyces. J. Nat. Prod. 2007, 70, 1406–1409. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.; Schleissner, C.; Rodríguez, P.; Zúñiga, P.; Benedit, G.; Sánchez-Sancho, F.; de la Calle, F. PM070747, a new cytotoxic angucyclinone from the marine-derived Saccharopolyspora taberi PEM-06-F23-019B. J. Antibiot. 2009, 62, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yang, T.; Ren, X.; Liu, J.; Song, Y.; Sun, A.; Ma, J.; Wang, B.; Zhang, Y.; Huang, C.; et al. Cytotoxic Angucycline Class Glycosides from the Deep Sea Actinomycete Streptomyces lusitanus SCSIO LR32. J. Nat. Prod. 2012, 75, 202–208. [Google Scholar] [CrossRef]
- Peng, A.; Qu, X.; Liu, F.; Li, X.; Li, E.; Xie, W. Angucycline glycosides from an intertidal sediments strain Streptomyces sp. and their cytotoxic activity against hepatoma carcinoma cells. Mar. Drugs 2018, 16, 470. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Liu, B.; Wang, H.; Yang, S.; Zhang, H.; Wang, Y.; Ji, N.; Qin, S.; Laatsch, H. Kiamycin, a unique cytotoxic angucyclinone derivative from a marine Streptomyces sp. Mar. Drugs 2012, 10, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Mullowney, M.W.; hAinmhire, E.O.; Tanouye, U.; Burdette, J.E.; Pham, V.C.; Murphy, B.T. A pimarane diterpene and cytotoxic angucyclines from a marine-derived Micromonospora sp. in Vietnam’s East Sea. Mar. Drugs 2015, 13, 5815–5827. [Google Scholar] [CrossRef]
- Jiang, Y.; Gan, L.; Ding, W.; Chen, Z.; Ma, Z. Cytotoxic gephyromycins from the Streptomyces sp. SS13I. Tetrahedron Lett. 2017, 58, 3747–3750. [Google Scholar] [CrossRef]
- Zhou, B.; Ji, Y.; Zhang, H.; Shen, L. Gephyyamycin and cysrabelomycin, two new angucyclinone derivatives from the Streptomyces sp. HN-A124. Nat. Prod. Res. 2021, 35, 2117–2122. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Ren, J.; Peng, A.; Lin, S.; Lu, D.; Du, Q.; Liu, L.; Li, X.; Li, E.; Xie, W. Cytotoxic, anti-migration, and anti-invasion activities on breast cancer cells of angucycline glycosides isolated from a marine-derived Streptomyces sp. Mar. Drugs 2019, 17, 277. [Google Scholar] [CrossRef]
- Li, J.; Han, N.; Zhang, H.; Xie, X.; Zhu, Y.; Zhang, E.; Ma, J.; Shang, C.; Yin, M.; Xie, W.; et al. Saquayamycin B1 Suppresses Proliferation, Invasion, and Migration by Inhibiting PI3K/AKT Signaling Pathway in Human Colorectal Cancer Cells. Mar. Drugs 2022, 20, 570. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, F.; Zhou, L.; Chang, Y.; Che, Q.; Zhu, T.; Li, D.; Zhang, G. Overexpression of Global Regulator SCrp Leads to the Discovery of New Angucyclines in Streptomyces sp. XS-16. Mar. Drugs 2023, 21, 240. [Google Scholar] [CrossRef]
- Zhang, Z.; In, Y.; Fukaya, K.; Yang, T.; Harunari, E.; Urabe, D.; Imada, C.; Oku, N.; Igarashi, Y. Kumemicinones A–G, Cytotoxic Angucyclinones from a Deep Sea-Derived Actinomycete of the Genus. J. Nat. Prod. 2022, 85, 1098–1108. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.; An, J.S.; Hong, S.H.; Bae, E.S.; Chung, B.; Kwon, Y.; Hong, S.; Oh, K.B.; Shin, J.; Lee, S.K. Donghaecyclinones A–C: New Cytotoxic Rearranged Angucyclinones from a Volcanic Island-Derived Marine Streptomyces sp. Mar. Drugs 2020, 18, 121. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Xing, L.; Sun, C.; Liang, S.; Liu, T.; Zhang, X.; Zhu, T.; Pfeifer, B.A.; Che, Q.; Zhang, G.; et al. Monacycliones G–K and ent-Gephyromycin A, Angucycline Derivatives from the Marine-Derived Streptomyces sp. HDN15129. J. Nat. Prod. 2020, 83, 2749–2755. [Google Scholar] [CrossRef]
- Shang, Z.; Ferris, Z.E.; Sweeney, D.; Chase, A.B.; Li, J. Grincamycins P–T: Rearranged Angucyclines from the Marine Sediment-Derived Streptomyces sp. CNZ-748 Inhibit Cell Lines of the Rare Cancer Pseudomyxoma Peritonei. J. Nat. Prod. 2021, 84, 1638–1648. [Google Scholar] [CrossRef] [PubMed]
- Vicente, J.; Stewart, A.K.; van Wagoner, R.M.; Elliott, E.; Bourdelais, A.J.; Wrigh, J.L.C. Monacyclinones, new angucyclinone metabolites isolated from Streptomyces sp. M7_15 associated with the Puerto Rican Sponge Scopalina ruetzleri. Mar. Drugs 2015, 13, 4682–4700. [Google Scholar] [CrossRef]
- Guo, Z.K.; Wang, T.; Guo, Y.; Song, Y.C.; Tan, R.X.; Ge, H.M. Cytotoxic angucyclines from Amycolatopsis sp. HCa1, a rare actinobacteria derived from Oxya chinensis. Planta Med. 2011, 77, 2057–2060. [Google Scholar] [CrossRef]
- Omura, S.; Nakagawa, A.; Fukamachi, N.; Miura, S.; Takahashi, Y.; Komiyama, K.; Kobayashi, B. OM-4842, a new platelet aggregation inhibitor from Streptomyces. J. Antibiot. 1988, 41, 812–813. [Google Scholar] [CrossRef]
- Oka, M.; Kamei, H.; Hamagishi, Y.; Tomita, K.; Miyaki, T.; Konishi, M.; Oki, T. Chemical and biological properties of rubiginone, a complex of new antibiotics with vincristine-cytotoxicity potentiating activity. J. Antibiot. 1990, 43, 967–976. [Google Scholar] [CrossRef]
- Abdelfattah, M.S.; Kharel, M.K.; Hitron, J.A.; Baig, I.; Rohr, J. Moromycins A and B, Isolation and Structure Elucidation of C-Glycosylangucycline-Type Antibiotics from Streptomyces sp. KY002. J. Nat. Prod. 2008, 71, 1569–1573. [Google Scholar] [CrossRef]
- Shaaban, K.A.; Ahmed, T.A.; Leggas, M.; Rohr, J. Saquayamycins G–K, Cytotoxic Angucyclines from Streptomyces sp. Including Two Analogues Bearing the Aminosugar Rednose. J. Nat. Prod. 2012, 75, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, X.; Ishida, K.; Maier, A.; Kelter, G.; Jiang, Y.; Peschel, G.; Menzel, K.; Li, M.; Wen, M.; et al. Plasticity in gilvocarcin-type C-glycoside pathways: Discovery and antitumoral evaluation of polycarcin V from Streptomyces polyformus. Org. Biomol. Chem. 2008, 6, 3601–3605. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Lu, X.; Ke, A.; Zheng, Z.; Lin, J.; Hao, W.; Zhu, J.; Fan, Y.; Ding, Y.; Jiang, Q.; et al. Three novel members of angucycline group from Streptomyces sp. N05WA963. J. Antibiot. 2011, 64, 339–343. [Google Scholar] [CrossRef]
- Helaly, S.E.; Goodfellow, M.; Zinecker, H.; Imhoff, J.F.; Suessmuth, R.D.; Fiedler, H. Warkmycin, a novel angucycline antibiotic produced by Streptomyces sp. Acta 2930. J. Antibiot. 2013, 66, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cheema, M.T.; Ponomareva, L.V.; Ye, Q.; Shaaban, K.A. Himalaquinones A–G, Angucyclinone-Derived Metabolites Produced by the Himalayan Isolate Streptomyces sp. PU-MM59. J. Nat. Prod. 2021, 84, 1930–1940. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, H.; Ohta, K.; Kanamaru, T.; Ishimaru, T.; Kishi, T. A potent prolyl hydroxylase inhibitor, P-1894B, produced by a strain of Streptomyces. J. Antibiot. 1981, 34, 1355–1356. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Kuriki, H.; Kitamura, T.; Takahashi, D.; Toshima, K. Total Synthesis and Structure-Activity Relationship Study of Vineomycin A1. J. Org. Chem. 2019, 84, 14724–14732. [Google Scholar] [CrossRef]
- Matseliukh, B.P.; Lavrinchuk, V.I. The isolation and characteristics of mutant Streptomyces globisporus 1912 defective for landomycin E biosynthesis. Mikrobiolohichnyi Zhurnal 1999, 61, 22. [Google Scholar] [PubMed]
- Korynevska, A.; Heffeter, P.; Matselyukh, B.; Elbling, L.; Micksche, M.; Stoika, R.; Berger, W. Mechanisms underlying the anticancer activities of the angucycline landomycin E. Biochem. Pharmacol. 2007, 74, 1713–1726. [Google Scholar] [CrossRef] [PubMed]
- Ostash, B.; Rix, U.; Rix, L.L.R.; Liu, T.; Lombo, F.; Luzhetskyy, A.; Gromyko, O.; Wang, C.; Braña, A.F.; Méndez, C. Generation of new landomycins by combinatorial biosynthetic manipulation of the LndGT4 gene of the landomycin E cluster in S. globisporus. Chem. Biol. 2004, 11, 547–555. [Google Scholar] [CrossRef]
- Henkel, T.; Jürgen, R.; Beale, J.M.; Schwenen, L. Landomycins, new angucycline antibiotics from Streptomyces sp. I. Structural studies on landomycins A–D. J. Antibiot. 1990, 43, 492. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.; Zolke, C.; Rohr, J.; Beale, J.M. Investigations of the biosynthesis and structural revision of landomycin A. J. Org. Chem. 1994, 59, 4211–4214. [Google Scholar] [CrossRef]
- Ostash, B.; Korynevska, A.; Stoika, R.; Fedorenko, V. Chemistry and Biology of Landomycins, an Expanding Family of Polyketide Natural Products. Mini-Rev. Med. Chem. 1040. [Google Scholar] [CrossRef]
- Mulert, V.U.; Luzhetskyy, A.; Hofmann, C.; Mayer, A.; Bechthold, A. Expression of the landomycin biosynthetic gene cluster in a PKS mutant of Streptomyces fradiae is dependent on the coexpression of a putative transcriptional activator gene. FEMS Microbiol. Lett. 2004, 230, 91–97. [Google Scholar] [CrossRef]
- Zhu, L.; Luzhetskyy, A.; Luzhetska, M.; Mattingly, C.; Adams, V.; Bechthold, A.; Rohr, J. Generation of New Landomycins with Altered Saccharide Patterns through Over-expression of the Glycosyltransferase Gene lanGT3 in the Biosynthetic Gene Cluster of Landomycin A in Streptomyces cyanogenus S-136. ChemBioChem 2007, 8, 83–88. [Google Scholar] [CrossRef]
- Luzhetskyy, A.; Liu, T.; Fedoryshyn, M.; Ostash, B.; Bechthold, A. Function of lanGT3, a glycosyltransferase gene involved in landomycin a biosynthesis. ChemBioChem 2004, 5, 1567–1570. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, M.D.; Liu, T.; Mendez, C.; Salas, J.A.; Rohr, J. Engineered biosynthesis of gilvocarcin analogues with altered deoxyhexopyranose moieties. Appl. Environ. Microbiol. 2011, 77, 435–441. [Google Scholar] [CrossRef]
- Luzhetskyy, A.; Zhu, L.; Gibson, M.; Fedoryshyn, M.; Bechthold, A. Generation of Novel Landomycins M and O through Targeted Gene Disruption. ChemBioChem 2010, 6, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Krohn, K.; Böker, N.; Flörke, U.; Freund, C. Synthesis of Angucyclines. 8. Biomimetic-Type Synthesis of Rabelomycin, Tetrangomycin, and Related Ring B Aromatic Angucyclinones. J. Org. Chem. 1997, 62, 2350–2356. [Google Scholar] [CrossRef]
- Kuntsmann, M.P.; Mitscher, L.A. The Structural Characterization of Tetrangomycin and Tetrangulol. J. Org. Chem. 1966, 31, 2920–2925. [Google Scholar] [CrossRef]
- Krohn, K.; Khanbabaee, D.C.K. First Total Synthesis of (±)-Rabelomycin. Angew. Chem. Int. Ed. 1994, 33, 99–100. [Google Scholar] [CrossRef]
- Shaaban, K.A.; Srinivasan, S.; Kumar, R.; Damodaran, C.; Rohr, J. Landomycins P–W, cytotoxic angucyclines from Streptomyces cyanogenus S-136. J. Nat. Prod. 2011, 74, 2–11. [Google Scholar] [CrossRef]
- Shaaban, K.A.; Stamatkin, C.; Damodaran, C.; Rohr, J. 11-Deoxylandomycinone and landomycins X–Z, new cytotoxic angucyclin(on)es from a Streptomyces cyanogenus K62 mutant strain. J. Antibiot. 2011, 64, 141–150. [Google Scholar] [CrossRef]
- Liu, T.; Kharel, M.K.; Zhu, L.; Bright, S.A.; Mattingly, C.; Adams, V.R.; Rohr, J. Inactivation of the Ketoreductase gilU Gene of the Gilvocarcin Biosynthetic Gene Cluster Yields New Analogues with Partly Improved Biological Activity. ChemBioChem 2009, 10, 278–286. [Google Scholar] [CrossRef]
- O’Hara, K.A.; Wu, X.; Patel, D.; Liang, H.; Yalowich, J.C.; Chen, N.; Goodfellow, V.; Adedayo, O.; Dmitrienko, G.I.; Hasinoff, B.B. Mechanism of the cytotoxicity of the diazoparaquinone antitumor antibiotic kinamycin F. Free Radical Biol. Med. 2007, 43, 1132–1144. [Google Scholar] [CrossRef]
- Woo, C.M.; Beizer, N.E.; Janso, J.E.; Herzon, S.B. Isolation of Lomaiviticins C–E, Transformation of Lomaiviticin C to Lomaiviticin A, Complete Structure Elucidation of Lomaiviticin A, and Structure-Activity Analyses. J. Am. Chem. Soc. 2012, 134, 15285–15288. [Google Scholar] [CrossRef]
- Yang, C.; Huang, C.; Fang, C.; Zhang, L.; Chen, S.; Zhang, Q.; Zhang, C.; Zhang, W. Inactivation of Flavoenzyme-Encoding Gene flsO1 in Fluostatin Biosynthesis Leads to Diversified Angucyclinone Derivatives. J. Org. Chem. 2021, 86, 11019–11028. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, E.; Liu, H.W. Mechanistic studies of the biosynthesis of 2-thiosugar: Evidence for the formation of an enzyme-bound 2-ketohexose intermediate in BexX-catalyzed reaction. J. Am. Chem. Soc. 2010, 132, 15544–15546. [Google Scholar] [CrossRef]
- Abdalla, M.A.; Helmke, E.; Laatsch, H. Fujianmycin C, A bioactive angucyclinone from a marine derived Streptomyces sp. B6219. Nat. Prod. Commun. 2010, 5, 1917–1920. [Google Scholar] [CrossRef] [PubMed]
- Kalinovskaya, N.I.; Kalinovsky, A.I.; Romanenko, L.A.; Pushilin, M.A.; Dmitrenok, P.S.; Kuznetsova, T.A. New angucyclinones from the marine mollusk-associated actinomycete Saccharothrix espanaensis An 113. Nat. Prod. Commun. 2008, 3, 1611–1616. [Google Scholar] [CrossRef]
- Akhter, N.; Liu, Y.; Auckloo, B.N.; Shi, Y.; Wang, K.; Chen, J.; Wu, X.; Wu, B. Stress-driven discovery of new angucycline-type antibiotics from a marine Streptomyces pratensis NA-ZhouS1. Mar. Drugs 2018, 16, 331/1–331/16. [Google Scholar] [CrossRef]
- Xu, D.; Nepal, K.K.; Harmody, D.; McCarthy, P.J.; Wright, A.E.; Wang, G.; Chen, J.; Zhu, H. Nocardiopsistins A–C: New angucyclines with anti-MRSA activity isolated from a marine sponge-derived Nocardiopsis sp. HB-J378. Synth. Syst. Biotechnol. 2018, 3, 246–251. [Google Scholar] [CrossRef]
- Xu, D.; Metz, J.; Harmody, D.; Peterson, T.; Winder, P.; Guzman, E.A.; Russo, R.; McCarthy, P.J.; Wright, A.E.; Wang, G. Brominated and Sulfur-Containing Angucyclines Derived from a Single Pathway: Identification of Nocardiopsistins D–F. Org. Lett. 2022, 24, 7900–7904. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Hou, L.; Li, H.; Li, W. Antibiotic angucycline derivatives from the deepsea-derived Streptomyces lusitanus. Nat. Prod. Res. 2020, 34, 3444–3450. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Dai, G.; Li, A.; Liu, Y.; Zhong, G.; Li, X.; Ren, X.; Sui, H.; Fu, J.; Jiao, N.; et al. Genome-Guided Discovery of Highly Oxygenated Aromatic Polyketides, Saccharothrixins D–M, from the Rare Marine Actinomycete Saccharothrix sp. D09. J. Nat. Prod. 2021, 84, 2875–2884. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yang, Y.; Gong, G.; Li, Z.; Zhang, L.; Guo, L.; Xu, B.; Zhang, S.; Xie, Z. Angucycline and angucyclinone derivatives from the marine-derived Streptomyces sp. Chirality 2022, 34, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yang, C.; Huang, C.; Zhang, L.; Zhang, H.; Zhang, Q.; Yuan, C.; Zhu, Y.; Zhang, C.; Zhang, W.; et al. Pyrazolofluostatins A–C, Pyrazole-Fused Benzoafluorenes from South China Sea-Derived Micromonospora rosaria SCSIO N160. Org. Lett. 2017, 19, 592–595. [Google Scholar] [CrossRef]
- Yang, C.; Huang, C.; Zhang, W.; Zhu, Y.; Zhang, C. Heterologous expression of fluostatin gene cluster leads to a bioactive heterodimer. Org. Lett. 2015, 17, 5324–5327. [Google Scholar] [CrossRef]
- Nagasawa, T.; Fukao, H.; Irie, H.; Yamada, H. Sakyomicins A, B, C and D: New quinone-type antibiotics produced by a strain of Nocardia. Taxonomy, production, isolation and biological properties. J. Antibiot. 1984, 37, 693–699. [Google Scholar] [CrossRef]
- Grabley, S.; Hammann, P.; Hütter, K.; Kluge, H.; Thiericke, R.; Wink, J.; Zeeck, A. Secondary metabolites by chemical screening. Part 19. SM 196 A and B, novel biologically active angucyclinones from Streptomyces sp. J. Antibiot. 1991, 44, 670. [Google Scholar] [CrossRef] [PubMed]
- Arai, M.; Tomoda, H.; Tabata, N.; Ishiouro, N.; Kobayashi, S.; Omura, S. Deacetylravidomycin M, a new inhibitor of IL-4 signal transduction, produced by Streptomyces sp. WK-6326. II. Structure elucidation. J. Antibiot. 2001, 54, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Abdelfattah, M.; Maskey, R.P.; Asolkar, R.N.; Gruen-Wollny, I.; Laatsch, H. Seitomycin: Isolation, structure elucidation and biological activity of a new angucycline antibiotic from a terrestrial streptomycete. J. Antibiot. 2003, 56, 539–542. [Google Scholar] [CrossRef]
- Boudjella, H.; Bouti, K.; Zitouni, A.; Mathieu, F.; Lebrihi, A.; Sabaou, N. Isolation and partial characterization of pigment-like antibiotics produced by a new strain of Streptosporangium isolated from an Algerian soil. J. Appl. Microbiol. 2007, 103, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Boudjella, H.; Zitouni, A.; Coppel, Y.; Mathieu, F.; Monje, M.; Sabaou, N.; Lebrihi, A. Antibiotic R2, a new angucyclinone compound from Streptosporangium sp. Sg3. J. Antibiot. 2010, 63, 709–711. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, M.; Watanabe, T.; Hashida, T.; Umekita, M.; Hatano, M.; Yanagida, Y.; Kino, H.; Kimura, T.; Kinoshita, N.; Inoue, K.; et al. Waldiomycin, a novel WalK-histidine kinase inhibitor from Streptomyces sp. MK844-mF10. J. Antibiot. 2013, 66, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Fakhruzzaman, M.; Inukai, Y.; Yanagida, Y.; Kino, H.; Igarashi, M.; Eguchi, Y.; Utsumi, R. Study on in vivo effects of bacterial histidine kinase inhibitor, Waldiomycin, in Bacillus subtilis and Staphylococcus aureus. J. Gen. Appl. Microbiol. 2015, 61, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Broetz, E.; Bilyk, O.; Kroeger, S.; Paululat, T.; Bechthold, A.; Luzhetskyy, A. Amycomycins C and D, new angucyclines from Kitasatospora sp. Tetrahedron Lett. 2014, 55, 5771–5773. [Google Scholar] [CrossRef]
- Myronovskyi, M.; Broetz, E.; Rosenkraenzer, B.; Manderscheid, N.; Tokovenko, B.; Rebets, Y.; Luzhetskyy, A. Generation of new compounds through unbalanced transcription of landomycin A cluster. Appl. Microbiol. Biotechnol. 2016, 100, 9175–9186. [Google Scholar] [CrossRef] [PubMed]
- Park, H.B.; Lee, J.K.; Lee, K.R.; Kwon, H.C. Angumycinones A and B, two new angucyclic quinones from Streptomyces sp. KMC004 isolated from acidic mine drainage. Tetrahedron Lett. 2014, 55, 63–66. [Google Scholar] [CrossRef]
- Cruz, J.C.S.; Sosio, M.; Donadio, S.; Cruz, J.C.S.; Maffioli, S.I.; Wellington, E.; Maffioli, S.I.; Bernasconi, A.; Brunati, C.; Gaspari, E.; et al. Allocyclinones, hyperchlorinated angucyclinones from Actinoallomurus. J. Antibiot. 2017, 70, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Tata, S.; Aouiche, A.; Bijani, C.; Bouras, N.; Pont, F.; Mathieu, F.; Sabaou, N. Mzabimycins A and B, novel intracellular angucycline antibiotics produced by Streptomyces sp. PAL114 in synthetic medium containing L-tryptophan. Saudi Pharm. J. 2019, 27, 907–913. [Google Scholar] [CrossRef]
- Izyani Awang, A.F.; Ahmed, Q.U.; Shah, S.A.A.; Jaffri, J.M.; Ghafoor, K.; Uddin, A.B.M.H.; Ferdosh, S.; Islam Sarker, M.Z. Isolation and characterization of novel antibacterial compound from an untapped plant, Stereospermum fimbriatum. Nat. Prod. Res. 2020, 34, 629–637. [Google Scholar] [CrossRef]
- Keiichiro; Motohashi; Motoki; Takagi; Hideki; Yamamura; Masayuki; Hayakawa; Kazuo; Shin-ya. A new angucycline and a new butenolide isolated from lichen-derived Streptomyces spp. J. Antibiot. 2010, 63, 545–548. [Google Scholar] [CrossRef]
- Nakagawa, K.; Hara, C.; Tokuyama, S.; Takada, K.; Imamura, N. Saprolmycins A–E, new angucycline antibiotics active against Saprolegnia parasitica. J. Antibiot. 2012, 65, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Bruntner, C.; Binder, T.; Pathom-Aree, W.; Goodfellow, M.; Bull, A.T.; Potterat, O.; Puder, C.; Hoerer, S.; Schmid, A.; Bolek, W.; et al. Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica. J. Antibiot. 2005, 58, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Shigihara, Y.; Koizumi, Y.; Tamamura, T.; Homma, Y.; Isshiki, K.; Dobashi, K.; Naganawa, H.; Takeuchi, T. 6-Deoxy-8-O-methylrabelomycin and 8-O-methylrabelomycin from a Streptomyces species. J. Antibiot. 1988, 41, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Schwitalla, J.W.; Benndorf, R.; Baunach, M.; Steinbeck, C.; Görls, H.; de Beer, Z.W.; Regestein, L.; Beemelmanns, C. Gene Cluster Activation in a Bacterial Symbiont Leads to Halogenated Angucyclic Maduralactomycins and Spirocyclic Actinospirols. Org. Lett. 2020, 22, 2634–2638. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Ji, C.; Lee, D.; Shim, S.H.; Joo, H.; Kang, H. Acidonemycins A–C, Glycosylated Angucyclines with Antivirulence Activity Produced by the Acidic Culture of Streptomyces indonesiensis. J. Nat. Prod. 2023, 86, 2039–2045. [Google Scholar] [CrossRef]
- Abdelmohsen, U.R.; Cheng, C.; Viegelmann, C.; Zhang, T.; Grkovic, T.; Ahmed, S.; Quinn, R.J.; Hentschel, U.; Edrada-Ebel, R. Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-Actinokineospora sp. EG49. Mar. Drugs 2014, 12, 1220–1244. [Google Scholar] [CrossRef]
- Grkovic, T.; Abdelmohsen, U.R.; Othman, E.M.; Stopper, H.; Edrada-Ebel, R.A.; Hentschel, U.; Quinn, R.J. Two new antioxidant actinosporin analogues from the calcium alginate beads culture of sponge-associated Actinokineospora sp. strain EG49. Bioorg. Med. Chem. Lett. 2014, 24, 5089–5092. [Google Scholar] [CrossRef] [PubMed]
- Alhadrami, H.A.; Thissera, B.; Hassan, M.H.A.; Behery, F.A.; Ngwa, C.J.; Hassan, H.M.; Pradel, G.; Abdelmohsen, U.R.; Rateb, M.E. Bio-guided isolation of antimalarial metabolites from the coculture of two red sea sponge-derived Actinokineospora and Rhodococcus spp. Mar. Drugs 2021, 19, 109. [Google Scholar] [CrossRef]
- Tawfike, A.; Attia, E.Z.; Desoukey, S.Y.; Hajjar, D.; Makki, A.A.; Schupp, P.J.; Edrada-Ebel, R.; Abdelmohsen, U.R. New bioactive metabolites from the elicited marine sponge-derived bacterium Actinokineospora spheciospongiae sp. nov. AMB Express 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.S.; Kim, G.J.; Lee, B.; Oh, T.H.; Kwon, M.; Lee, J.; Jang, J.; Choi, H.; Ko, S.; Hong, Y.; et al. Highly oxygenated angucycline from Streptomyces sp. KCB15JA014. J. Antibiot. 2020, 73, 859–862. [Google Scholar] [CrossRef] [PubMed]
- Paululat, T.; Kulik, A.; Hausmann, H.; Karagouni, A.D.; Zinecker, H.; Imhoff, J.F.; Fiedler, H.P. Grecocyclines: New Angucyclines from Streptomyces sp. Acta 1362. Eur. J. Org. Chem. 2010, 12, 2344–2350. [Google Scholar] [CrossRef]
- Bringmann, G.; Lang, G.; Maksimenka, K.; Hamm, A.; Gulder, T.A.M.; Dieter, A.; Bull, A.T.; Stach, J.E.M.; Kocher, N.; Müller, W.E.G. Gephyromycin, the first bridged angucyclinone, from Streptomyces griseus strain NTK 14. Phytochem. 2005, 66, 1366–1373. [Google Scholar] [CrossRef]
- Kim, G.S.; Jang, J.P.; Oh, T.H.; Kwon, M.; Jang, J.H. Angucyclines Containing β-Glucuronic Acid from Streptomyces sp. KCB15JA151. Bioorg. Med. Chem. Lett. 2021, 48, 128237. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, L.; Zhou, Z.; Wang, Y.; Huang, J.; Ma, Y.; Liu, Y.; Huang, S. Cangumycins A–F, six new angucyclinone analogues with immunosuppressive activity from Streptomyces. Chin. J. Nat. Med. 2019, 17, 982–987. [Google Scholar] [CrossRef]
- Alvi, K.A.; Baker, D.D.; Stienecker, V.; Hosken, M.; Nair, B.G. Identification of inhibitors of inducible nitric oxide synthase from microbial extracts. J. Antibiot. 2000, 53, 496–501. [Google Scholar] [CrossRef]
- Su, H.; Shao, H.; Zhang, K.; Li, G. Antibacterial metabolites from the Actinomycete Streptomyces sp. P294. J. Microbiol. 2016, 54, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Carr, G.; Derbyshire, E.R.; Caldera, E.; Currie, C.R.; Clardy, J. Antibiotic and antimalarial quinones from fungus-growing ant-associated Pseudonocardia sp. J. Nat. Prod. 2012, 75, 1806–1809. [Google Scholar] [CrossRef] [PubMed]
- Ayukawa, S.; Takeuchi, T.; Sezaki, M.; Hara, T.; Umezawa, H.; Nagatsu, T. Inhibition of tyrosine hydroxylase by aquayamycin. J. Antibiot. 1968, 21, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Nagatsu, T.; Ayukawa, S.; Umezawa, H. Inhibition of dopamine β-hydroxylase by aquayamycin. J. Antibiot. 1968, 21, 354–357. [Google Scholar] [CrossRef]
- Hayaishi, O.; Okuno, S.; Fujisawa, H.; Umezawa, H. Inhibition of brain tryptophan 5-monooxygenase by aquayamycin. Biochem. Biophys. Res. Commun. 1970, 39, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Sekizawa, R.; Iinuma, H.; Naganawa, H.; Hamada, M.; Takeuchi, T.; Yamaizumi, J.; Umezawa, K. Isolation of novel saquayamycins as inhibitors of farnesyl-protein transferase. J. Antibiot. 1996, 49, 487–490. [Google Scholar] [CrossRef]
- Schafer, M.; Le, T.B.K.; Hearnshaw, S.J.; Maxwell, A.; Challis, G.L.; Wilkinson, B.; Buttner, M.J. SimC7 is a novel NAD(P)H-dependent ketoreductase essential for the antibiotic activity of the DNA gyrase inhibitor simocyclinone. J. Mol. Biol. 2015, 427, 2192–2204. [Google Scholar] [CrossRef]
- Potterat, O.; Puder, C.; Wagner, K.; Bolek, W.; Vettermann, R.; Kauschke, S.G. Chlorocyclinones A–D, chlorinated angucyclinones from Streptomyces sp. strongly antagonizing rosiglitazone-induced PPAR-gamma activation. J. Nat. Prod. 2007, 70, 1934–1938. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, M.; Shen, W.; Ren, X.; Zheng, H.; Mu, Y.; Lu, X.; Zhai, L. A new series of IDO1 inhibitors derived from microbial metabolites. Phytochem. Lett. 2023, 54, 76–80. [Google Scholar] [CrossRef]
- Kawashima, A.; Kishimura, Y.; Tamai, M.; Hanada, K. New platelet aggregation inhibitors. Chem. Pharm. Bull. 1989, 37, 3429–3431. [Google Scholar] [CrossRef]
- Uesato, S.; Tokunaga, T.; Takeuchi, K. Novel angucycline compound with both antigastrin- and gastric mucosal protective-activities. Bioorg. Med. Chem. Lett. 1998, 8, 1969–1972. [Google Scholar] [CrossRef]
- Uesato, S.; Tokunaga, T.; Mizuno, Y.; Fujioka, H.; Kuwajima, H. Absolute Stereochemistry of Gastric Antisecretory Compound P371A1 and Its Congener P371A2 from Streptomyces Species P371. J. Nat. Prod. 2000, 63, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Alvarino, R.; Alonso, E.; Lacret, R.; Oves-Costales, D.; Genilloud, O.; Reyes, F.; Alfonso, A.; Botana, L.M. Streptocyclinones A and B ameliorate Alzheimer’s disease pathological processes in vitro. Neuropharmacology 2018, 141, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Westrich, L.; Domann, S.; Faust, B.; Bedford, D.; Hopwood, D.A.; Bechthold, A. Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol. Lett. 1999, 170, 381–387. [Google Scholar] [CrossRef]
- Matselyukh, B.P.; Polishchuk, L.V.; Lukyanchuk, V.V.; Golembiovska, S.L.; Lavrenchuk, V.Y. Sequences of Landomycin E and Carotenoid Biosynthetic Gene Clusters, and Molecular Structure of Transcriptional Regulator of Streptomyces globisporus 1912. Mikrobiol. Z. 2016, 78, 60–70. [Google Scholar] [CrossRef]
- Feng, Z.; Kallifidas, D.; Brady, S.F. Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites. Proc. Natl. Acad. Sci. USA 2011, 108, 12629–12634. [Google Scholar] [CrossRef] [PubMed]
- Ostash, B.; Rebets, Y.; Yuskevich, V.; Luzhetskyy, A.; Tkachenko, V.; Fedorenko, V. Targeted disruption of Streptomyces globisporus lndF and lndL cyclase genes involved in landomycin E biosynthesis. Folia. Microbiol. 2003, 48, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Ostash, B.; Rix, U.; Nur-E-Alam, M.; Mayers, A.; Luzhetskyy, A.; Mendez, C.; Salas, J.A.; Bechthold, A.; Fedorenko, V.; et al. Identification of the function of gene lndM2 encoding a bifunctional oxygenase-reductase involved in the biosynthesis of the antitumor antibiotic landomycin E by Streptomyces globisporus 1912 supports the originally assigned structure for landomycinone. J. Org. Chem. 2005, 70, 631–638. [Google Scholar] [CrossRef]
- Luzhetskyy, A.; Taguchi, T.; Fedoryshyn, M.; Dürr, C.; Wohlert, S.E.; Novikov, V.; Bechthold, A. LanGT2 Catalyzes the First Glycosylation Step during landomycin A biosynthesis. Chembiochem. 2005, 6, 1406–1410. [Google Scholar] [CrossRef]
- Yushchuk, O.; Kharel, M.; Ostash, I.; Ostash, B. Landomycin biosynthesis and its regulation in Streptomyces. Appl. Microbiol. Biotechnol. 2019, 103, 1659–1665. [Google Scholar] [CrossRef] [PubMed]
- Luzhetskyy, A.; Fedoryshyn, M.; Dürr, C.; Taguchi, T.; Novikov, V.; Bechthold, A. Iteratively acting glycosyltransferases involved in the hexasaccharide biosynthesis of landomycin A. Chem. Biol. 2005, 12, 725–729. [Google Scholar] [CrossRef]
- Rebets, Y.; Ostash, B.; Luzhetskyy, A.; Hoffmeister, D.; Brana, A.; Mendez, C.; Salas, J.A.; Bechthold, A.; Fedorenko, V. Production of landomycins in Streptomyces globisporus 1912 and S. cyanogenus S136 is regulated by genes encoding putative transcriptional activators. FEMS Microbiol. Lett. 2003, 222, 149–153. [Google Scholar] [CrossRef]
- Deneka, M.; Ostash, I.; Yalamanchili, S.; Bennett, C.S.; Ostash, B. Insights into the Biological Properties of Ligands and Identity of Operator Site for LanK Protein Involved in Landomycin Production. Curr. Microbiol. 2023, 81, 5. [Google Scholar] [CrossRef] [PubMed]
- Ostash, I.; Rebets, Y.; Ostash, B.; Kobylyanskyy, A.; Myronovskyy, M.; Nakamura, T.; Walker, S.; Fedorenko, V. An ABC transporter encoding gene lndW confers resistance to landomycin E. Arch. Microbiol. 2008, 190, 105–109. [Google Scholar] [CrossRef]
- Deane, C.D.; Mitchell, D.A. Lessons learned from the transformation of natural product discovery to a genome-driven endeavor. J. Ind. Microbiol. Biotechnol. 2014, 41, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Van Lanen, S.G.; Shen, B. Microbial genomics for the improvement of natural product discovery. Curr. Opin. Microbiol. 2006, 9, 252–260. [Google Scholar] [CrossRef]
- Modolon, F.; Schultz, J.; Duarte, G.; Vilela, C.; Thomas, T.; Peixoto, R.S. In situ devices can culture the microbial dark matter of corals. iScience 2023, 26, 108374. [Google Scholar] [CrossRef]
- Perez De Souza, L.; Alseekh, S.; Brotman, Y.; Fernie, A.R. Network-based strategies in metabolomics data analysis and interpretation: From molecular networking to biological interpretation. Expert. Rev. Proteomics. 2020, 17, 243–255. [Google Scholar] [CrossRef]
- He, S.; Cui, X.; Khan, A.; Liu, Y.; Wang, Y.; Cui, Q.; Zhao, T.; Cao, J.; Cheng, G. Activity Guided Isolation of Phenolic Compositions from Anneslea fragrans Wall. and Their Cytoprotective Effect against Hydrogen Peroxide Induced Oxidative Stress in HepG2 Cells. Molecules 2021, 26, 3690. [Google Scholar] [CrossRef]
- Meena, S.N.; Wajs-Bonikowska, A.; Girawale, S.; Imran, M.; Poduwal, P.; Kodam, K.M. High-Throughput Mining of Novel Compounds from Known Microbes: A Boost to Natural Product Screening. Molecules 2024, 29, 3237. [Google Scholar] [CrossRef]
- Matsumoto, A.; Takahashi, Y. Endophytic actinomycetes: Promising source of novel bioactive compounds. J. Antibiot. 2017, 70, 514–519. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.-S.; Chen, H.-R.; Huang, S.-S.; Li, Z.-H.; Wang, C.-Y.; Zhang, H. Bioactive Angucyclines/Angucyclinones Discovered from 1965 to 2023. Mar. Drugs 2025, 23, 25. https://doi.org/10.3390/md23010025
Liu H-S, Chen H-R, Huang S-S, Li Z-H, Wang C-Y, Zhang H. Bioactive Angucyclines/Angucyclinones Discovered from 1965 to 2023. Marine Drugs. 2025; 23(1):25. https://doi.org/10.3390/md23010025
Chicago/Turabian StyleLiu, Hai-Shan, Hui-Ru Chen, Shan-Shan Huang, Zi-Hao Li, Chun-Ying Wang, and Hua Zhang. 2025. "Bioactive Angucyclines/Angucyclinones Discovered from 1965 to 2023" Marine Drugs 23, no. 1: 25. https://doi.org/10.3390/md23010025
APA StyleLiu, H.-S., Chen, H.-R., Huang, S.-S., Li, Z.-H., Wang, C.-Y., & Zhang, H. (2025). Bioactive Angucyclines/Angucyclinones Discovered from 1965 to 2023. Marine Drugs, 23(1), 25. https://doi.org/10.3390/md23010025