Production, Transport, Fate and Effects of Lipids in the Marine Environment
Abstract
:1. Introduction
2. Lipids and Lipidomics
2.1. Structural Diversity of Lipids
2.2. Total Lipids, Lipid Classes and Components Versus Species Analysis
2.3. Characterization and Quantitation of Lipid Species in Biological Systems
2.4. Marine Lipidomics
2.5. Trophic Ecology of Lipids
3. Lipids in Marine Ecosystems
3.1. High Carbon and Hydrogen Content
3.2. Indispensable Nutritional Molecules
3.3. Buoyancy, Thermoregulation, Echolocation
3.4. Alterations with Climate Change
3.5. Marine Lipids and Trophic Connections
4. Phytoplankton Lipids
4.1. Main Suppliers of ω3 Polyunsaturated Fatty Acids in Marine Ecosystems
4.2. Sterols
4.3. Microalgae and Aquaculture
4.4. Algal Biotechnology
5. Polyketide Synthase-Derived PUFAs
5.1. Pathway Has Been Identified in Bacteria and Thraustochytrids
5.2. Thraustochytrid Biotechnology
6. ω3 Long-Chain PUFAs and Climate Change
6.1. ω3 LC-PUFAs Predicted to Decrease in Organisms
6.2. ω3 LC-PUFA Response to Future Conditions Is Complex
7. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Multivariate Analysis of Trophic Similarity in Marine Fatty Acid Profiles
Average Similarity Within/Between Groups (%) | ||||||||
---|---|---|---|---|---|---|---|---|
Fish Oil Diet | MO1 Diet | MO2 Diet | FO/CF Diet | Fish Oil Muscle | MO1 Muscle | MO2 Muscle | FO/CF Muscle | |
Fish oil diet | 99 | |||||||
MO1 diet | 58 | 99 | ||||||
MO2 diet | 65 | 92 | 99 | |||||
FO/CF diet | 77 | 75 | 83 | 98 | ||||
Fish oil muscle | 86 | 62 | 68 | 78 | 97 | |||
MO1 muscle | 65 | 87 | 89 | 82 | 73 | 96 | ||
MO2 muscle | 69 | 82 | 87 | 85 | 78 | 94 | 97 | |
FO/CF muscle | 77 | 75 | 81 | 88 | 84 | 86 | 90 | 96 |
References
- Bar-On, Y.M.; Phillips, R.; Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511. [Google Scholar] [CrossRef] [PubMed]
- WoRMS. World Register of Marine Species. Animalia. 2024. Available online: https://www.marinespecies.org/aphia.php?p=taxdetails&id=2 (accessed on 30 December 2024).
- Sournia, A.; Chretiennot-Dinet, M.J.; Ricard, M. Marine phytoplankton: How many species in the world ocean? J. Plankton Res. 1991, 13, 1093–1099. [Google Scholar] [CrossRef]
- Tett, P.; Barton, E.D. Why are there about 5000 species of phytoplankton in the sea? J. Plankton Res. 1995, 17, 1693–1704. [Google Scholar] [CrossRef]
- Wang, X.; Yin, Z.; Chen, J.; Liu, J. Phytoplankton carbon utilization strategies and effects on carbon fixation. Water 2023, 15, 2137. [Google Scholar] [CrossRef]
- Halsey, K.H.; Jones, B.M. Phytoplankton strategies for photosynthetic energy allocation. Annu. Rev. Mar. Sci. 2015, 7, 265–297. [Google Scholar] [CrossRef] [PubMed]
- Ridgway, N.; McLeod, R. (Eds.) Biochemistry of Lipids, Lipoproteins and Membranes, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Arts, M.T.; Brett, M.T.; Kainz, M.J. (Eds.) Lipids in Aquatic Ecosystems; Springer: Dordrecht, The Netherlands, 2009; 377p. [Google Scholar]
- Parrish, C.C. Dissolved and particulate marine lipid classes: A review. Mar. Chem. 1988, 23, 17–40. [Google Scholar] [CrossRef]
- Quehenberger, O.; Armando, A.M.; Brown, A.H.; Milne, S.B.; Myers, D.S.; Merrill, A.H.; Bandyopadhyay, S.; Jones, K.N.; Kelly, S.; Shaner, R.L.; et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 2010, 51, 3299–3305. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.G.; Ivanova, P.T.; Brown, H.A. Approaches to lipid analysis. In Biochemistry of Lipids, Lipoproteins and Membranes, 6th ed.; Ridgway, N., McLeod, R., Eds.; Biochemistry of lipids, lipoproteins and membranes; Elsevier: Amsterdam, The Netherlands, 2016; Chapter 2; pp. 41–72. ISBN 9780444634382. [Google Scholar]
- Dowhan, W.; Bogdanov, M.; Mileykovskaya, E. Functional roles of lipids in membranes. In Biochemistry of Lipids, Lipoproteins and Membranes, 6th ed.; Ridgway, N.D., McLeod, R.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Chapter 1; pp. 1–40. ISBN 9780444634382. [Google Scholar]
- Parrish, C.C. Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In Lipids in Freshwater Ecosystems; Springer: New York, NY, USA, 1999; pp. 4–20. [Google Scholar]
- Couturier, L.I.; Michel, L.N.; Amaro, T.; Budge, S.M.; Da Costa, E.; De Troch, M.; Di Dato, V.; Fink, P.; Giraldo, C.; Le Grand, F.; et al. State of art and best practices for fatty acid analysis in aquatic sciences. ICES J. Mar. Sci. 2020, 77, 2375–2395. [Google Scholar] [CrossRef]
- Bou Khalil, M.; Hou, W.; Zhou, H.; Elisma, F.; Swayne, L.A.; Blanchard, A.P.; Yao, Z.; Bennett, S.A.; Figeys, D. Lipidomics era: Accomplishments and challenges. Mass. Spectrom. Rev. 2010, 29, 877–929. [Google Scholar] [CrossRef]
- Hinterwirth, H.; Stegemann, C.; Mayr, M. Lipidomics: Quest for molecular lipid biomarkers in cardiovascular disease. Circ. Cardiovasc. Genet. 2014, 7, 941–954. [Google Scholar] [CrossRef]
- Twining, C.W.; Brenna, J.T.; Hairston, N.G.; Flecker, A.S. Highly unsaturated fatty acids in nature: What we know and what we need to learn. Oikos 2016, 125, 749–760. [Google Scholar] [CrossRef]
- Ruess, L.; Müller-Navarra, D.C. Essential Biomolecules in Food Webs. Front. Ecol. Evol. 2019, 7, 269. [Google Scholar] [CrossRef]
- Rey, F.; Melo, T.; Lopes, D.; Couto, D.; Marques, F.; Domingues, M.R. Applications of lipidomics in marine organisms: Progress, challenges and future perspectives. Mol. Omics 2022, 18, 357–386. [Google Scholar] [CrossRef]
- Koelmel, J.P.; Napolitano, M.P.; Ulmer, C.Z.; Vasiliou, V.; Garrett, T.J.; Yost, R.A.; Prasad, M.N.V.; Godri Pollitt, K.J.; Bowden, J.A. Environmental lipidomics: Understanding the response of organisms and ecosystems to a changing world. Metabolomics 2020, 16, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Holm, H.C.; Fredricks, H.F.; Bent, S.M.; Lowenstein, D.P.; Ossolinski, J.E.; Becker, K.W.; Johnson, W.M.; Schrage, K.; Van Mooy, B.A. Global ocean lipidomes show a universal relationship between temperature and lipid unsaturation. Science 2022, 376, 487–1491. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.L.; Wood, M.D.; Kunigelis, S.C. Pilot Lipidomics study of copepods: Investigation of potential lipid-based biomarkers for the early detection and quantification of the biological effects of climate change on the oceanic food chain. Life 2023, 13, 2335. [Google Scholar] [CrossRef]
- Shiels, K.; Tsoupras, A.; Lordan, R.; Zabetakis, I.; Murray, P.; Saha, S.K. Anti-inflammatory and antithrombotic properties of polar lipid extracts, rich in unsaturated fatty acids, from the Irish marine cyanobacterium Spirulina subsalsa. J. Funct. Foods 2022, 94, 105124. [Google Scholar] [CrossRef]
- Tsoupras, A.; Lordan, R.; Shiels, K.; Saha, S.K.; Nasopoulou, C.; Zabetakis, I. In vitro antithrombotic properties of salmon (Salmo salar) phospholipids in a novel food-grade extract. Mar. Drugs 2019, 17, 62. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Rauter, A.P.; Bandarra, N.M. Marine sources of DHA-rich phospholipids with anti-Alzheimer effect. Mar. Drugs 2022, 20, 662. [Google Scholar] [CrossRef]
- Dubey, P.; Jayasooriya, A.P.; Cheema, S.K. Diets enriched in fish-oil or seal-oil have distinct effects on lipid levels and peroxidation in BioF1B hamsters. Nutr. Metab. Insights 2011, 4, NMI-S6728. [Google Scholar] [CrossRef] [PubMed]
- Carreon-Martinez, L.; Heath, D. Revolution in food web analysis and trophic ecology: Diet analysis by DNA and stable isotope analysis. Mol. Ecol. 2010, 19, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Parrish, C.C. Essential fatty acids in aquatic food webs. In Lipids in Aquatic Ecosystems; Arts, M.T., Brett, M.T., Kainz, M.J., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 309–326. [Google Scholar]
- Gurr, M.I.; Harwood, J.L. Lipid Biochemistry—An Introduction; Chapman and Hall: London, UK, 1991; 406p. [Google Scholar]
- Cunnane, S.C. Problems with essential fatty acids: Time for a new paradigm? Prog. Lipid Res. 2003, 42, 544–568. [Google Scholar] [CrossRef]
- Parrish, C.C.; French, V.M.; Whiticar, M.J. Lipid class and fatty acid composition of copepods (Calanus finmarchicus, C. glacialis, Pseudocalanus sp., Tisbe furcata and Nitokra lacustris) fed various combinations of autotrophic and heterotrophic protists. J. Plankton Res. 2012, 34, 356–375. [Google Scholar] [CrossRef]
- Monroig, Ó.; Tocher, D.R.; Navarro, J.C. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: Recent advances in molecular mechanisms. Mar. Drugs 2013, 11, 3998–4018. [Google Scholar] [CrossRef] [PubMed]
- Haubert, D.; Pollierer, M.M.; Scheu, S. Fatty acid patterns as biomarker for trophic interactions: Changes after dietary switch and starvation. Soil. Biol. Biochem. 2011, 43, 490–494. [Google Scholar] [CrossRef]
- Ramos, R.; González-Solís, J. Trace me if you can: The use of intrinsic biogeochemical markers in marine top predators. Front. Ecol. Environ. 2012, 10, 258–266. [Google Scholar] [CrossRef]
- Hebert, C.E.; Arts, M.T.; Weseloh, D.V.C. Ecological tracers can quantify food web structure and change. Environ. Sci. Technol. 2006, 40, 5618–5623. [Google Scholar] [CrossRef]
- Martin-Creuzburg, D.; Sperfeld, E.; Wacker, A. Colimitation of a freshwater herbivore by sterols and polyunsaturated fatty acids. Proc. Royal Soc. B 2009, 276, 1805–1814. [Google Scholar] [CrossRef] [PubMed]
- Martin-Creuzburg, D.; von Elert, E. Ecological significance of sterols in aquatic food webs. In Lipids in Aquatic Ecosystems; Arts, M.T., Brett, M.T., Kainz, M.J., Eds.; Springer: Dordrecht, The Netherlands, 2009; Chapter 3; pp. 43–64. [Google Scholar]
- Piironen, V.; Lindsay, D.G.; Miettinen, T.A.; Toivo, J.; Lampi, A.-M. Plant sterols: Biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 2000, 80, 939–966. [Google Scholar] [CrossRef]
- Grosjean, K.; Mongrand, S.; Beney, L.; Simon-Plas, F.; Gerbeau-Pissot, P. Differential effect of plant lipids on membrane organization: Specificities of phytosphingolipids and phytosterols. J. Biol. Chem. 2015, 290, 5810–5825. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, T.S.; Canuel, E.A. Chemical Biomarkers in Aquatic Ecosystems; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Del Ángel-Rodríguez, J.; Carreón-Palau, L.; Parrish, C.C. Identification and quantification of sterols in coral reef food webs. In Sterols: Types, Classification and Structure; Jimenez, S., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2019; Chapter 1; pp. 1–41. [Google Scholar]
- Goad, L.J. Sterol biosynthesis and metabolism in marine invertebrates. Pure Appl. Chem. 1981, 53, 837–852. [Google Scholar] [CrossRef]
- Steinberg, C.E.W. Trophic Transfer of PUFAs—‘Vital Ones Reach Top Predators’. In Aquatic Animal Nutrition; Springer: Cham, Switzerland, 2022; p. 773. [Google Scholar] [CrossRef]
- Harris, W.S.; Tintle, N.L.; Imamura, F.; Qian, F.; Korat, A.V.A.; Marklund, M.; Djoussé, L.; Bassett, J.K.; Carmichael, P.H.; Chen, Y.Y.; et al. Blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Li, Y.; Chiuve, S.E.; Stampfer, M.J.; Manson, J.E.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern. Med. 2016, 176, 1134–1145. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2024—Blue Transformation in Action; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Calder, P.C. Eicosanoids. Essays Biochem. 2020, 64, 423–441. [Google Scholar] [PubMed]
- Serhan, C.N.; Levy, B.D. Resolvins in inflammation: Emergence of the pro-resolving superfamily of mediators. J. Clin. Investig. 2018, 128, 2657–2669. [Google Scholar] [CrossRef] [PubMed]
- Halade, G.V.; Black, L.M.; Verma, M.K. Paradigm shift–metabolic transformation of docosahexaenoic and eicosapen-taenoic acids to bioactives exemplify the promise of fatty acid drug discovery. Biotechnol. Adv. 2018, 36, 935–953. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Falcato, F.; Bandarra, N.; Rauter, A.P. Resolvins, protectins, and maresins: DHA-derived specialized pro-resolving mediators, biosynthetic pathways, synthetic approaches, and their role in inflammation. Molecules 2022, 27, 1677. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006, 83 (Suppl. S6), 1505S–1519S. [Google Scholar] [CrossRef]
- Troesch, B.; Eggersdorfer, M.; Laviano, A.; Rolland, Y.; Smith, A.D.; Warnke, I.; Weimann, A.; Calder, P.C. Expert opinion on benefits of long-chain omega-3 fatty acids (DHA and EPA) in aging and clinical nutrition. Nutrients 2020, 12, 2555. [Google Scholar] [CrossRef]
- Allaire, J.; Couture, P.; Leclerc, M.; Charest, A.; Marin, J.; Lépine, M.C.; Talbot, D.; Tchernof, A.; Lamarche, B. A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: The Comparing EPA to DHA (ComparED) Study. Am. J. Clin. Nutr. 2016, 104, 280–287. [Google Scholar] [CrossRef]
- Crawford, M.A.; Broadhurst, C.L. The role of docosahexaenoic and the marine food web as determinants of evolution and hominid brain development: The challenge for human sustainability. Nutr. Health 2012, 21, 17–39. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Sohag, A.A.M.; Dash, R.; Haque, M.N.; Mohibbullah, M.; Oktaviani, D.F.; Hossain, M.T.; Choi, H.J.; Moon, I.S. Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine 2020, 69, 153201. [Google Scholar] [CrossRef] [PubMed]
- Alves, E.; Dias, M.; Lopes, D.; Almeida, A.; Domingues, M.D.R.; Rey, F. Antimicrobial lipids from plants and marine organisms: An overview of the current state-of-the-art and future prospects. Antibiotics 2020, 9, 441. [Google Scholar] [CrossRef] [PubMed]
- Phleger, C.F. Buoyancy in marine fishes: Direct and indirect role of lipids. Am. Zool. 1998, 38, 321–330. [Google Scholar] [CrossRef]
- Koopman, H.N. Phylogenetic, ecological, and ontogenetic factors influencing the biochemical structure of the blubber of odontocetes. Mar. Biol. 2007, 151, 277–291. [Google Scholar] [CrossRef]
- Koopman, H.N. Function and evolution of specialized endogenous lipids in toothed whales. J. Exp. Biol. 2018, 221, jeb161471. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.R. Buoyancy control as a function of the spermaceti organ in the sperm whale. J. Mar. Biol. Assoc. UK 1978, 58, 27–71. [Google Scholar] [CrossRef]
- Pond, D.W. The physical properties of lipids and their role in controlling the distribution of zooplankton in the oceans. J. Plankton Res. 2012, 34, 443–453. [Google Scholar] [CrossRef]
- Pond, D.W.; Tarling, G.A. Phase transitions of wax esters adjust buoyancy in diapausing Calanoides acutus. Limnol. Oceanogr. 2011, 56, 1310–1318. [Google Scholar] [CrossRef]
- Cooley, S.; Schoeman, D.; Bopp, L.; Boyd, P.; Donner, S.; Ghebrehiwet, D.Y.; Ito, S.-I.; Kiessling, W.; Martinetto, P.; Ojea, E.; et al. Oceans and Coastal Ecosystems and Their Services. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M.M.B., Poloczanska, E., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 379–550. [Google Scholar] [CrossRef]
- Bernier, R.Y.; Jamieson, R.E.; Moore, A.M. (Eds.) State of the Atlantic Ocean Synthesis Report; Canadian Technical Report of Fisheries and Aquatic Sciences 3167; Fisheries and Oceans Canada, 2018. [Google Scholar]
- Boldt, J.L.; Javorski, A.; Chandler, P.C. (Eds.) State of the Physical, Biological and Selected Fishery Resources of Pacific Canadian Marine Ecosystems in 2020; Canadian Technical Report of Fisheries and Aquatic Sciences 3434; Fisheries and Oceans Canada, 2021. [Google Scholar]
- Niemi, A.; Ferguson, S.; Hedges, K.; Melling, H.; Michel, C.; Ayles, B.; Azetsu-Scott, K.; Coupel, P.; Deslauriers, D.; Devred, E.; et al. State of Canada’s Arctic Seas; Canadian Technical Report of Fisheries and Aquatic Sciences 3344; Fisheries and Oceans Canada, 2019. [Google Scholar]
- Ullah, H.; Nagelkerken, I.; Goldenberg, S.U.; Fordham, D.A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 2018, 16, e2003446. [Google Scholar] [CrossRef] [PubMed]
- Bartley, T.J.; McCann, K.S.; Bieg, C.; Cazelles, K.; Granados, M.; Guzzo, M.M.; MacDougall, A.S.; Tunney, T.D.; McMeans, B.C. Food web rewiring in a changing world. Nat. Ecol. Evol. 2019, 3, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Borgå, K.; McKinney, M.A.; Routti, H.; Fernie, K.J.; Giebichenstein, J.; Hallanger, I.; Muir, D.C. The influence of global climate change on accumulation and toxicity of persistent organic pollutants and chemicals of emerging concern in Arctic food webs. Environ. Sci. Process Impacts 2022, 24, 1544–1576. [Google Scholar] [CrossRef]
- Jónasdóttir, S.H.; Visser, A.W.; Richardson, K.; Heath, M.R. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc. Natl. Acad. Sci. USA 2015, 112, 12122–12126. [Google Scholar] [CrossRef] [PubMed]
- Boyd, P.W.; Claustre, H.; Levy, M.; Siegel, D.A.; Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 2019, 568, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Brun, P.; Stamieszkin, K.; Visser, A.W.; Licandro, P.; Payne, M.R.; Kiørboe, T. Climate change has altered zooplankton-fuelled carbon export in the North Atlantic. Nat. Ecol. Evol. 2019, 3, 416–423. [Google Scholar] [CrossRef]
- Boyce, D.G.; Frank, K.T.; Worm, B.; Leggett, W.C. Spatial patterns and predictors of trophic control in marine ecosystems. Ecol. Lett. 2015, 18, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- Doney, S.C.; Balch, W.M.; Fabry, V.J.; Feely, R.A. Ocean acidification: A critical emerging problem for the ocean sciences. Oceanography 2009, 22, 16–25. [Google Scholar] [CrossRef]
- Doney, S.C.; Busch, D.S.; Cooley, S.R.; Kroeker, K.J. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 2020, 45, 83–112. [Google Scholar] [CrossRef]
- Rossoll, D.; Bermúdez, R.; Hauss, H.; Schulz, K.G.; Riebesell, U.; Sommer, U.; Winder, M. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 2012, 7, e34737. [Google Scholar] [CrossRef]
- Irigoien, X.; Harris, R.P.; Verheye, H.M.; Joly, P.; Runge, J.; Starr, M.; Pond, D.; Campbell, R.; Shreeve, R.; Ward, P.; et al. Copepod hatching success in marine ecosystems with high diatom concentrations. Nature 2002, 419, 387–389. [Google Scholar] [CrossRef] [PubMed]
- Garzke, J.; Hansen, T.; Ismar, S.M.; Sommer, U. Combined effects of ocean warming and acidification on copepod abundance, body size and fatty acid content. PLoS ONE 2016, 11, e0155952. [Google Scholar] [CrossRef] [PubMed]
- Ackman, R.G.; Eaton, C.A. Lipids of the fin whale (Balaenoptera physalus) from North Atlantic waters: III. Occurrence of eicosenoic and docosenoic fatty acids in the zooplankter Meganyctiphanes norvegica (M. Sars) and their effect on whale oil composition. Can. J. Biochem. 1966, 44, 1561–1566. [Google Scholar] [CrossRef]
- Filimonova, V.; Gonçalves, F.; Marques, J.C.; De Troch, M.; Gonçalves, A.M.M. Fatty acid profiling as bioindicator of chemical stress in marine organisms: A review Ecol. Indic. 2016, 67, 657–672. [Google Scholar] [CrossRef]
- Parrish, C.C.; Nichols, P.D.; Pethybridge, H.; Young, J.W. Direct determination of fatty acids in fish tissues: Quantifying top predator trophic connections. Oecologia 2015, 177, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Codabaccus, B.M.; Carter, C.G.; Bridle, A.R.; Nichols, P.D. The “n−3 LC-PUFA sparing effect” of modified dietary n−3 LC-PUFA content and DHA to EPA ratio in Atlantic salmon smolt. Aquaculture 2012, 356–357, 135–140. [Google Scholar] [CrossRef]
- Şen Özdemir, N.; Parrish, C.C.; Parzanini, C.; Mercier, A. Neutral and polar lipid fatty acids in five families of demersal and pelagic fish from the deep Northwest Atlantic. ICES J. Mar. Sci. 2019, 76, 1807–1815. [Google Scholar] [CrossRef]
- Sardenne, F.; Bodin, N.; Latour, J.C.T.; McKindsey, C.W. Influence of lipid separation on the trophic interpretation of fatty acids. Food Webs 2020, 24, e00146. [Google Scholar] [CrossRef]
- Iverson, S.J.; Field, C.; Don Bowen, W.; Blanchard, W. Quantitative fatty acid signature analysis: A new method of estimating predator diets. Ecol. Monogr. 2004, 74, 211–235. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, C.; Zhang, H.; Yin, F.; Zhang, S.; Wan, R.; Kitazawa, D. Review of estimating trophic relationships by quantitative fatty acid signature analysis. J. Mar. Sci. Eng. 2020, 8, 1030. [Google Scholar] [CrossRef]
- Legeżyńska, J.; Kędra, M.; Walkusz, W. Identifying trophic relationships within the high Arctic benthic community: How much can fatty acids tell? Mar. Biol. 2014, 161, 821–836. [Google Scholar] [CrossRef]
- Roy, S. Distributions of phytoplankton carbohydrate, protein and lipid in the world oceans from satellite ocean colour. ISME J. 2018, 12, 1457–1472. [Google Scholar] [CrossRef]
- Jónasdóttir, S.H. Fatty acid profiles and production in marine phytoplankton. Mar. Drugs 2019, 17, 151. [Google Scholar] [CrossRef] [PubMed]
- Perhar, G.; Arhonditsis, G.B. The effects of seston food quality on planktonic food web patterns. Ecol. Modell. 2009, 220, 805–820. [Google Scholar] [CrossRef]
- Connelly, T.L.; Deibel, D.; Parrish, C.C. 2014. Trophic interactions in the benthic boundary layer of the Beaufort Sea shelf, Arctic Ocean: Combining bulk stable isotope and fatty acid signatures. Prog. Oceanogr. 2014, 120, 79–92. [Google Scholar] [CrossRef]
- Hacker Teper, S.; Parrish, C.C.; Gagnon, P. Multi-biomarker analysis uncovers high spatio-temporal stability of a subarctic rhodolith (Lithothamnion glaciale) bed food web. Diversity 2024, 16, 597. [Google Scholar] [CrossRef]
- Carreón-Palau, L.; Parrish, C.C.; del Angel-Rodríguez, J.A.; Pérez-Espana, H.; Aguiñiga-García, S. Revealing organic carbon sources fueling a coral reef food web in the Gulf of Mexico using stable isotopes and fatty acids. Limnol. Oceanogr. 2013, 58, 593–612. [Google Scholar] [CrossRef]
- Parzanini, C.; Parrish, C.C.; Hamel, J.F.; Mercier, A. Trophic relationships of deep-sea benthic invertebrates on a continental margin in the NW Atlantic inferred by stable isotope, elemental, and fatty acid composition. Prog. Oceanogr. 2018, 168, 279–295. [Google Scholar] [CrossRef]
- Hazel, J.R.; Williams, E.E. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 1990, 29, 167–227. [Google Scholar] [CrossRef] [PubMed]
- Metz, J.G.; Roessler, P.; Facciotti, D.; Levering, C.; Dittrich, F.; Lassner, M.; Valentine, R.; Lardizabal, K.; Domergue, F.; Yamada, A.; et al. Production of polyunsaturated fatty acids by polyketide synthase in both prokaryotes and eukaryotes. Science 2001, 293, 290–293. [Google Scholar] [CrossRef]
- Kabeya, N.; Fonseca, M.M.; Ferrier, D.E.; Navarro, J.C.; Bay, L.K.; Francis, D.S.; Tocher, D.R.; Castro, L.F.C.; Monroig, Ó. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci. Adv. 2018, 4, eaar6849. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.F.C.; Tocher, D.R.; Monroig, O. Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. Prog. Lipid Res. 2016, 62, 25–40. [Google Scholar] [CrossRef]
- Sargent, J.R.; Parkes, R.J.; Mueller-Harvey, I.; Henderson, R.J. Lipid biomarkers in marine ecology. In Microbes in the Sea; Sleigh, M.A., Ed.; Ellis Horwood: Hemel Hempstead, UK, 1987; Chapter 5. [Google Scholar]
- Dalsgaard, J.; St. John, M.; Kattner, G.; Müller-Navarra, D.; Hagen, W. Fatty acid trophic markers in the pelagic marine environment. In Advances in Marine Biology; Academic Press: Cambridge, MA, USA, 2003; Volume 46, pp. 225–340. [Google Scholar]
- Kelly, J.R.; Scheibling, R.E. Fatty acids as dietary tracers in benthic food webs. Mar. Ecol. Prog. Ser. 2012, 446, 1–22. [Google Scholar] [CrossRef]
- Parrish, C.C. Lipids in marine ecosystems. Int. Sch. Res. Notices 2013, 2013, 604045. [Google Scholar] [CrossRef]
- Volkman, J.K. Sterols in microalgae. In The Physiology of Microalgae; Borowitzka, M., Beardall, J., Raven, J., Eds.; Springer: Cham, Switzerland, 2016; pp. 485–505. [Google Scholar]
- Jaramillo-Madrid, A.C.; Ashworth, J.; Ralph, P.J. Levels of diatom minor sterols respond to changes in temperature and salinity. J. Mar. Sci. Eng. 2020, 8, 85. [Google Scholar] [CrossRef]
- Carreón-Palau, L.; Özdemir, N.Ş.; Parrish, C.C.; Parzanini, C. Sterol composition of sponges, cnidarians, arthropods, mollusks, and echinoderms from the deep northwest Atlantic: A comparison with shallow coastal Gulf of Mexico. Mar. Drugs 2020, 18, 598. [Google Scholar] [CrossRef]
- Gergs, R.; Steinberger, N.; Beck, B.; Basen, T.; Yohannes, E.; Schulz, R.; Martin-Creuzburg, D. Compound-specific δ13C analyses reveal sterol metabolic constraints in an aquatic invertebrate. Rapid Commun. Mass. Spectrom. 2015, 29, 1789–1794. [Google Scholar] [CrossRef] [PubMed]
- Michellod, D.; Bien, T.; Birgel, D.; Violette, M.; Kleiner, M.; Fearn, S.; Zeidler, C.; Gruber-Vodicka, H.R.; Dubilier, N.; Liebeke, M. De novo phytosterol synthesis in animals. Science 2023, 380, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Hassan, S.W.; Banat, F. An overview of microalgae biomass as a sustainable aquaculture feed ingredient: Food security and circular economy. Bioengineered 2022, 13, 9521–9547. [Google Scholar] [CrossRef] [PubMed]
- Milke, L.M.; Bricelj, V.M.; Parrish, C.C. Growth of postlarval sea scallops, Placopecten magellanicus, on microalgal diets, with emphasis on the nutritional role of lipids and fatty acids. Aquaculture 2004, 234, 293–317. [Google Scholar] [CrossRef]
- Ma, M.; Hu, Q. Microalgae as feed sources and feed additives for sustainable aquaculture: Prospects and challenges. Rev. Aquac. 2024, 16, 818–835. [Google Scholar] [CrossRef]
- Vijayaram, S.; Ringø, E.; Ghafarifarsani, H.; Hoseinifar, S.H.; Ahani, S.; Chou, C.-C. Use of Algae in Aquaculture: A Review. Fishes 2024, 9, 63. [Google Scholar] [CrossRef]
- Raza, B.; Zheng, Z.; Yang, W. A review on biofloc system technology, history, types, and future economical perceptions in aquaculture. Animals 2024, 14, 1489. [Google Scholar] [CrossRef]
- Tham, P.E.; Lim, H.R.; Khoo, K.S.; Chew, K.W.; Yap, Y.J.; Munawaroh, H.S.H.; Ma, Z.; Rajendran, S.; Gnanasekaran, L.; Show, P.L. Insights of microalgae-based aquaculture feed: A review on circular bioeconomy and perspectives. Algal Res. 2023, 74, 103186. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Patelakis, S.J.; Whitney-Lalonde, C.G.; Garrison, L.L.; Wall, C.L.; MacQuarrie, S.P. Nutrient composition and protein quality of microalgae meals produced from the marine prymnesiophyte Pavlova sp. 459 mass-cultivated in enclosed photobioreactors for potential use in salmonid aquafeeds. J. Appl. Phycol. 2020, 32, 299–318. [Google Scholar] [CrossRef]
- Pernet, F.; Bricelj, V.M.; Parrish, C.C. Effect of varying dietary levels of ω6 polyunsaturated fatty acids during the early ontogeny of the sea scallop, Placopecten magellanicus. J. Exp. Mar. Biol. Ecol. 2005, 327, 115–133. [Google Scholar] [CrossRef]
- Milke, L.M.; Bricelj, V.M.; Parrish, C.C. Comparison of early life history stages of the bay scallop, Argopecten irradians: Effects of microalgal diets on growth and biochemical composition. Aquaculture 2006, 260, 272–289. [Google Scholar] [CrossRef]
- Parrish, C.C.; Wells, J.S.; Yang, Z.; Dabinett, P. Growth and lipid composition of scallop juveniles, Placopecten magellanicus, fed the flagellate Isochrysis galbana with varying lipid composition and the diatom Chaetoceros muelleri. Mar. Biol. 1998, 133, 461–471. [Google Scholar] [CrossRef]
- Guerra, N.; Parrish, C.C.; Wei, M.; Perry, J.; Del Ángel-Rodríguez, J.A.; Tibbetts, S.M.; Emam, M.; Colombo, S.M. Effects of replacing fishmeal with algal biomass (Pavlova sp. 459) on membrane lipid composition of Atlantic salmon (Salmo salar) parr muscle and liver tissues. Sustainability 2023, 15, 16599. [Google Scholar] [CrossRef]
- Milke, L.M.; Bricelj, V.M.; Parrish, C.C. Biochemical characterization and nutritional value of three Pavlova spp. in unialgal and mixed diets with Chaetoceros muelleri for postlarval sea scallops, Placopecten magellanicus. Aquaculture 2008, 276, 130–142. [Google Scholar] [CrossRef]
- Parrish, C.C.; Milke, L.M.; Bricelj, V.M. Characterisation of 4α-methyl sterols in Pavlova spp. and postlarval sea scallops, Placopecten magellanicus. Aquaculture 2011, 311, 261–262. [Google Scholar] [CrossRef]
- Fabris, M.; Abbriano, R.M.; Pernice, M.; Sutherland, D.L.; Commault, A.S.; Hall, C.C.; Labeeuw, L.; McCauley, J.I.; Kuzhiuparambil, U.; Ray, P.; et al. Emerging technologies in algal biotechnology: Toward the establishment of a sustainable, algae-based bioeconomy. Front. Plant Sci. 2020, 11, 279. [Google Scholar] [CrossRef]
- Laurens, L.M.; Lane, M.; Nelson, R.S. Sustainable seaweed biotechnology solutions for carbon capture, composition, and deconstruction. Trends Biotechnol. 2020, 38, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Marudhupandi, T.; Inbakandan, D. Polysaccharides in aquatic disease management. Fish. Aquac. J. 2015, 6, 1–3. [Google Scholar] [CrossRef]
- Maciel, E.; Leal, M.C.; Lillebø, A.I.; Domingues, P.; Domingues, M.R.; Calado, R. Bioprospecting of marine macrophytes using MS-based lipidomics as a new approach. Mar. Drugs 2016, 14, 49. [Google Scholar] [CrossRef]
- Gressler, V.; Yokoya, N.S.; Fujii, M.T.; Colepicolo, P.; Filho, J.M.; Torres, R.P.; Pinto, E. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem. 2010, 120, 585–590. [Google Scholar] [CrossRef]
- Ortiz, J.; Uquiche, E.; Robert, P.; Romero, N.; Quitral, V.; Llantén, C. Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. Eur. J. Lipid Sci. Technol. 2009, 111, 320–327. [Google Scholar] [CrossRef]
- Cretton, M.; Malanga, G.; Sobczuk, T.M.; Mazzuca, M. Marine lipids as a source of high-quality fatty acids and antioxidants. Food Rev. Int. 2022, 39, 4941–4964. [Google Scholar] [CrossRef]
- Chi, G.; Xu, Y.; Cao, X.; Li, Z.; Cao, M.; Chisti, Y.; He, N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol. Adv. 2022, 55, 107897. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Qi, M.; Chen, H.; Zhou, C.; Ruan, R.; Yan, X.; Cheng, P. Macroalgae-derived multifunctional bioactive substances: The potential applications for food and pharmaceuticals. Foods 2022, 11, 3455. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-R.; Yao, Z.J.; Benedicto, K.; Nichols, P.D.; Green, A.; Singh, S. New sustainable oil seed sources of omega-3 long-chain polyunsaturated fatty acids: A journey from the ocean to the field. Sustainability 2023, 15, 11327. [Google Scholar] [CrossRef]
- Okuyama, H.; Orikasa, Y.; Nishida, T.; Watanabe, K.; Morita, N. Bacterial genes responsible for the biosynthesis of eicosapentaenoic and docosahexaenoic acids and their heterologous expression. Appl. Environ. Microbiol. 2007, 73, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Hadley, K.B.; Bauer, J.; Milgram, N.W. The oil-rich alga Schizochytrium sp. as a dietary source of docosahexaenoic acid improves shape discrimination learning associated with visual processing in a canine model of senescence. Prostaglandins Leukot. Essent. Fatty Acids 2017, 118, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Armenta, R.E.; Valentine, M.C. Single-cell oils as a source of omega-3 fatty acids: An overview of recent advances. J. Am. Oil Chem. Soc. 2013, 90, 167–182. [Google Scholar] [CrossRef]
- Parrish, C.C. Thraustochytrids and algae as sources of long-chain omega-3 fatty acids in sustainable aquaculture. Sustainability 2024, 16, 9142. [Google Scholar] [CrossRef]
- Boelen, P.; van Dijk, R.; Damste, J.S.S.; Rijpstra, W.I.C.; Burna, A.G.J. On the potential application of polar and temperate marine microalgae for EPA and DHA production. AMB Express 2013, 3, 26. [Google Scholar] [CrossRef] [PubMed]
- Hixson, S.M.; Arts, M.T. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Chang. Biol. 2016, 22, 2744–2755. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Zhang, H.; Zheng, H. Climate change and n-3 LC-PUFA availability. Prog. Lipid Res. 2022, 86, 101161. [Google Scholar] [CrossRef] [PubMed]
- Skalli, A.; Robin, J.H.; Le Bayon, N.; Le Delliou, H.; Person-Le Ruyet, J. Impact of essential fatty acid deficiency and temperature on tissues’ fatty acid composition of European sea bass (Dicentrarchus labrax). Aquaculture 2006, 255, 223–232. [Google Scholar] [CrossRef]
- Anacleto, P.; Maulvault, A.L.; Bandarra, N.M.; Repolho, T.; Nunes, M.L.; Rosa, R.; Marques, A. Effect of warming on protein, glycogen and fatty acid content of native and invasive clams. Food Res. Int. 2014, 64, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Meyers, M.; Décima, M.; Law, C.S.; Gall, M.; Barr, N.; Miller, M.R.; Safi, K.; Robinson, K.; Sabadel, A.; Wing, S.; et al. No evidence of altered relationship between diet and consumer fatty acid composition in a natural plankton community under combined climate drivers. J. Exp. Mar. Biol. Ecol. 2022, 551, 151734. [Google Scholar] [CrossRef]
- Duncan, R.J.; Petrou, K. Biomolecular composition of sea ice microalgae and its influence on marine biogeochemical cycling and carbon transfer through polar marine food webs. Geosciences 2022, 12, 38. [Google Scholar] [CrossRef]
- Jin, P.; Gonzàlez, G.; Agustí, S. Long-term exposure to increasing temperature can offset predicted losses in marine food quality (fatty acids) caused by ocean warming. Evol. Appl. 2020, 13, 2497–2506. [Google Scholar] [CrossRef] [PubMed]
- Gourtay, C.; Chabot, D.; Audet, C.; Le Delliou, H.; Quazuguel, P.; Claireaux, G.; Zambonino-Infante, J.L. Will global warming affect the functional need for essential fatty acids in juvenile sea bass (Dicentrarchus labrax)? A first overview of the consequences of lower availability of nutritional fatty acids on growth performance. Mar. Biol. 2018, 165, 143. [Google Scholar] [CrossRef]
- Gladyshev, M.I.; Sushchik, N.N.; Tolomeev, A.P.; Dgebuadze, Y.Y. Meta-analysis of factors associated with omega-3 fatty acid contents of wild fish. Rev. Fish. Biol. Fish. 2018, 28, 277–299. [Google Scholar] [CrossRef]
- Ericson, J.A.; Hellessey, N.; Kawaguchi, S.; Nichols, P.D.; Nicol, S.; Hoem, N.; Virtue, P. Near-future ocean acidification does not alter the lipid content and fatty acid composition of adult Antarctic krill. Sci. Rep. 2019, 9, 12375. [Google Scholar] [CrossRef]
- Bransden, M.P.; Dunstan, G.A.; Battaglene, S.C.; Cobcroft, J.M.; Morehead, D.T.; Brown, M.R.; Kolkovski, S.; Nichols, P.D. Influences of dietary n-3 long chain PUFA on body concentrations of 20:5n-3, 22:5n-3 and 22:6n-3 in larvae of a marine teleost fish from Australian waters, the striped trumpeter (Latris lineata). Lipids 2004, 39, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.; Lee, S.Y.; Meziane, T. Fatty acids as trophic tracers in an experimental estuarine food chain: Tracer transfer. J. Exp. Mar. Biol. Ecol. 2006, 336, 42–53. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parrish, C.C. Production, Transport, Fate and Effects of Lipids in the Marine Environment. Mar. Drugs 2025, 23, 52. https://doi.org/10.3390/md23020052
Parrish CC. Production, Transport, Fate and Effects of Lipids in the Marine Environment. Marine Drugs. 2025; 23(2):52. https://doi.org/10.3390/md23020052
Chicago/Turabian StyleParrish, Christopher C. 2025. "Production, Transport, Fate and Effects of Lipids in the Marine Environment" Marine Drugs 23, no. 2: 52. https://doi.org/10.3390/md23020052
APA StyleParrish, C. C. (2025). Production, Transport, Fate and Effects of Lipids in the Marine Environment. Marine Drugs, 23(2), 52. https://doi.org/10.3390/md23020052