Finding New Enzymes from Bacterial Physiology: A Successful Approach Illustrated by the Detection of Novel Oxidases in Marinomonas mediterranea
Abstract
:1. Introduction
2. Melanin, Melanogenesis and Tyrosinase Activity
2.1. Types and synthesis of melanin pigments
2.2. Enzymes involved in melanin synthesis. Polyphenol oxidases, tyrosinases and catechol oxidases
2.3. Biotechnological applications of melanin and tyrosinases
2.4. Tyrosinases and melanin-producing marine microorganisms
3. Multicopper Oxidases (MCOs) and Laccases
3.1. General characteristics of MCOs
3.2. Biotechnological interest of laccases
3.3. MCOs in marine microorganisms
4. l-Amino Acid Oxidases
4.1. General aspects about l-amino acid oxidases
4.2. Biotechnological interest of LAOs
4.3. l-Amino acid oxidases in marine microorganisms
5. Corollary: M. mediterranea as a Model Microorganism for the Study of Oxidase Activities
Acknowledgements
- Samples Availability: Available from the authors.
References and Notes
- Rusch, DB; Halpern, AL; Sutton, G; Heidelberg, KB; Williamson, S; Yooseph, S; Wu, D; Eisen, JA; Hoffman, JM; Remington, K; Beeson, K; Tran, B; Smith, H; Baden-Tillson, H; Stewart, C; Thorpe, J; Freeman, J; ndrews-Pfannkoch, C; Venter, JE; Li, K; Kravitz, S; Heidelberg, JF; Utterback, T; Rogers, YH; Falcon, LI; Souza, V; Bonilla-Rosso, G; Eguiarte, LE; Karl, DM; Sathyendranath, S; Platt, T; Bermingham, E; Gallardo, V; Tamayo-Castillo, G; Ferrari, MR; Strausberg, RL; Nealson, K; Friedman, R; Frazier, M; Venter, JC. The sorcerer II global ocean sampling expedition: Northwest Atlantic through eastern tropical Pacific. PLoS Biol 2007, 5, e77. [Google Scholar]
- Kennedy, J; Marchesi, JR; Dobson, AD. Marine metagenomics: Strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Fact 2008, 7, 27. [Google Scholar]
- Egan, S; Thomas, T; Kjelleberg, S. Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr Opin Microbiol 2008, 11, 219–225. [Google Scholar]
- Taylor, MW; Radax, R; Steger, D; Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 2007, 71, 295–347. [Google Scholar]
- Weiner, RM; Taylor, LE; Henrissat, B; Hauser, L; Land, M; Coutinho, PM; Rancurel, C; Saunders, EH; Longmire, AG; Zhang, H; Bayer, EA; Gilbert, HJ; Larimer, F; Zhulin, IB; Ekborg, NA; Lamed, R; Richardson, PM; Borovok, I; Hutcheson, S. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2–40 T. PLoS Genet 2008, 4, e1000087. [Google Scholar]
- Ko, JK; Jung, MW; Kim, KH; Choi, IG. Optimal production of a novel endo-acting beta-1,4-xylanase cloned from Saccharophagus degradans 2–40 into Escherichia coli BL21(DE3). N Biotechnol 2009, 26, 157–164. [Google Scholar]
- Todd, JD; Rogers, R; Li, YG; Wexler, M; Bond, PL; Sun, L; Curson, ARJ; Malin, G; Steinke, M; Johnston, AWB. Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 2007, 315, 666–669. [Google Scholar]
- Solano, F; García, E; Pérez de Egea, E; Sanchez-Amat, A. Isolation and characterization of strain MMB-1 (CECT 4803 a novel melanogenic marine bacterium. Appl Environ Microbiol 1997, 63, 3499–3506. [Google Scholar]
- Solano, F; Sanchez-Amat, A. Studies on the phylogenetic relationships of melanogenic marine bacteria: Proposal of Marinomonas mediterranea sp. nov. Int J Syst Bacteriol 1999, 49, 1241–1246. [Google Scholar]
- Espinosa, E; Marco-Noales, E; Gomez, D; Lucas-Elio, P; Ordax, M; Garcias-Bonet, N; Duarte, CM; Sanchez-Amat, A. Taxonomic study of Marinomonas strains isolated from the sea grass Posidonia oceanica, including description of Marinomonas balearica sp. nov. and Marinomonas pollencensis sp. nov. Int J Syst Evol Microbiol 2010, 60, 93–98. [Google Scholar]
- Nordlund, JJ; Boissy, RE; Hearing, RA; Oetting, W; Ortonne, JP. The Pigmentary System; Oxford Press: New York, NY, USA, 2006. [Google Scholar]
- Plonka, PM; Grabacka, M. Melanin synthesis in microorganisms-biotechnological and medical aspects. Acta Biochim Pol 2006, 53, 429–443. [Google Scholar]
- Prota, G. Melanins and Melanogenesis; Academic Press Inc.: San Diego, CA, USA, 1992. [Google Scholar]
- Breakefield, XO; Castiglione, CM; Halaban, R; Pawelek, J; Shiman, R. Phenylalanine hydroxylase in melanoma cells. J Cell Physiol 1978, 94, 307–314. [Google Scholar]
- Schallreuter, K; Slominski, A; Pawelek, JM; Jimbow, K; Gilchrest, BA. What controls melanogenesis. Exp Dermatol 1998, 7, 143–150. [Google Scholar]
- Nicolaus, RA. Allomelanins. In Melanins; Hermann: Paris, France, 1968; pp. 125–153. [Google Scholar]
- Sanchez-Amat, A; Ruzafa, C; Solano, F. Comparative tyrosine degradation in Vibrio cholerae strains. The strain ATCC 14035 as a prokaryotic melanogenic model of homogentisate-releasing cell. Comp Biochem Physiol B Biochem Mol Biol 1998, 119, 557–562. [Google Scholar]
- Schmaler-Ripcke, J; Sugareva, V; Gebhardt, P; Winkler, R; Kniemeyer, O; Heinekamp, T; Brakhage, AA. Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl Environ Microbiol 2009, 75, 493–503. [Google Scholar]
- Coyne, VE; al-Harthi, L. Induction of melanin biosynthesis in Vibrio cholerae. Appl Environ Microbiol 1992, 58, 2861–2865. [Google Scholar]
- Nosanchuk, JD; Casadevall, A. The contribution of melanin to microbial pathogenesis. Cell Microbiol 2003, 5, 203–223. [Google Scholar]
- Valeru, SP; Rompikuntal, PK; Ishikawa, T; Vaitkevicius, K; Sjoling, A; Dolganov, N; Zhu, J; Schoolnik, G; Wai, SN. Role of melanin pigment in expression of Vibrio cholerae virulence factors. Infect Immun 2009, 77, 935–942. [Google Scholar]
- Coates, JD; Cole, KA; Chakraborty, R; O’Connor, SM; Achenbach, LA. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. Appl Environ Microbiol 2002, 68, 2445–2452. [Google Scholar]
- Turick, CE; Tisa, LS; Caccavo, F, Jr. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl Environ Microbiol 2002, 68, 2436–2444. [Google Scholar]
- Hernandez-Romero, D; Sanchez-Amat, A; Solano, F. A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio: Role of the seventh histidine and accessibility to the active site. FEBS J 2006, 273, 257–270. [Google Scholar]
- López-Serrano, D; Sanchez-Amat, A; Solano, F. Cloning and molecular characterization of a SDS-activated tyrosinase from Marinomonas mediterranea. Pigment Cell Res 2002, 15, 104–111. [Google Scholar]
- Bourquelot, E; Bertrand, G. Le bleuissement et le noircissement des champignons. C R Soc Biol 1895, 47, 582–584. [Google Scholar]
- Hogeboom, GH; Adams, MH. Mammalian tyrosinase and dopa oxidase. J Biol Chem 1942, 145, 273–279. [Google Scholar]
- Claus, H; Decker, H. Bacterial tyrosinases. Syst Appl Microbiol 2006, 29, 3–14. [Google Scholar]
- Garcia-Borron, JC; Solano, F. Molecular anatomy of tyrosinase and its related proteins: Beyond the histidine-bound metal catalytic center. Pigment Cell Res 2002, 15, 162–173. [Google Scholar]
- Cooksey, CJ; Garratt, PJ; Land, EJ; Pavel, S; Ramsden, CA; Riley, PA; Smit, NP. Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase. J Biol Chem 1997, 272, 26226–26235. [Google Scholar]
- Mayer, AM. Polyphenol oxidases in plants - recent progress. Phytochemistry (Elsevier) 1987, 26, 11–20. [Google Scholar]
- Pawelek, J; Osber, MP; Orlow, SJ. Synthetic melanin as a sunscreen and tanning agent. US Patent 5384116, 1995. [Google Scholar]
- Geng, J; Tang, W; Wan, X; Zhou, Q; Wang, XJ; Shen, P; Lei, TC; Chen, XD. Photoprotection of bacterial-derived melanin against ultraviolet A-induced cell death and its potential application as an active sunscreen. J Eur Acad Dermatol Venereol 2008, 22, 852–858. [Google Scholar]
- Solis, A; Lara, M; Rendon, L. Photoelectrochemical properties of melanin. Nature Precedings. 2007. hdl:10101/npre.2007.1312.1.Available online: http://precedings.nature.com/documents/1312/version/1/html accessed on 5 March 2010.
- Subianto, S; Will, G; Meredith, P. Electrochemical synthesis of melanin free-standing films. Polymer 2005, 46, 11505–11509. [Google Scholar]
- Adham, SA; Rodriguez, S; Ramos, A; Santamaria, RI; Gil, JA. Improved vectors for transcriptional/translational signal screening in corynebacteria using the melC operon from Streptomyces glaucescens as reporter. Arch Microbiol 2003, 180, 53–59. [Google Scholar]
- Santos, CN; Stephanopoulos, G. Melanin-based high-throughput screen for l-tyrosine production in Escherichia coli. Appl Environ Microbiol 2008, 74, 1190–1197. [Google Scholar]
- Jewell, WT; Ebeler, SE. Tyrosinase biosensor for the measurement of wine polyphenolics. Am J Enol Vitic 2001, 52, 219–222. [Google Scholar]
- Kong, L; Huang, S; Yue, Z; Peng, B; Li, M; Zhang, J. Sensitive mediator-free tyrosinase biosensor for the determination of 2,4-dichlorophenol. Microchim Acta 2009, 165, 203–209. [Google Scholar]
- Connor, MP; Sanchez, J; Wang, J; Smyth, MR; Mannino, S. Silicone-grease-based immobilisation method for the preparation of enzyme electrodes. Analyst 1989, 114, 1427–1429. [Google Scholar]
- Liu, Z; Liu, B; Kong, J; Deng, J. Probing trace phenols based on mediator-free alumina sol-gel-derived tyrosinase biosensor. Anal Chem 2000, 72, 4707–4712. [Google Scholar]
- Cha, HJ; Hwang, DS; Lim, S; White, JD; Matos-Perez, CR; Wilker, JJ. Bulk adhesive strength of recombinant hybrid mussel adhesive protein. Biofouling 2008, 4, 1–9. [Google Scholar]
- Lee, H; Scherer, NF; Messersmith, PB. Single-molecule mechanics of mussel adhesion. Proc Nat Acad Sci USA 2006, 103, 12999–13003. [Google Scholar]
- Lin, Q; Gourdon, D; Sun, C; Holten-Andersen, N; Anderson, TH; Waite, JH; Israelachvili, JN. Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc Nat Acad Sci USA 2007, 104, 3782–3786. [Google Scholar]
- Vreeland, V; Waite, JH; Epstein, L. Polyphenols and oxidases in substratum adhesion by marine algae and mussels. J Physiol 1998, 34, 1–8. [Google Scholar]
- Kotob, SI; Coon, SL; Quintero, EJ; Weiner, RM. Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae, a Hyphomonas strain, and Shewanella colwelliana. Appl Environ Microbiol 1995, 61, 1620–1622. [Google Scholar]
- Ruzafa, C; Sanchez-Amat, A; Solano, F. Characterization of the melanogenic system in Vibrio cholerae, ATCC 14035. Pigment Cell Res 1995, 8, 147–152. [Google Scholar]
- Kelley, SK; Coyne, VE; Sledjeski, DD; Claiborne, FW; Weiner, RM. Identification of a tyrosinase from a periphytic marine bacterium. FEMS Microbiol Lett 1990, 67, 275–279. [Google Scholar]
- Ivanova, EP; Kiprianova, EA; Mikhailov, VV; Levanova, GF; Garagulya, AD; Gorshkova, NM; Yumoto, N; Yoshikawa, S. Characterization and identification of marine Alteromonas nigrifaciens strains and emendation of the description. Int J Syst Bacteriol 1996, 46, 223–228. [Google Scholar]
- Kahng, HY; Chung, BS; Lee, DH; Jung, JS; Park, JH; Jeon, CO. Cellulophaga tyrosinoxydans sp. nov., a tyrosinase-producing bacterium isolated from seawater. Int J Syst Evol Microbiol 2009, 59, 654–657. [Google Scholar]
- Bruhn, JB; Gram, L; Belas, R. Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions. Appl Environ Microbiol 2007, 73, 442–450. [Google Scholar]
- Lu, Y; Dong, X; Liu, S; Bie, X. Characterization and identification of a novel marine Streptomyces sp. produced antibacterial substance. Mar Biotechnol 2009, 11, 717–724. [Google Scholar]
- Fenical, W; Jensen, PR. Marine microorganisms: A new biomedical resource. In Marine biotechnology; Attaway, DH, Zaborsky, OR, Eds.; Plenum Press: New York NY, USA, 1993; pp. 419–457. [Google Scholar]
- Chen, LY; Chen, MY; Leu, WM; Tsai, TY; Lee, YH. Mutational study of Streptomyces tyrosinase trans-activator MelC1. MelC1 is likely a chaperone for apotyrosinase. J Biol Chem 1993, 268, 18710–18716. [Google Scholar]
- Yang, HY; Chen, CW. Extracellular and intracellular polyphenol oxidases cause opposite effects on sensitivity of streptomyces to phenolics: A case of double-edged sword. PLoS ONE 2009, 4, e7462. [Google Scholar]
- Sanchez-Amat, A; Lucas-Elio, P; Fernández, E; Garcia-Borrón, JC; Solano, F. Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta 2001, 1547, 104–116. [Google Scholar]
- López-Serrano, D; Solano, F; Sanchez-Amat, A. Identification of an operon involved in tyrosinase activity and melanin synthesis in Marinomonas mediterranea. Gene 2004, 342, 179–187. [Google Scholar]
- López-Serrano, D; Solano, F; Sanchez-Amat, A. Involvement of a novel copper chaperone in tyrosinase activity and melanin synthesis in Marinomonas mediterranea. Microbiology 2007, 153, 2241–2249. [Google Scholar]
- Solomon, EI; Sundaram, UM; Machonkin, TE. Multicopper oxidases and oxygenases. Chem Rev 1996, 96, 2563–2606. [Google Scholar]
- Nakamura, K; GO, N. Function and molecular evolution of multicopper blue proteins. Cell Mol Life Sci 2005, 62, 2050–2066. [Google Scholar]
- Messerschmidt, A; Huber, R. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Eur J Biochem 1990, 187, 341–352. [Google Scholar]
- Thurston, CF. The structure and function of fungal laccases. Microbiology 1994, 140, 19–26. [Google Scholar]
- Francis, CA; Tebo, BM. cumA Multicopper oxidase genes from diverse Mn(II)-oxidizing and non-Mn(II)-oxidizing Pseudomonas strains. Appl Environ Microbiol 2001, 67, 4272–4278. [Google Scholar]
- Hofer, C; Schlosser, D. Novel enzymatic oxidation of Mn2+ to Mn3+ catalyzed by a fungal laccase. FEBS Lett 1999, 451, 186–190. [Google Scholar]
- Mayer, AM; Staples, RC. Laccase: New functions for an old enzyme. Phytochemistry (Elsevier) 2002, 60, 551–565. [Google Scholar]
- Yoshida, H. Chemistry of lacquer (Urishi), part I. J Chem Soc 1883, 42, 231–237. [Google Scholar]
- Bao, W; O’Malley, DM; Whetten, R; Sederoff, RR. A laccase associated with lignification in loblolly pine xylem. Science 1993, 260, 672–674. [Google Scholar]
- Martinez, AT; Speranza, M; Ruiz-Duenas, FJ; Ferreira, P; Camarero, S; Guillen, F; Martinez, MJ; Gutierrez, A; del Rio, JC. Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 2005, 8, 195–204. [Google Scholar]
- Zhu, X; Williamson, PR. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res 2004, 5, 1–10. [Google Scholar]
- Givaudan, A; Effose, A; Faure, D; Potier, P; Bouillant, ML; Bally, R. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol Lett 1993, 108, 205–210. [Google Scholar]
- Grass, G; Rensing, C. CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 2001, 286, 902–908. [Google Scholar]
- Martins, LO; Soares, CM; Pereira, MM; Teixeira, M; Costa, T; Jones, GH; Henriques, AO. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 2002, 277, 18849–18859. [Google Scholar]
- Claus, H. Laccases and their occurrence in prokaryotes. Arch Microbiol 2003, 179, 145–150. [Google Scholar]
- Uthandi, S; Saad, B; Humbard, MA; Maupin-Furlow, JA. LccA, an archaeal laccase secreted as a highly-stable glycoprotein into the extracellular medium of Haloferax volcanii. Appl Environ Microbiol 2009, 76, 733–743. [Google Scholar]
- Kunamneni, A; Plou, FJ; Ballesteros, A; Alcalde, M. Laccases and their applications: A patent review. Recent Pat Biotechnol 2008, 2, 10–24. [Google Scholar]
- Riva, S. Laccases: Blue enzymes for green chemistry. Trends Biotechnol 2006, 24, 219–226. [Google Scholar]
- Rodriguez-Couto, S; Toca-Herrera, JL. Industrial and biotechnological applications of laccases: A review. Biotechnol Adv 2006, 24, 500–513. [Google Scholar]
- Pereira, L; Coelho, AV; Viegas, CA; Santos, MM; Robalo, MP; Martins, LO. Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol 2009, 139, 68–77. [Google Scholar]
- Selinheimo, E; Autio, K; Kruus, K; Buchert, J. Elucidating the mechanism of laccase and tyrosinase in wheat bread making. J Agric Food Chem 2007, 55, 6357–6365. [Google Scholar]
- Torrecilla, JS; Mena, ML; Yanez-Sedeno, P; Garcia, J. Quantification of phenolic compounds in olive oil mill wastewater by artificial neural network/laccase biosensor. J Agric Food Chem 2007, 55, 7418–7426. [Google Scholar]
- ElKaoutit, M; Naranjo-Rodriguez, I; Temsamani, KR; de la Vega, MD; de Cisneros, JL. Dual laccase-tyrosinase based sonogel-carbon biosensor for monitoring polyphenols in beers. J Agric Food Chem 2007, 55, 8011–8018. [Google Scholar]
- Mikolasch, A; Wurster, M; Lalk, M; Witt, S; Seefeldt, S; Hammer, E; Schauer, F; Julich, WD; Lindequist, U. Novel beta-lactam antibiotics synthesized by amination of catechols using fungal laccase. Chem Pharm Bull 2008, 56, 902–907. [Google Scholar]
- Mikolasch, A; Hessel, S; Salazar, MG; Neumann, H; Manda, K; Gordes, D; Schmidt, E; Thurow, K; Hammer, E; Lindequist, U; Beller, M; Schauer, F. Synthesis of new N-analogous corollosporine derivatives with antibacterial activity by laccase-catalyzed amination. Chem Pharm Bull 2008, 56, 781–786. [Google Scholar]
- Cichewicz, RH; Clifford, LJ; Lassen, PR; Cao, X; Freedman, TB; Nafie, LA; Deschamps, JD; Kenyon, VA; Flanary, JR; Holman, TR; Crews, P. Stereochemical determination and bioactivity assessment of (S)-(+)-curcuphenol dimers isolated from the marine sponge Didiscus aceratus and synthesized through laccase biocatalysis. Bioorg Med Chem 2005, 13, 5600–5612. [Google Scholar]
- Souza-Ticlo, D; Sharma, D; Raghukumar, C. A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Mar Biotechnol 2009, 11, 725–737. [Google Scholar]
- Francis, CA; Co, EM; Tebo, BM. Enzymatic manganese(II) oxidation by a marine a-proteobacterium. Appl Environ Microbiol 2001, 67, 4024–4029. [Google Scholar]
- Dick, GJ; Podell, S; Johnson, HA; Rivera-Espinoza, Y; Bernier-Latmani, R; McCarthy, JK; Torpey, JW; Clement, BG; Gaasterland, T; Tebo, BM. Genomic insights into Mn(II) oxidation by the marine alphaproteobacterium Aurantimonas sp. Strain SI85-9A1. Appl Environ Microbiol 2008, 74, 2646–2658. [Google Scholar]
- Papa, R; Parrilli, E; Sannia, G. Engineered marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125: A promising micro-organism for the bioremediation of aromatic compounds. J Appl Microbiol 2009, 106, 49–56. [Google Scholar]
- Fernández, E; Sanchez-Amat, A; Solano, F. Location and catalytic characteristics of a multipotent bacterial polyphenol oxidase. Pigment Cell Res 1999, 12, 331–339. [Google Scholar]
- Solano, F; Lucas-Elío, P; Fernández, E; Sanchez-Amat, A. Marinomonas mediterranea MMB-1 transposon mutagenesis: Isolation of a multipotent polyphenol oxidase mutant. J Bacteriol 2000, 182, 3754–3760. [Google Scholar]
- Jimenez-Juarez, N; Roman-Miranda, R; Baeza, A; Sanchez-Amat, A; Vazquez-Duhalt, R; Valderrama, B. Alkali and halide-resistant catalysis by the multipotent oxidase from Marinomonas mediterranea. J Biotechnol 2005, 117, 73–82. [Google Scholar]
- Skarnes, RC. l-Amino-acid oxidase, a bactericidal system. Nature 1970, 225, 1072–1073. [Google Scholar]
- Nishiya, Y; Imanaka, T. Purification and characterization of a novel glycine oxidase from Bacillus subtilis. FEBS Lett 1998, 438, 263–166. [Google Scholar]
- Arima, J; Sasaki, C; Sakaguchi, C; Mizuno, H; Tamura, T; Kashima, A; Kusakabe, H; Sugio, S; Inagaki, K. Structural characterization of l-glutamate oxidase from Streptomyces sp. X-119-6. FEBS J 2009, 276, 3894–3903. [Google Scholar]
- Kusakabe, H; Kodama, K; Kuninaka, A; Yoshino, H; Misono, H; Soda, K. A new antitumor enzyme, l-lysine alpha-oxidase from Trichoderma viride. Purification and enzymological properties. J Biol Chem 1980, 255, 976–981. [Google Scholar]
- Lukasheva, EV; Berezov, TT. l-Lysine alpha-oxidase: Physicochemical and biological properties. Biochemistry (Moscow) 2002, 67, 1152–1158. [Google Scholar]
- Zuliani, JP; Kayano, AM; Zaqueo, KD; Neto, AC; Sampaio, SV; Soares, AM; Stabeli, RG. Snake venom l-amino acid oxidases: some consideration about their functional characterization. Protein Pept Lett 2009, 16, 908–912. [Google Scholar]
- Nagaoka, K; Aoki, F; Hayashi, M; Muroi, Y; Sakurai, T; Itoh, K; Ikawa, M; Okabe, M; Imakawa, K; Sakai, S. l-Amino acid oxidase plays a crucial role in host defense in the mammary glands. FASEB J 2009, 23, 2514–2520. [Google Scholar]
- Tan, NH; Ponnudurai, G. A comparative study of the biological properties of some sea snake venoms. Comp Biochem Physiol B Biochem Mol Biol 2009, 99, 351–354. [Google Scholar]
- Derby, CD. Escape by inking and secreting: Marine molluscs avoid predators through a rich array of chemicals and mechanisms. Biol Bull 2007, 213, 274–289. [Google Scholar]
- Benkendorff, K; Davis, AR; Bremner, JB. Chemical defense in the egg masses of benthic invertebrates: An assessment of antibacterial activity in 39 mollusks and 4 polychaetes. J Invertebr Pathol 2001, 78, 109–118. [Google Scholar]
- Iijima, R; Kisugi, J; Yamazaki, M. A novel antimicrobial peptide from the sea hare Dolabella auricularia. Develop Compar Immunol 2003, 27, 305–311. [Google Scholar]
- Iijima, R; Kisugi, J; Yamazaki, M. l-Amino acid oxidase activity of an antineoplastic factor of a marine mollusk and its relationship to cytotoxicity. Develop Compar Immunol 2003, 27, 505–512. [Google Scholar]
- Weinberger, F; Pohnert, G; Berndt, ML; Bouarab, K; Kloareg, B; Potin, P. Apoplastic oxidation of l-asparagine is involved in the control of the green algal endophyte Acrochaete operculata Correa & Nielsen by the red seaweed Chondrus crispus Stackhouse. J Exp Bot 2005, 56, 1317–1326. [Google Scholar]
- Geueke, B; Hummel, W. Heterologous expression of Rhodococcus opacus l-amino acid oxidase in Streptomyces lividans. Protein Expr Purif 2003, 28, 303–309. [Google Scholar]
- Faust, A; Geueke, B; Niefind, K; Hummel, W; Schomburg, D. Crystallization and preliminary X-ray analysis of a bacterial l-amino-acid oxidase from Rhodococcus opacus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006, 62, 279–281. [Google Scholar]
- Coudert, M. Characterization and physiological function of a soluble l-amino acid oxidase in Corynebacterium. Arch Microbiol 1975, 102, 151–153. [Google Scholar]
- Tong, HC; Chen, W; Shi, WY; Qi, FX; Dong, XZ. SO-LAAO, a novel l-amino acid oxidase that enables Streptococcus oligofermentans to over-compete Streptococcus mutans by generating H2O2 from peptone. J Bacteriol 2008, 190, 4716–4721. [Google Scholar]
- Pistorius, EK; Voss, H. Presence of an amino acid oxidase in photosystem II of Anacystis nidulans. Eur J Biochem 1982, 126, 203–209. [Google Scholar]
- Massad, G; Zhao, H; Mobley, HL. Proteus mirabilis amino acid deaminase: Cloning, nucleotide sequence, and characterization of aad. J Bacteriol 1995, 177, 5878–5883. [Google Scholar]
- Munoz-Blanco, J; Hidalgo-Martinez, J; Cardenas, J. Extracellular deamination of l-amino acids by Chlamydomonas reinhardtii cells. Planta 1990, 182, 194–198. [Google Scholar]
- Davis, MA; Askin, MC; Hynes, MJ. Amino acid catabolism by an areA-regulated gene encoding an l-amino acid oxidase with broad substrate specificity in Aspergillus nidulans. Appl Environ Microbiol 2005, 71, 3551–3555. [Google Scholar]
- Sikora, L; Marzluf, GA. Regulation of l-amino acid oxidase and of D-amino acid oxidase in Neurospora crassa. Mol Gen Genet MGG 1982, 186, 33–39. [Google Scholar]
- Treshalina, HM; Lukasheva, EV; Sedakova, LA; Firsova, GA; Guerassimova, GK; Gogichaeva, NV; Berezov, TT. Anticancer enzyme l-lysine a-oxidase. Properties and application perspectives. Appl Biochem Biotechnol 2000, 88, 267–273. [Google Scholar]
- Torii, S; Naito, M; Tsuruo, T. Apoxin I, a novel apoptosis-inducing factor with l-amino acid oxidase activity purified from western diamondback rattlesnake venom. J Biol Chem 1997, 272, 9539–9542. [Google Scholar]
- Moynihan, K; Elion, GB; Pegram, C; Reist, CJ; Wellner, D; Bigner, DD; Griffith, OW; Friedman, HS. l-amino acid oxidase (LOX) modulation of melphalan activity against intracranial glioma. Cancer Chemother Pharmacol 1997, 39, 179–186. [Google Scholar]
- Preuschoff, F; Spohn, U; Weber, E; Unverhau, K; Mohr, KH. Chemiluminometric -lysine determination with immobilized lysine oxidase by flow-injection analysis. Anal Chim Acta 1993, 280, 185–189. [Google Scholar]
- Simonian, AL; Badalian, IE; Berezov, TT; Smirnova, IP; Khaduev, SH. Flow-injection amperometric biosensor based on immobilized l-lysine-a-oxidase for l-lysine determination. Anal Lett 1994, 27, 2849–2860. [Google Scholar]
- Lee, YC; Huh, MH. Development of a biosensor with immobilized l-amino acid oxidase for determination of l-amino acids. J Food Biochem 2009, 23, 173–185. [Google Scholar]
- Varadi, M; Adányi, N; Szabó, EE; Trummer, N. Determination of the ratio of D- and l-amino acids in brewing by an immobilised amino acid oxidase enzyme reactor coupled to amperometric detection. Biosens Bioelectron 1999, 14, 335–340. [Google Scholar]
- Endo, H; Hayashi, Y; Kitani, Y; Ren, H; Hayashi, T; Nagashima, Y. Optical enzyme sensor for determining l-lysine content using l-lysine oxidase from the rockfish Sebastes schlegeli. Anal Bioanal Chem 2008, 391, 1255–1261. [Google Scholar]
- Qi, L; Qiao, J; Yang, G; Chen, Y. Chiral ligand-exchange CE assays for separation of amino acid enantiomers and determination of enzyme kinetic constant. Electrophoresis 2009, 30, 2266–2272. [Google Scholar]
- Singh, S; Gogoi, BK; Bezbaruah, RL. Optimization of medium and cultivation conditions for l-amino acid oxidase production by Aspergillus fumigatus. Can J Microbiol 2009, 55, 1096–1102. [Google Scholar]
- Isobe, K; Fukuda, N; Nagasawa, S. Analysis of selective production of Nalpha-benzyloxycarbonyl-l-aminoadipate-delta-semialdehyde and Nalpha-benzyloxycarbonyl- l-aminoadipic acid by Rhodococcus sp. AIU Z-35-1. J Biosci Bioeng 2008, 105, 152–156. [Google Scholar]
- Christiansen, L; Budolfsen, G. Preparation of baked product from dough. U.S. patent 6,890,570, 5 October 2002. [Google Scholar]
- Palenik, B; Morel, FMM. Amino acid utilization by marine phytoplankton. Limnol Oceanogr 1990, 35, 260–269. [Google Scholar]
- Pantoja, S; Lee, C. Cell-surface oxidation of amino acids in seawater. Limnol Oceanogr 1994, 39, 1718–1726. [Google Scholar]
- Akimoto, M; Yamagaki, K; Ohtaguchi, K; Koide, K. Metabolism of l-amino acids in a marine bacterium isolated from mackerel intestines in relation to eicosapentaenoic acid biosynthesis. Biosci Biotechnol Biochem 1992, 56, 1640–1643. [Google Scholar]
- Genet, R; Benetti, PH; Hammadi, A; Menez, A. l-tryptophan 2′,3′-oxidase from Chromobacterium violaceum. Substrate specificity and mechanistic implications. J Biol Chem 1995, 270, 23540–23545. [Google Scholar]
- Gomez, D; Espinosa, E; Bertazzo, M; Lucas-Elio, P; Solano, F; Sanchez-Amat, A. The macromolecule with antimicrobial activity synthesized by Pseudoalteromonas luteoviolacea strains is an l-amino acid oxidase. Appl Microbiol Biotechnol 2008, 79, 925–930. [Google Scholar]
- Lucas-Elio, P; Hernandez, P; Sanchez-Amat, A; Solano, F. Purification and partial characterization of marinocine, a new broad-spectrum antibacterial protein produced by Marinomonas mediterranea. Biochim Biophys Acta 2005, 1721, 193–203. [Google Scholar]
- Gomez, D; Lucas-Elio, P; Sanchez-Amat, A; Solano, F. A novel type of lysine oxidase: l-lysine-epsilon-oxidase. Biochim Biophys Acta 2006, 1764, 1577–1585. [Google Scholar]
- Lucas-Elio, P; Gomez, D; Solano, F; Sanchez-Amat, A. The antimicrobial activity of marinocine, synthesized by Marinomonas mediterranea, is due to hydrogen peroxide generated by its lysine oxidase activity. J Bacteriol 2006, 188, 2493–2501. [Google Scholar]
- Isobe, K; Nagasawa, S. Characterization of Na-benzyloxycarbonyl-l-lysine oxidizing enzyme from Rhodococcus sp. AIU Z-35-1. J Biosci Bioeng 2007, 104, 218–223. [Google Scholar]
- Gomez, D; Lucas-Elio, P; Solano, F; Sanchez-Amat, A. Both genes in the Marinomonas mediterranea lodAB operon are required for the expression of the antimicrobial protein lysine oxidase. Mol Microbiol 2010, 75, 462–473. [Google Scholar]
- Mai-Prochnow, A; Lucas-Elio, P; Egan, S; Thomas, T; Webb, JS; Sanchez-Amat, A; Kjelleberg, S. Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several gram-negative bacteria. J Bacteriol 2008, 190, 5493–5501. [Google Scholar]
- Burchard, RP; Sorongon, ML. A gliding bacterium strain inhibits adhesion and motility of another gliding bacterium strain in a marine biofilm. Appl Environ Microbiol 1998, 64, 4079–4083. [Google Scholar]
- Omura, S; Ikeda, H; Ishikawa, J; Hanamoto, A; Takahashi, C; Shinose, M; Takahashi, Y; Horikawa, H; Nakazawa, H; Osonoe, T; Kikuchi, H; Shiba, T; Sakaki, Y; Hattori, M. Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites. Proc Nat Acad Sci USA 2001, 98, 12215–12220. [Google Scholar]
- Lucas-Elio, P; Solano, F; Sanchez-Amat, A. Regulation of polyphenol oxidase activities and melanin synthesis in Marinomonas mediterranea: Identification of ppoS, a gene encoding a sensor histidine kinase. Microbiology 2002, 148, 2457–2466. [Google Scholar]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sanchez-Amat, A.; Solano, F.; Lucas-Elío, P. Finding New Enzymes from Bacterial Physiology: A Successful Approach Illustrated by the Detection of Novel Oxidases in Marinomonas mediterranea. Mar. Drugs 2010, 8, 519-541. https://doi.org/10.3390/md8030519
Sanchez-Amat A, Solano F, Lucas-Elío P. Finding New Enzymes from Bacterial Physiology: A Successful Approach Illustrated by the Detection of Novel Oxidases in Marinomonas mediterranea. Marine Drugs. 2010; 8(3):519-541. https://doi.org/10.3390/md8030519
Chicago/Turabian StyleSanchez-Amat, Antonio, Francisco Solano, and Patricia Lucas-Elío. 2010. "Finding New Enzymes from Bacterial Physiology: A Successful Approach Illustrated by the Detection of Novel Oxidases in Marinomonas mediterranea" Marine Drugs 8, no. 3: 519-541. https://doi.org/10.3390/md8030519
APA StyleSanchez-Amat, A., Solano, F., & Lucas-Elío, P. (2010). Finding New Enzymes from Bacterial Physiology: A Successful Approach Illustrated by the Detection of Novel Oxidases in Marinomonas mediterranea. Marine Drugs, 8(3), 519-541. https://doi.org/10.3390/md8030519