Sorption of Hydrophobic Organic Compounds on Natural Sorbents and Organoclays from Aqueous and Non-Aqueous Solutions: A Mini-Review
Abstract
:1. Introduction
2. Sorption Isotherms and Sorption Coefficient
2.1. The Langmuir Isotherm
2.2. The Freundlich Isotherm
2.3. The Linear Isotherm
3. HOC Binding to Soil Components and Sediments
3.1. HOC Binding to Soil Organic Matter/Carbon
3.2. Effect of Hydration of the Sorbent and Medium of Sorption.
3.3. Effects of Temperature, Ionic Strength and pH on the HOCs’ Sorption
Compound | DMP Kf | DEP Kf | DAP Kf | DBP Kf |
---|---|---|---|---|
pH 4.0 | 5.31 | 9.87 | 33.1 | 161 |
pH 5.5 | 4.64 | 8.59 | 28.3 | 147 |
pH 7.0 | 3.18 | 6.38 | 21.7 | 128 |
pH 8.5 | 2.70 | 5.85 | 19.6 | 97.2 |
pH 10.0 | 2.54 | 5.85 | 18.3 | 91.3 |
3.4. Interaction of HOC with Soil Mineral Phase
3.4.1. Major Soil Mineral Components
3.4.2. Hydrophobicity of Siloxane Groups in Clay Soils in the Sorption of HOC
4. Kaolinite
4.1. Structure of Kaolinite
Wave Number (cm−1) | Assignments |
---|---|
3700 | Inner surface -OH stretching vibration |
3620 | Inner -OH stretching vibration |
1114, 1035, 1010 | Si-O bending vibrations |
938, 918 | AI-OH bending vibration |
792, 754 | Si-O-Al compounded vibrations |
692 | Si-0 stretching vibration |
4.2. Interaction of Kaolinite with Organic Molecules
5. Experimental Determination of Sorption Co-Efficient and Sorption Kinetics
5.1. Experimental Determination of Sorption Coefficient
5.2. Sorption Kinetics
5.3. Relationship between Hydrophobicity of the Solute and Sorption
Pesticide | Water solubility (µg/mL) | log Kow |
---|---|---|
Penconazole | 73 | 3.72 |
Linuron | 81 | 3.00 |
Atrazine | 30 | 2.50 |
Alachlor | 240 | 2.63 |
Metalaxyl | 8400 | 1.75 |
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ren, S.; Schultz, T.W. Identifying the mechanism of aquatic toxicity of selected compounds by hydrophobicity and electrophilicity descriptors. Toxicol. Lett. 2002, 129, 151–160. [Google Scholar] [CrossRef]
- Bearden, A.P.; Schultz, T.W. Structure-activity relationships for Pimephales and Tetrahymena: A mechanism of action approach. Environ Toxicol. Chem. 1997, 16, 1311–1317. [Google Scholar]
- Krauss, M.; Wilcke, W. Persistent organic pollutants in soil density fractions: Distribution and sorption strength. Chemosphere 2005, 59, 1507–1515. [Google Scholar] [CrossRef]
- Manz, M.; Wenzel, K.; Dietze, U.; Schuurmann, G. Persistent organic pollutants in agricultural soils of central Germany. Sci. Total. Environ. 2001, 277, 187–198. [Google Scholar] [CrossRef]
- Barber, L.B.; Thurman, E.M.; Schroeder, M.P.; LeBlanc, D.R. Long-term fate of organic micropollutants in sewage-contaminated groundwater. Environ. Sci. Technol. 1988, 22, 205–211. [Google Scholar] [CrossRef]
- Mackay, D.M.; Freyberg, D.; Roberts, P.; Cherry, J. A natural gradient experiment on solute transport in a sand aquifer: 1. Approach and overview of plume movement. Water Resour. Res. 1986, 22, 2017–2029. [Google Scholar] [CrossRef]
- Kistemann, T.; Hundhausen, J.; Herbst, S.; Claßen, T.; Farber, H. Assessment of a groundwater contamination with vinyl chloride (VC) and precursor volatile organic compounds (VOC) by use of a geographical information system [GIS]. Int. J. Hyg. Environ. Health. 2008, 211, 308–317. [Google Scholar] [CrossRef]
- Yoon, H.; Werth, C.J.; Barkan, C.P.L.; Schaeffer, D.J.; Anand, P. An environmental screening model to assess the consequences to soil and groundwater from railroad-tank-car spills of light non-aqueous phase liquids. J. Hazard. Mater. 2009, 165, 332–344. [Google Scholar] [CrossRef]
- Anand, P.; Barkan, C.P. Exposure of soil and groundwater to spills of hazardous materials transported by rail: A geographic information system analysis. J. Transp. Res. Board. 2006, 1943, 12–19. [Google Scholar]
- Barkan, C.; Glickman, T.; Harvey, A. Benefit-cost evaluation of using different specification tank cars to reduce the risk of transporting environmentally sensitive chemicals. Transp. Res. Rec. 1991, 1313, 33–34. [Google Scholar]
- Bonaparte, L.V.C.; Neto, A.T.P.; Vasconcelos, L.G.S.; Brito, R.P.; Alves, J.J.N. Remediation procedure used for contaminated soil and underground water: A case study from the chemical industry. Proc. Saf. Environ. Prot. 2010, 88, 372–379. [Google Scholar] [CrossRef]
- Hu, Y.; Qi, S.; Zhang, J.; Tan, L.; Zhang, J.; Wang, Y.; Yuan, D. Assessment of organochlorine pesticides contamination in underground rivers in Chongqing, Southwest China. J. Geochem. Explor. 2011, 111, 47–55. [Google Scholar] [CrossRef]
- Goldstein, L.; Prasher, S.O.; Ghoshal, S. Three-dimensional visualization and quantification of non-aqueous phase liquid volumes in natural porous media using a medical X-ray Computed Tomography scanner. J. Contam. Hydrol. 2007, 93, 96–110. [Google Scholar] [CrossRef]
- Huesemann, M.H.; Hausmann, T.S.; Fortman, T.J. Leaching of BTEX from aged crude oil contaminated model soils: Experimental and modeling results. Soil Sed. Contam. 2005, 14, 545–558. [Google Scholar]
- Zuma, B.M.; Tandlich, R. Sorption of Trichloroethylene and Perchloroethylene onto a Perlite/Peat Mixture. In Proceedings of Second International Conference on Biology, Environment and Chemistry, Dubai, UAE, 28−30 December 2011; pp. 268–272.
- Yang, Z.; Niemi, A.; Fagerlund, F.; Illangasekare, T. Effects of single-fracture aperture statistics on entrapment, dissolution and source depletion behavior of dense non-aqueous phase liquids. J. Contam. Hydrol. 2012, 133, 1–16. [Google Scholar] [CrossRef]
- Ishakoglu, A.; Baytas, A.F. Measurement and evaluation of saturations for water, ethanol and a light non-aqueous phase liquid in a porous medium by gamma attenuation. Appl. Radiat. Isot. 2002, 56, 601–606. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). DNAPL Definition Page—USGS Toxic Substances Hydrology Program. Available online: toxics.usgs.gov/definitionsdnapl_def.html (accessed on 20 March 2014).
- Bradford, S.A.; Abriola, L.M.; Rathfelder, K.M. Flow and entrapment of dense nonaqueous phase liquids in physically and chemically heterogeneous aquifer formations. Adv. Water Res. 1998, 22, 117–132. [Google Scholar] [CrossRef]
- Hayden, N.; Diebold, J.; Farrell, C.; Laible, J.; Stacey, R. Characterization and removal of DNAPL from sand and clay layered media. J. Contam. Hydrol. 2006, 86, 53–71. [Google Scholar] [CrossRef]
- Tandlich, R. Microbial PCB Degradation and Binding to Soil Components. Ph.D. Thesis, North Dakota State University, Fargo, ND, USA, 23 January 2004. [Google Scholar]
- Annable, M.D.; Rao, P.S.C.; Hatfield, K.; Graham, W.D.; Wood, A.L.; Enfield, C.G. Use of partitioning tracers for measuring residual NAPL: Results for a field-scale test. J. Environ. Eng. ASCE 1998, 124, 498–503. [Google Scholar] [CrossRef]
- South Africa Info (2014). Mining and Minerals in South Africa. Available online: www.southafrica.info/business/economy/sectors/mining.htm#.UyvpML2vhAg (accessed on 21 March 2014).
- Kowalska, M.; Guler, H.; Cocke, D.L. Interactions of clay minerals with organic pollutants. Sci. Total. Environ. 1994, 141, 223–240. [Google Scholar] [CrossRef]
- Weber, W.J.; McGinley, P.M.; Katz, L.E. Sorption phenomena in subsurface systems: Concepts, models and effects on contaminant fate and transport. Water Res. 1991, 25, 499–528. [Google Scholar] [CrossRef]
- Tandlich, R.; Balaz, S. Different clay minerals and biphenyl sorption in soils. Afr. J. Agri. Res. 2011, 6, 2321–2328. [Google Scholar]
- Huang, W.; Peng, P.; Yu, Z.; Fu, J. Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Appl. Geochem. 2003, 18, 955–972. [Google Scholar] [CrossRef]
- Pu, X.; Cutright, T.J. Sorption-desorption behavior of PCP on soil organic matter and clay minerals. Chemosphere 2006, 64, 972–983. [Google Scholar] [CrossRef]
- Peterson, W.H. Oil Composition. U.S. Patent 2,623,852, 30 December 1952. [Google Scholar]
- Borisover, M.; Bukhanovsky, N.; Lapides, I.; Yariv, S. Thermal treatment of organoclays: Effect on the aqueous sorption of nitrobenzene on n-hexadecyltrimethyl ammonium montmorillonite. Appl. Surface Sci. 2010, 6. [Google Scholar] [CrossRef]
- Jordan, J. Organophilic Clay-Base Thickeners. Proceedings of 10th International Conference on Clays and Clay Minerals; Swineford, A., Ed.; Pergamon Press: Oxford, UK, 2009. Available online: http://www.clays.org/journal/archive/volume%2010/10-1-299.pdf (accessed on 18 March 2014).
- Donescu, D.; Ianchis, R.; Petcu, C.; Purcar, V.; Nistor, C.L.; Radovici, C.; Somoghi, R.; Pop, S.F.; Perichaud, A. Study of the solvent influence on the layered silicates-cation polymer hybrids properties. Dig. J. Nanomat. Biostruc. 2013, 8, 1751–1759. [Google Scholar]
- Praus, P.; Turicova, M. A physico-chemical study of the cationic surfactant adsorption to montmorillonite. J. Brazil Chem. Soc. 2007, 18, 378–383. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, C.; Huang, W.; Dang, Z.; Shu, X. Sorption of tylosin on clay minerals. Chemosphere 2013, 93, 2180–2186. [Google Scholar] [CrossRef]
- Factors Affecting Sorption of Organic Compounds in Natural Sorbent/Water Systems and Sorption Coefficients for Selected Pollutants. A Review. Available online: www.nist.gov/data/PDFfiles/jpcrd598.pdf (accessed on 18 March 2014).
- Peuravuori, J.; Paaso, N.; Pihlaja, K. Sorption behaviour of some chlorophenols in lake aquatic humic matter. Talanta 2002, 56, 523–538. [Google Scholar] [CrossRef]
- De Maagd, P.; Sinnige, T.L.; Schrap, S.M.; Opperhuizen, A.; Sum, D.T. Sorption coefficients of polycyclic aromatic hydrocarbons for two lake sediments: Influence of the bactericide sodium azide. Environ. Toxicol. Chem. 1998, 17, 1899–1907. [Google Scholar] [CrossRef]
- Wu, P.; Yang, G.; Zhao, X. Sorption behavior of 2,4-dichlorophenol on marine sediment. J. Colloid Interface Sci. 2003, 265, 251–256. [Google Scholar] [CrossRef]
- Gerstl, Z.; Mingelgrin, U. Sorption of organic substances by soils and sediments. J. Environ. Sci. Health. B 1984, 19, 297–312. [Google Scholar] [CrossRef]
- Polati, S.; Angioi, S.; Gianotti, V.; Gosetti, F.; Gennaro, M. Sorption of pesticides on kaolinite and montmorillonite as a function of hydrophilicity. J. Environ. Sci. Health. B 2006, 41, 333–344. [Google Scholar] [CrossRef]
- Hundal, L.S.; Thompson, M.L.; Laird, D.A.; Carmo, A.M. Sorption of phenanthrene by reference smectites. Environ. Sci. Technol. 2001, 35, 3456–3461. [Google Scholar] [CrossRef]
- Coppin, F.; Berger, G.; Bauer, A.; Castet, S.; Loubet, M. Sorption of lanthanides on smectite and kaolinite. Chem. Geol. 2002, 182, 57–68. [Google Scholar] [CrossRef]
- Guo, X.; Luo, L.; Ma, Y.; Zhang, S. Sorption of polycyclic aromatic hydrocarbons on particulate organic matters. J. Hazard. Mater. 2010, 173, 130–136. [Google Scholar] [CrossRef]
- Tan, X.L.; Chang, P.P.; Fan, Q.H.; Zhou, X.; Yu, S.M.; Wu, W.S.; Wang, X.K. Sorption of Pb[II] on Na-rectorite: Effects of pH, ionic strength, temperature, soil humic acid and fulvic acid. Colloid. Surf Physicochem. Eng. Aspects 2008, 328, 8–14. [Google Scholar] [CrossRef]
- Angio, S.; Polati, S.; Roz, M.; Rinaudo, C.; Gianotti, V.; Gennaro, M.C. Sorption studies of chloroanilines on kaolinite and montmorillonite. Environ. Pollut. 2005, 134, 35–43. [Google Scholar] [CrossRef]
- Almeida, C.; Debacher, N.; Downs, A.; Cottet, L.; Mello, C. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloid. Interface. Sci. 2009, 332, 46–53. [Google Scholar] [CrossRef]
- Clark Ehlers, G.A.; Forrester, S.T.; Scherr, K.E.; Loibner, A.P.; Janik, L.J. Influence of the nature of soil organic matter on the sorption behaviour of pentadecane as determined by PLS analysis of mid-infrared DRIFT and solid-state 13C NMR spectra. Environ. Pollut. 2010, 158, 285–291. [Google Scholar] [CrossRef]
- Ng, C.; Losso, J.N.; Marshall, W.E.; Rao, R.M. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin–water system. Bioresour. Technol. 2002, 85, 131–135. [Google Scholar] [CrossRef]
- Wan, M.; Li, Z.; Hong, H.; Wu, Q. Enrofloxacin uptake and retention on different types of clays. J. Asian Earth Sci. 2013, 77, 287–294. [Google Scholar] [CrossRef]
- Ribeiro, C.; Lopes, S.C.; Gameiro, P. New Insights into the translocation route of enrofloxacin and its metalloantibiotics. J. Membrane Biol. 2011, 241, 117–125. [Google Scholar] [CrossRef]
- Saraiva, R.; Lopes, S.; Ferreira, M.; Novais, F.; Pereira, E.; Feio, M.J.; Gameiro, P. Solution and biological behaviour of enrofloxacin metalloantibiotics: A route to counteract bacterial resistance? J. Inorg. Biochem. 2010, 104, 843–850. [Google Scholar] [CrossRef]
- Skipper, N.T.; Refson, K.; McConnell, J.D.C. Computer calculation of water-clay interactions using atomic pair potentials. Clay Miner. 1989, 24, 411–425. [Google Scholar]
- Issa, A.A.; Al-Degs, Y.S.; Al-Ghouti, M.A.; Olimat, A.A.M. Studying competitive sorption behavior of methylene blue and malachite green using multivariate calibration. Chem. Eng. J. 2014, 240, 554–564. [Google Scholar] [CrossRef]
- Figueroa, R.A.; Leonard, A.; Mackay, A.A. Modeling tetracycline antibiotic sorption to clays. Environ. Sci. Technol. 2004, 38, 476–483. [Google Scholar] [CrossRef]
- South African Medicines Formulary (SAMF). General Anti-Infectives for Systemic Use: Tetracyclines. In South African Medicines Formulary, 8th ed.; Rossiter, D., Blockman, M., Eds.; Health and Medical Publishing Company: Rodenbosch, South Africa, 2008; pp. 292–293. [Google Scholar]
- South African Medicines Formulary (SAMF). General Anti-Infectives for Systemic Use: Tetracyclines. In South African Medicines Formulary, 8th ed.; Rossiter, D., Blockman, M., Eds.; Health and Medical Publishing Company: Rodenbosch, South Africa, 2008; pp. 284–288. [Google Scholar]
- South African Medicines Formulary (SAMF). General Anti-Infectives for Systemic Use: Tetracyclines. In South African Medicines Formulary, 8th ed.; Rossiter, D., Blockman, M., Eds.; Health and Medical Publishing Company: Rodenbosch, South Africa, 2008; pp. 298–300. [Google Scholar]
- South African Medicines Formulary (SAMF). General Anti-Infectives for Systemic Use: Tetracyclines. In South African Medicines Formulary, 8th ed.; Rossiter, D., Blockman, M., Eds.; Health and Medical Publishing Company: Rodenbosch, South Africa, 2008; pp. 295–296. [Google Scholar]
- New Antibiotic Test Kit Booming in Eastern Europe. Available online: http://www.chr-hansen.com/news-media/singlenews/new-antibiotic-test-kit-booming-in-eastern-europe.html (accessed on 22 January 2013).
- Zhang, J.; Zeng, J.; He, M. Effects of temperature and surfactants on naphthalene and phenanthrene sorption by soil. J. Environ. Sci. China 2009, 21, 667–674. [Google Scholar] [CrossRef]
- Islam, G.M.I. Impact of Tetracycline on Microbial Communities in the Secondary Treatment Process of Wastewater Treatment Systems. Master’s Thesis, Ryerson University, Toronto, ON, Canada, 2013. [Google Scholar]
- Pena, A.; Paulo, M.; Silva, L.J.; Seifrtova, M.; Lino, C.M.; Solich, P. Tetracycline antibiotics in hospital and municipal wastewaters: A pilot study in Portugal. Anal. Bioanal. Chem. 2010, 396, 2929–2936. [Google Scholar] [CrossRef]
- Bonin, J.L.; Simpson, M.J. Sorption of steroid estrogens to soil and soil constituents in single- and multi-sorbate systems. Environ. Toxicol. Chem. 2007, 26, 2604–2610. [Google Scholar] [CrossRef]
- Polati, S.; Gosetti, F.; Gianotti, V.; Gennaro, M.C. Sorption and desorption behavior of chloroanilines and chlorophenols on montmorillonite and kaolinite. J. Environ. Sci. Health B 2006, 41, 765–779. [Google Scholar]
- Chu, B.; Goyne, K.W.; Anderson, S.H.; Lin, C.H.; Lerch, R.N. Sulfamethazine sorption to soil: Vegetative management, pH, and dissolved organic matter effects. J. Environ. Qual. 2013, 42, 794–805. [Google Scholar]
- Oudou, H.C.; Bruun Hansen, H.C. Sorption of cypermethrin diastereoisomers to quartz, corundum, goethite, kaolinite and montmorillonite. Int. J. Environ. An. Ch. 2002, 82, 529–544. [Google Scholar]
- Grathwohl, P. Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on Koc correlations. Environ. Sci. Technol. 1990, 24, 1687–1693. [Google Scholar] [CrossRef]
- Borisover, M.; Graber, E.R. Classifying NOM-organic sorbate interactions using compound transfer from an inert solvent to the hydrated sorbent. Environ. Sci. Technol. 2003, 37, 5657–5664. [Google Scholar]
- Kalinovich, I.; Allen-King, R.M.; Thomas, K. Distribution of carbonaceous matter in lithofacies: Impacts on HOC sorption nonlinearity. J. Contam. Hydrol. 2012, 133, 84–93. [Google Scholar]
- Wang, L.; Sun, H.; Wu, Y.; Xin, Y. Effect of sorbed nonylphenol on sorption of phenanthrene onto mineral surface. J. Hazard. Mater. 2009, 161, 1461–1465. [Google Scholar]
- He, M.; Zhang, J.; Wang, Y.; Jin, L. Effect of combined Bacillus subtilis on the sorption of phenanthrene and 1,2,3-trichlorobenzene onto mineral surfaces. J. Environ. Qual. 2010, 39, 236–244. [Google Scholar]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Borisover, M.; Graber, E.R. Relationship between strength of organic sorbate interactions in NOM and hydration effect on sorption. Environ. Sci. Technol. 2002, 36, 4570–4577. [Google Scholar]
- Zhou, J.L.; Rowland, S.J.; Mantoura, R.F.C.; Harland, B.J. Influence of the nature of particulate organic matter on the sorption of cypermethrin: Implications on KOC correlations. Environ. Int. 1995, 21, 187–195. [Google Scholar]
- Wang, Z.; Chen, S.; Xu, Y.; Tang, J. Aging effects on sorption–desorption behaviors of PAHs in different natural organic matters. J. Colloid Interface Sci. 2012, 382, 117–122. [Google Scholar]
- Nam, J.J.; Gustafsson, O.; Kurt-Karakus, P.; Breivik, K.; Steinnes, E.; Jones, K.C. Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate. Environ. Pollut. 2008, 156, 809–817. [Google Scholar]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nature Geosci. 2008, 1, 221–227. [Google Scholar]
- Chiou, C.T.; McGroddy, S.E.; Kile, D.E. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ. Sci. Technol. 1998, 32, 264–269. [Google Scholar]
- Perminova, I.V.; Grechishcheva, N.Y.; Petrosyan, V.S. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: Relevance of molecular descriptors. Environ. Sci. Technol. 1999, 33, 3781–3787. [Google Scholar]
- Graber, E.; Borisover, M. Hydration-facilitated sorption of specifically interacting organic compounds by model soil organic matter. Environ. Sci. Technol. 1998, 32, 258–263. [Google Scholar]
- Borisover, M.; Graber, E.R. Hydration of natural organic matter: Effect on sorption of organic compounds by humin and humic acid fractions vs. original peat material. Environ. Sci. Technol. 2004, 38, 4120–4129. [Google Scholar]
- Yang, F.; Wang, M.; Wang, Z. Sorption behavior of 17 phthalic acid esters on three soils: Effects of pH and dissolved organic matter, sorption coefficient measurement and QSPR study. Chemosphere 2013, 93, 82–89. [Google Scholar]
- Ping, L.; Luo, Y.; Wu, L.; Qian, W.; Song, J.; Christie, P. Phenanthrene adsorption by soils treated with humic substances under different pH and temperature conditions. Environ. Geochem. Health 2006, 28, 189–195. [Google Scholar] [Green Version]
- You, S.; Yin, Y.; Allen, H.E. Partitioning of organic matter in soils: Effects of pH and water/soil ratio. Sci. Total. Environ. 1999, 227, 155–160. [Google Scholar]
- Peng, X.; Wang, J.; Fan, B.; Luan, Z. Sorption of endrin to montmorillonite and kaolinite clays. J. Hazard. Mater. 2009, 168, 210–214. [Google Scholar]
- Finocchiaro, R.; Meli, S.M.; Cignetti, A.; Gennari, M. Adsorption of molinate, terbuthylazine, bensulfuron-methyl, and cinosulfuron on different Italian soils. Fresen. Environ. Bull. 2005, 14, 690–697. [Google Scholar]
- Behra, P.; Lecarme-Theobald, E.; Bueno, M.; Ehrhardt, J.J. Sorption of tributyltin onto a natural quartz sand. J. Colloid Interf. Sci. 2003, 263, 4–12. [Google Scholar]
- Pierzynski, G.; Sims, J.; Vance, G. Soils and Environmental Quality; CRC Press LLC: Boca Raton, FL, USA, 2000. [Google Scholar]
- He, Y.; Liu, Z.; Zhang, J.; Wang, H.; Shi, J.; Xu, J. Can assessing for potential contribution of soil organic and inorganic components for butachlor sorption be improved? J. Environ. Qual. 2011, 40, 1705–1713. [Google Scholar]
- Li, J.F.; Chen, H.H.; He, J.T.; Zhang, K.F. Sorption of trichloroethylene by the simulated organo-mineral complexes. Diqiu Kexue J. China Univ. Geosci. 2012, 37, 327–331. [Google Scholar]
- Su, C.C.; Shen, Y.H. Adsorption of poly (Ethylene oxide) on smectite: Effect of layer charge. J. Colloid Interface Sci. 2009, 332, 11–15. [Google Scholar]
- Li, H.; Teppen, B.J.; Laird, D.A.; Johnston, C.T.; Boyd, S.A. Geochemical modulation of pesticide sorption on smectite clay. Environ. Sci. Technol. 2004, 38, 5393–5399. [Google Scholar]
- Jaynes, W.; Boyd, S. Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water. Clays Clay Miner. 1991, 39, 428–436. [Google Scholar]
- Droge, S.T.J.; Goss, K.U. Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects. Environ. Sci. Technol. 2013, 47, 14224–14232. [Google Scholar]
- Cheng, H.; Liu, Q.; Yang, J.; Ma, S.; Frost, R.L. The thermal behavior of kaolinite intercalation complexes—A review. Thermochimica. Acta 2012, 545, 1–13. [Google Scholar]
- Elbokl, T.A.; Detellier, C. Intercalation of cyclic imides in kaolinite. J. Colloid Interface Sci. 2008, 32, 338–348. [Google Scholar]
- Letaief, S.; Diaco, T.; Pell, W.; Gorelsky, S.I.; Detellier, C. Ionic conductivity of nanostructured hybrid materials designed from imidazolium ionic liquids and kaolinite. Chem. Mater. 2008, 20, 7136–7142. [Google Scholar]
- Gianotti, V.; Benzi, M.; Croce, G.; Frascarolo, P.; Gosetti, F.; Mazzucco, E.; Bottaro, M.; Gennaro, M.C. The use of clays to sequestrate organic pollutants. Leaching experiments. Chemosphere 2008, 73, 1731–1736. [Google Scholar]
- Van Duin, A.C.T.; Larter, S.R. Molecular dynamics investigation into the adsorption of organic compounds on kaolinite surfaces. Org. Geochem. 2001, 32, 143–150. [Google Scholar]
- Saada, A.; Siffert, B.; Papirer, E. Comparison of the hydrophilicity/hydrophobicity of illites and kaolinites. J. Colloid Interface Sci. 1995, 174, 185–190. [Google Scholar]
- Bantignies, J.L.; Cartier Dit Moulin, C.; Dexpert, H. Wettability contrasts in kaolinite and illite clays: Characterization by infrared and X-ray absorption spectroscopies. Le Journal de Physique IV 1997, 45, 184–193. [Google Scholar]
- Cheng, H.; Yang, J.; Frost, R.L.; Liu, Q.; Zhang, Z. Thermal analysis and Infrared emission spectroscopic study of kaolinite–potassium acetate intercalate complex. J. Therm. Anal. Cal. 2011, 103, 507–513. [Google Scholar]
- Suraj, G.; Iyer, C.S.P.; Rugmini, S.; Lalithambika, M. The effect of micronization on kaolinites and their sorption behaviour. Appl. Clay. Sci. 1997, 12, 111–130. [Google Scholar]
- Frost, R.L.; Kristof, J.; Kloprogge, J.T.; Horvath, E. Rehydration of potassium acetate-intercalated kaolinite at 298 K. Langmuir 2000, 16, 5402–5408. [Google Scholar]
- Macht, F.; Eusterhues, K.; Pronk, G.J.; Totsche, K.U. Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Appl. Clay. Sci. 2011, 53, 20–26. [Google Scholar]
- Cerato, A.B.; Luteneggerl, A.J. Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether. Geotech. Test. J. 2002, 25. [Google Scholar] [CrossRef]
- Yukselen, Y.; Kaya, A. Comparison of methods for determining specific surface area of soils. J. Geotech. Geoenviron. Eng. 2006, 132, 931–936. [Google Scholar]
- Churchman, G.; Burke, C.; Parfitt, R. Comparison of various methods for the determination of specific surfaces of sub soils. J. Soil. Sci. 1991, 42, 449–461. [Google Scholar]
- Komori, Y.; Sugahara, Y.; Kuroda, K. Intercalation of alkylamines and water into kaolinite with methanol kaolinite as an intermediate. Appl. Clay. Sci. 1999, 15, 241–252. [Google Scholar]
- Gardolinski, J.; Lagaly, G. Grafted organic derivatives of kaolinite: II. Intercalation of primary n-alkylamines and delamination. Clay Miner. 2005, 40, 547–556. [Google Scholar]
- Frost, R.L.; Horvath, E.; Mako, E.; Kristof, J.; Cseh, T. The effect of mechanochemical activation upon the intercalation of a high-defect kaolinite with formamide. J. Colloid Interface Sci. 2003, 265, 386–395. [Google Scholar]
- Intercalation into Kaolinite Minerals. In Proceedings of the International Clay Conference; Israel University Press: Jerusalem, Israel, 1966.
- Erten, M.B.; Gilbert, R.B.; El Mohtar, C.S.; Reible, D.D. Development of a laboratory procedure to evaluate the consolidation potential of soft contaminated sediments. Geotech. Test. J. 2011, 34, 467–475. [Google Scholar]
- Erten, M.B.; Reible, D.D.; Gilbert, R.B.; El Mohtar, C.S. The Performance of Organophilic Clay on Nonaqueous Phase Liquid Contaminated Sediments under Anisotropic Consolidation. In Contaminated Sediments: 5th Volume, Restoration of Aquatic Environment; ASTM International: West Conshohocken, PA, USA, 2012; pp. 32–44. [Google Scholar]
- Shu, Y.; Li, L.; Zhang, Q.; Wu, H. Equilibrium, kinetics and thermodynamic studies for sorption of chlorobenzenes on CTMAB modified bentonite and kaolinite. J. Hazard. Mater. 2010, 173, 47–53. [Google Scholar]
- Mrozik, W.; Jungnickel, C.; Skup, M.; Urbaszek, P.; Stepnowski, P. Determination of the adsorption mechanism of imidazolium-type ionic liquids onto kaolinite: Implications for their fate and transport in the soil environment. Environ. Chem. 2008, 5, 299–306. [Google Scholar]
- Unuabonah, E.I.; Adebowale, K.O.; Dawodu, F.A. Equilibrium, kinetic and sorber design studies on the adsorption of aniline blue dye by sodium tetraborate-modified kaolinite clay adsorbent. J. Hazard. Mater. 2008, 157, 397–409. [Google Scholar]
- Bowman, B.; Sans, W. Partitioning behavior of insecticides in soil-water systems: I. Adsorbent concentration effects. J. Environ. Qual. 1985, 14, 265–269. [Google Scholar]
- Xu, X.; Li, X. Sorption behaviour of benzyl butyl phthalate on marine sediments: Equilibrium assessments, effects of organic carbon content, temperature and salinity. Mar. Chem. 2009, 115, 66–71. [Google Scholar]
- Hansch, C.; Hoekman, D.; Leo, A.; Zhang, L.; Li, P. The expanding role of quantitative structure-activity relationships [QSAR] in toxicology. Toxicol. Lett. 1995, 79, 45–53. [Google Scholar]
- Ruelle, P. The n-octanol and n-hexane/water partition coefficient of environmentally relevant chemicals predicted from the mobile order and disorder (MOD) thermodynamics. Chemosphere 2000, 40, 457–512. [Google Scholar] [CrossRef]
- Abraham, M.H.; Chadha, H.S.; Whiting, G.S.; Mitchell, R.C. Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and the Δlog p parameter of seiler. J. Pharm. Sci. 1994, 83, 1085–1100. [Google Scholar]
- Hsieh, C.; Lin, S. Prediction of 1-octanol–water partition coefficient and infinite dilution activity coefficient in water from the PR+COSMOSAC model. Fluid Phase Equilib. 2009, 285, 8–14. [Google Scholar]
- Han, S.; Qiao, J.; Zhang, Y.; Yang, L.; Lian, H.; Ge, X.; Chen, H.Y. Determination of n-octanol/water partition coefficient for DDT-related compounds by RP-HPLC with a novel dual-point retention time correction. Chemosphere 2011, 83, 131–136. [Google Scholar]
- Han, S.; Qiao, J.; Zhang, Y.; Lian, H.; Ge, X. Determination of n-octanol/water partition coefficients of weak ionizable solutes by RP-HPLC with neutral model compounds. Talanta 2012, 97, 355–361. [Google Scholar]
- Madeira, P.P.; Teixeira, J.A.; Macedo, E.A.; Mikheeva, L.M.; Zaslavsky, B.Y. “On the Collander equation”: Protein partitioning in polymer/polymer aqueous two-phase systems. J. Chromatogr. A 2008, 1190, 39–43. [Google Scholar] [Green Version]
- Sanchez-Martin, M.; Rodriguez-Cruz, M.; Andrades, M.; Sanchez-Camazano, M. Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: Influence of clay type and pesticide hydrophobicity. Appl. Clay. Sci. 2006, 31, 216–228. [Google Scholar]
- Lorphensri, O.; Intravijit, J.; Sabatini, D.A.; Kibbey, T.C.G.; Osathaphan, K.; Saiwan, C. Sorption of acetaminophen, 17α-ethynyl estradiol, nalidixic acid, and norfloxacin to silica, alumina, and a hydrophobic medium. Water Res. 2006, 40, 1481–1491. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Moyo, F.; Tandlich, R.; Wilhelmi, B.S.; Balaz, S. Sorption of Hydrophobic Organic Compounds on Natural Sorbents and Organoclays from Aqueous and Non-Aqueous Solutions: A Mini-Review. Int. J. Environ. Res. Public Health 2014, 11, 5020-5048. https://doi.org/10.3390/ijerph110505020
Moyo F, Tandlich R, Wilhelmi BS, Balaz S. Sorption of Hydrophobic Organic Compounds on Natural Sorbents and Organoclays from Aqueous and Non-Aqueous Solutions: A Mini-Review. International Journal of Environmental Research and Public Health. 2014; 11(5):5020-5048. https://doi.org/10.3390/ijerph110505020
Chicago/Turabian StyleMoyo, Francis, Roman Tandlich, Brendan S. Wilhelmi, and Stefan Balaz. 2014. "Sorption of Hydrophobic Organic Compounds on Natural Sorbents and Organoclays from Aqueous and Non-Aqueous Solutions: A Mini-Review" International Journal of Environmental Research and Public Health 11, no. 5: 5020-5048. https://doi.org/10.3390/ijerph110505020
APA StyleMoyo, F., Tandlich, R., Wilhelmi, B. S., & Balaz, S. (2014). Sorption of Hydrophobic Organic Compounds on Natural Sorbents and Organoclays from Aqueous and Non-Aqueous Solutions: A Mini-Review. International Journal of Environmental Research and Public Health, 11(5), 5020-5048. https://doi.org/10.3390/ijerph110505020