Impact of a Small Cell on the RF-EMF Exposure in a Train
Abstract
:1. Introduction
2. Methods
2.1. A Mobile-Phone User on A Moving Train—Exposure Scenarios
2.2. Exposure Assessment
2.2.1. Power Measurements
2.2.2. Dose Calculation
3. Results and Discussion
3.1. Power Measurements
3.1.1. Reference Scenario
Band | Power | # of Samples | Min (dBm) | p5 (dBm) | Median (dBm) | p95 (dBm) | Max (dBm) |
---|---|---|---|---|---|---|---|
GSM900 | RSSI | 30,052 | −110 | −91 | −72 | −53 | −47 |
PUL | 30,052 | 7 | 13 | 21 | 33 | 33 | |
GSM1800 | RSSI | 1550 | −99 | −90 | −74 | −60 | −47 |
PUL | 30,052 | 8 | 8 | 18 | 30 | 30 |
3.1.2. Small-Cell Scenario
d1 (m) | 1 | 2 | 3 | 4 | 6 | 8 | 10 | 12 | 14 |
---|---|---|---|---|---|---|---|---|---|
RSSI min (dBm) | −37 | −37 | −40 | −49 | −42 | −49 | −54 | −49 | −51 |
RSSI max (dBm) | −30 | −28 | −29 | −25 | −33 | −35 | −36 | −40 | −41 |
RSSI median (dBm) | −30 | −31 | −35 | −39 | −39 | −40 | −42 | −40 | −45 |
3.2. Exposure Comparison
Whole Body | Brain | |||||
---|---|---|---|---|---|---|
Connection Scenario | SDL (µW/m2) | PUL 1 (mW) | DDL (mJ/kg) | DUL (mJ/kg) | DDL (mJ/kg) | DDL (mJ/kg) |
reference (macro cell network) | 0.05 | 7.89 | 0.3 × 10−3 | 0.179 | 0.3 × 10−3 | 1.058 |
small cell (PSC = 17 dBm) | 110.45 | 0.13 | 0.656 | 0.003 | 0.646 | 0.017 |
small cell (PSC = 0 dBm) | 2.21 | 0.13 | 0.013 | 0.003 | 0.013 | 0.017 |
3.3. Strengths and Limitations
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- NMBS/NMBS-Holding. Jaarverslag 2013. Available online: http://www.belgianrail.be/nl/corporate/publicaties/~/media/900F431A770F42B79AA95CDE189F8FD1.ashx (accessed on 4 February 2015).
- Verstrepen, L.; Joseph, W.; Tanghe, E.; Pareit, D.; Naudts, D.; Keymeulen, J.; de Cleyn, P.; Blondia, C.; Martens, L.; Moerman, I. Models for wireless data communications in indoor train environment. Wirel. Pers. Commun. 2011, 67, 741–760. [Google Scholar]
- Joseph, W.; Vermeeren, G.; Verloock, L.; Heredia, M.M.; Martens, L. Characterization of personal RF electromagnetic field exposure and actual absorption for the general public. Health Phys. 2008, 95, 317–330. [Google Scholar]
- Frei, P.; Mohler, E.; Neubauer, G.; Theis, G.; Bürgi, A.; Fröhlich, J.; Braun-Fahrländer, C.; Bolte, J.; Egger, M.; Röösli, M. Temporal and spatial variability of personal exposure to radio frequency electromagnetic fields. Environ. Res. 2009, 109, 779–785. [Google Scholar]
- Joseph, W.; Frei, P.; Röösli, M.; Thuróczy, G.; Gajšek, P.; Trček, T.; Bolte, J.; Vermeeren, G.; Mohler, E.; Juhász, P.; et al. Comparison of personal radio frequency electromagnetic field exposure in different urban areas across Europe. Environ. Res. 2010, 110, 658–663. [Google Scholar]
- Bolte, J.; Eikelboom, T. Personal radiofrequency electromagnetic field measurements in the Netherlands: Exposure level and variability for everyday activities, times of day and types of area. Environ. Int. 2012, 48C, 133–142. [Google Scholar]
- Wiart, J.; Dale, C.; Bosisio, A.V.; le Cornec, A. Analysis of the influence of the power control and discontinuous transmission on RF exposure with GSM mobile phones. IEEE Trans. Electromagn. Compat. 2000, 42, 376–385. [Google Scholar]
- Aerts, S.; Plets, D.; Verloock, L.; Martens, L.; Joseph, W. Assessment and comparison of total RF-EMF exposure in femtocell and macrocell base station scenarios. Radiat. Prot. Dosim 2014, 162, 236–243. [Google Scholar]
- Zarikoff, B.; Malone, D. A comparison of RF exposure in macro- and femtocells. Health Phys. 2013, 105, 39–48. [Google Scholar]
- World Health Organization (WHO). Base stations and wireless networks : Exposures and health consequences. In Proceedings of the International Workshop on Base Stations and Wireless Networks: Exposures and Health Consequences, Geneva, Switzerland, 15–16 June 2005.
- Lauer, O.; Frei, P.; Gosselin, M.C.; Joseph, W.; Röösli, M.; Fröhlich, J. Combining near- and far-field exposure for an organ-specific and whole-body RF-EMF proxy for epidemiological research: a reference case. Bioelectromagnetics 2013, 34, 366–374. [Google Scholar]
- Plets, D.; Joseph, W.; Vanhecke, K.; Vermeeren, G.; Wiart, J.; Aerts, S.; Martens, L.; Varsier, N. Joint Minimization of Uplink and Downlink Whole-Body Dose in Indoor Wireless Networks. Available online: http://www.hindawi.com/journals/bmri/2015/943415/ (accessed on 23 December 2014).
- Boursianis, A.; Vanias, P.; Samaras, T. Measurements for assessing the exposure from 3G femtocells. Radiat. Prot. Dosim. 2012, 150, 158–167. [Google Scholar]
- Aerts, S.; Plets, D.; Verloock, L.; Tanghe, E.; Joseph, W.; Martens, L. Empirical path loss model in train car. In Proceedings of the 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013; pp. 3777–3780.
- International Telecommunication Union-Radiocommunication (ITU-R). Recommendation SM.1708-1. Field-strength measurements along a route with geographical coordinate registrations. Geneva, Switzerland, 2011. Available online: http://www.itu.int/dms_pubrec/itu-r/rec/sm/R-REC-SM.1708–1-201109-I!!PDF-E.pdf (accessed on 4 February 2015).
- Gati, A.; Conil, E.; Wong, M.F.; Wiart, J. Duality between uplink local and downlink whole-body exposures in operating networks. IEEE Trans. Electromagn. Compat. 2010, 52, 829–836. [Google Scholar]
- Mohler, E.; Frei, P.; Aydin, A.; Bürgi, A.; Röösli, M. Personal exposure to high-frequency electromagnetic fields in the region of Basel (Switzerland): an overview of the Qualifex study. Umweltmed. Forsch. Prax. 2009, 14, 329–338. [Google Scholar]
- Saunders, S.; Carlaw, S.; Giustina, A.; Bhat, R.R.; Rao, V.S.; Siegberg, R. Femtocells: Opportunities and Challenges for Business and Technology; John Wiley & Sons, Ltd.: Chichester, UK, 2009; pp. 5–8. [Google Scholar]
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 2008, 74, 494–522. [Google Scholar]
- Plets, D.; Joseph, W.; Aerts, S.; Vanhecke, K.; Vermeeren, G.; Martens, L. Assessment of contribution of other users to own total whole-body absorption in train environment. Bioelectromagnetics 2015. submitted. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aerts, S.; Plets, D.; Thielens, A.; Martens, L.; Joseph, W. Impact of a Small Cell on the RF-EMF Exposure in a Train. Int. J. Environ. Res. Public Health 2015, 12, 2639-2652. https://doi.org/10.3390/ijerph120302639
Aerts S, Plets D, Thielens A, Martens L, Joseph W. Impact of a Small Cell on the RF-EMF Exposure in a Train. International Journal of Environmental Research and Public Health. 2015; 12(3):2639-2652. https://doi.org/10.3390/ijerph120302639
Chicago/Turabian StyleAerts, Sam, David Plets, Arno Thielens, Luc Martens, and Wout Joseph. 2015. "Impact of a Small Cell on the RF-EMF Exposure in a Train" International Journal of Environmental Research and Public Health 12, no. 3: 2639-2652. https://doi.org/10.3390/ijerph120302639
APA StyleAerts, S., Plets, D., Thielens, A., Martens, L., & Joseph, W. (2015). Impact of a Small Cell on the RF-EMF Exposure in a Train. International Journal of Environmental Research and Public Health, 12(3), 2639-2652. https://doi.org/10.3390/ijerph120302639