The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa
Abstract
:1. Introduction
2. Climate Change, Water Scarcity and the Concern to Sustainability of Food Production and Food Security
3. Neglected and Underutilised Crop Species (NUCS)
4. Tapping into Indigenous Knowledge
5. Drought Tolerance in Selected NUCS
5.1. Cereal Crops
5.1.1. Maize Landraces
5.1.2. Millets
5.2. Root and Tuber Crops
5.2.1. Sweet Potato
5.2.2. Taro
5.3. Grain Legumes
5.3.1. Bambara Groundnut
5.3.2. Cowpea
5.4. African Leafy Vegetables
5.4.1. Amaranth
5.4.2. Wild Mustard
5.4.3 Wild Watermelon
5.5. Indigenous/Wild Fruits
6. Sustainability of NUCS
7. What Role(s) do NUCS Have to Play in the Future?
8. Conclusions
Acknowledgement
Author Contributions
Conflicts of Interest
References
- Jacobsen, S.-E.; Sørensen, M.; Pedersen, S.M.; Weiner, J. Feeding the world: Genetically modified crops versus agricultural biodiversity. Agron. Sustain. Dev. 2013, 33, 651–662. [Google Scholar] [CrossRef]
- Toledo, Á.; Burlingame, B. Biodiversity and nutrition: A common path toward global food security and sustainable development. J. Food Compos. Anal. 2006, 19, 477–483. [Google Scholar] [CrossRef]
- Chappell, M.J.; LaValle, L.A. Food security and biodiversity: Can we have both? An agroecological analysis. Agric. Human Values 2011, 28, 3–26. [Google Scholar] [CrossRef]
- Thrupp, L.A. Linking agricultural biodiversity and food security: The valuable role of agrobiodiversity for sustainable agriculture. Int. Aff. 2000, 76, 283–297. [Google Scholar] [CrossRef]
- Padulosi, S.; Hodgkin, T.; Williams, J.T.; Haq, N. Underutilized crops: Trends, challenges and opportunities in the 21st century. In Managing Plant Genetic Diversity; Engels, J.M.M., Ramanatha Rao, V., Brown, A.H.D., Jackson, M.T., Eds.; Bioversity International: Maccarese, Italy, 2001; Chapter 30; pp. 323–338. [Google Scholar]
- FAO, WFP, IFAD. The State of Food Insecurity in the World 2012: Economic Growth is Necessary but not Sufficient to Accelerate Reduction of Hunger and Malnutrition; FAO: Rome, Italy, 2013. [Google Scholar]
- FAO, WFP, IFAD. The State of Food Insecurity in the World 2013: The Multiple Dimensions of Food Security; FAO: Rome, Italy, 2013. [Google Scholar]
- FAO, IFAD, WFP. The State of Food Insecurity in the World 2014: Strengthening the Enabling Environment for Food Security and Nutrition; FAO: Rome, Italy, 2014. [Google Scholar]
- The International Food Policy Research Institute (IFPRI). Global Nutrition Report 2014: Actions and Accountability to Accelerate the world’s Progress on Nutrition; IFPRI: Washington, DC, USA, 2014. [Google Scholar]
- Modi, A.T.; Mabhaudhi, T. Water Use and Drought Tolerance of Selected Traditional and Indigenous Crops; Final Report of Water Research Commission Project K5/1771//4; WRC Report No. 1771/1/13; ISBN 978-1-4312-0434-2. Water Research Commission: Pretoria, South. Africa, 2013. [Google Scholar]
- Van Rensburg, W.J.; Van Averbeke, W.; Slabbert, R.; Faber, M.; Van Jaarsveld, P.; Van Heerden, I.; Wenhold, F.; Oelofse, A. African leafy vegetables in South Africa. Water SA 2007, 33. [Google Scholar] [CrossRef]
- International Panel on Climate Change (IPCC). Fifth Assessment Report (AR5). Available online: http://www.ipcc.ch/report/ar5/ (accessed on 17 October 2014).
- International Panel on Climate Change (IPCC). Working Group 1 Fourth Assessment Report “The Physical Science Basis”. Available online: http://www.ipcc-wg1.unibe.ch/publications/wg1-ar4/wg1-ar4.html (accessed on 22 November 2007).
- Jones, L.; Carabine, E.; Roux, J.-P.; Tanner, T. Promoting the Use of Climate Information to Achieve Long-Term Development Objectives in sub-Saharan Africa: Results from the Future Climate For Africa Scoping Phase; Future Climate For Africa: Oxford, UK, 2015. [Google Scholar]
- Singh, P.; Wani, S.P.; Pathak, P.; Sahrawat, K.L.; Singh, A.K. Increasing crop productivity and water use efficiency in rainfed agriculture. In Integrated Watershed Management; Wani, S.P., Rockstrom, J., SaHrawat, L., Eds.; CRC Press: London, UK, 2011; charpter 10; pp. 315–348. [Google Scholar]
- Sisulu, S.; Scaramella, C. Food for Thought: A Climate for Ending Hunger Skyways; February 2012 Panorama publications: Kyalami, South Africa, 2012; pp. 31–33. [Google Scholar]
- Schulze, R. Methodological Approaches to Assessing Eco-hydrological Responses to Climate Change in South. Africa: Report to the Water Research Commission; Water Research Commission: Pietermaritzburg, South Africa, 2011. [Google Scholar]
- Crosby, L.; Jayasinghe, D.; McNair, D. Food for Thought: Tackling Child Malnutrition to Unlock Potential and Boost Prosperity; Save the Children: London, UK, 2013. [Google Scholar]
- Mabhaudhi, T.; Modi, A.T.; Beletse, Y.G. Growth response of selected taro [Colocasia esculenta (L.) schott] landraces to water stress. In ISHS Acta Horticulturae 979: II International Symposium on Underutilized Plant. Species: Crops for the Future-Beyond Food Security; ISHS (International Society for Horticultural Science): Leuven, Belgium, 2011. [Google Scholar]
- Baye, T.; Kebede, H.; Belete, K. Agronomic evaluation of vernoniagalamensis germplasm collected from Eastern Ethiopia. Ind. Crops Prod. 2001, 14, 179–190. [Google Scholar] [CrossRef]
- Horton, S.; Hoddinott, J. Benefits and Costs of the Food and Nutrition Targets for the Post--2015 Development Agenda. Available online: http://www.copenhagenconsensus.com/sites/default/files/food_security_and_nutrition_perspective_-_horton_hoddinott_0.pdf (accessed on 18 November 2014).
- Mabhaudhi, T. Responses of Maize (Zea Mays L) Landraces to Water Stress Compared with Commercial Hybrids. MSc Thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2009. [Google Scholar]
- Azam-Ali, S. Fitting underutilised crops within research-poor environments: Lessons and approaches. South Afr. J. Plant Soil 2010, 27, 293–298. [Google Scholar] [CrossRef]
- Garn, S.M.; Leonard, W.R. What did our ancestors eat? Nutr. Rev. 1989, 47, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Collins, W.W.; Hawtin, G.C. Conserving and using crop plant biodiversity in agroecosystems. In Biodiversity in Agroecosystems; CRC Press: London, UK, 1999; pp. 215–236. [Google Scholar]
- Prescott-Allen, R.; Prescott-Allen, C. How many plants feed the world? Conserv. Biol. 1990, 4, 365–374. [Google Scholar] [CrossRef]
- Padulosi, S.; Eyzaquirre, P.; Hodgkin, T. Challenges and Strategies in Promoting Conservation and Use of Neglected and Underutilized Crop Species. Perspectives on New Crops and New Uses; ASHS Press: Alexandria, VA, USA, 1999; pp. 140–145. [Google Scholar]
- Idowu, O. Contribution of neglected and underutilized crops to household food security and health among rural dwellers in Oyo State, Nigeria. In ISHS Acta Horticulturae 806: International Symposium on Underutilized Plants for Food Security, Nutrition, Income and Sustainable Development; ISHS (International Society for Horticultural Science): Leuven, Belgium, 2009. [Google Scholar]
- Laker, M. Introduction to the special edition of Water SA on indigenous crops, water and human nutrition. Water SA 2007, 33. [Google Scholar] [CrossRef]
- Modi, M.; Modi, A.; Hendriks, S. Potential role for wild vegetables in household food security: A preliminary case study in KwaZulu-Natal, South. Africa. Afr. J. Food Agric. Nutr. Dev. 2006, 6, 1–13. [Google Scholar]
- Zeven, A.C. Landraces: A review of definitions and classifications. Euphytica 1998, 104, 127–139. [Google Scholar] [CrossRef]
- Rao, S.S. Indigenous knowledge organization: An indian scenario. Int. J. Inf. Manag. 2006, 26, 224–233. [Google Scholar] [CrossRef]
- Pilgrim, S.E.; Cullen, L.C.; Smith, D.J.; Pretty, J. Ecological knowledge is lost in wealthier communities and countries. Environ. Sci. Technol. 2008, 42, 1004–1009. [Google Scholar]
- Berkes, F.; Colding, J.; Folke, C. Rediscovery of traditional ecological knowledge as adaptive management. Ecol. Appl. 2000, 10, 1251–1262. [Google Scholar] [CrossRef]
- Sillitoe, P.; Marzano, M. Future of indigenous knowledge research in development. Futures 2009, 41, 13–23. [Google Scholar] [CrossRef]
- Swiderska, K.; Reid, H.; Song, Y.; Li, J.; Mutta, D.; Ongogu, P.; Mohamed, P.; Oros, R.; Barriga, S. The role of traditional knowledge and crop varieties in adaptation to climate change and food security in SW China, Bolivian Andes and coastal Kenya. In Proceedings of UNU-IAS Workshop on Indigenous Peoples, Marginalised Populations and Climate Change: Vulnerability, Adaptation and Traditional Knowledge, Mexico city, Mexico, 19–21 July 2011.
- Bezançon, G.; Pham, J.-L.; Deu, M.; Vigouroux, Y.; Sagnard, F.; Mariac, C.; Kapran, I.; Mamadou, A.; Gérard, B.; Ndjeunga, J.; et al. Changes in the diversity and geographic distribution of cultivated millet (Pennisetum glaucum (L.) R. Br.) and sorghum (Sorghum bicolor (L.) Moench) varieties in Niger between 1976 and 2003. Genet. Resour. Crop Evol. 2009, 56, 223–236. [Google Scholar] [CrossRef]
- Bala Ravi, S. Neglected millets that save the poor from starvation. LEISA India 2004, 6, 34–36. [Google Scholar]
- Shava, S.; O’Donoghue, R.; Krasny, M.E.; Zazu, C. Traditional food crops as a source of community resilience in Zimbabwe. Int. J. Afr. Renaiss. Stud. 2009, 4, 31–48. [Google Scholar]
- Shava, S. Research on indigenous knowledge and its application: A case of wild food plants of Zimbabwe. Southern Afr. J. Environ. Educ. 2005, 22, 73–86. [Google Scholar]
- Oelofse, A.; Van Averbeke, W. Nutritional Value and Water Use of African Leafy Vegetables for Improved Livelihoods; Water Research Commission: Pretoria, South Africa, 2012. [Google Scholar]
- Blum, A. Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive? Crop Pasture Sci. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Araus, J.; Slafer, G.A.; Reynolds, M.P.; Royo, C. Plant breeding and drought in C3 cereals: What should we breed for? Ann. Bot. 2002, 89, 925–940. [Google Scholar] [CrossRef] [PubMed]
- Kavar, T.; Maras, M.; Kidrič, M.; Šuštar-Vozlič, J.; Meglič, V. Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Mol. Breed. 2008, 21, 159–172. [Google Scholar] [CrossRef]
- Turner, N.C.; Wright, G.C.; Siddique, K. Adaptation of grain legumes (pulses) to water-limited environments. Adv. Agron. 2001, 71, 194–233. [Google Scholar]
- Subbarao, G.; Johansen, C.; Slinkard, A.E.; Nageswara Rao, R.C.; Saxena, N.P.; Chauhan, Y.S.; Lawn, R.J. Strategies for improving drought resistance in grain legumes. Crit. Rev. Plant Sci. 1995, 14, 469–523. [Google Scholar] [CrossRef]
- Mitchell, J.; Siamhan, D.; Wamala, M.H.; Risimeri, J.B.; Chinyamakobvu, E.; Henderson, S.A.; Fukai, S. The use of seedling leaf death score for evaluation of drought resistance of rice. Field Crops Res. 1998, 55, 129–139. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Agric. 2009, 29, 153–188. [Google Scholar]
- Sikandar, A.; Ali, M.; Amin, M.; Bibi, S.; Arif, M. Effect of plant population on maize hybrids. J. Agric. Biol. Sci. 2007, 2, 13–20. [Google Scholar]
- Miracle, M.P. The introduction and spread of maize in Africa. J. Afr. History 1965, 6, 39–55. [Google Scholar] [CrossRef]
- Bichard, A.; Dury, S.; Schonfeld, H.C.; Motau, F.; Moroka, T.; Bricas, N. Indigenous cereals: Urban market access for small-scale producers? A qualitative study of consumption practices and potential demand of urban consumers in Polokwane (Limpopo Province, South. Africa). Cah. Agric. 2004, 13, 129–134. [Google Scholar]
- Department of Agriculture, Forestry and Fisheries. Trends in the Agricultural Sector; DAFF: Pretoria, South Africa, 2011. [Google Scholar]
- Naeem, M.; Qadir, G.; Hussain, M.; Nasim, S.; Shakoor, A. Yield potential of pearl millet cultivars under rainfed conditions of Pakistan. FLCG News Lett. 1994, 29, 2–3. [Google Scholar]
- Akmal, M.; Naeem, M.; Nasim, S.; Shakoor, A. Performance of different pearl millet genotypes under rainfed conditions. J. Agric. Res. (Pakistan) 1992, 30, 53–58. [Google Scholar]
- Mare, R.; Modi, A. Taro corm quality in response to planting date and post-harvest storage: I. Starch content and reducing sugars. Afr. J. Agric. Res. 2012, 7, 3014–3021. [Google Scholar] [CrossRef]
- National Research Council (NRC). Lost crops of Africa. Volume 1: Grains; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- Internationam Crops Research Institute for the Semi-Arid Tropics (ICRISAT); Food and Agricultural Organisation (FAO). The World Sorghum and Millet Economies; ICRISAT: Patancheru, India; FAO: Rome, Italy, 1996. [Google Scholar]
- De Rouw, A. Improving yields and reducing risks in pearl millet farming in the African Sahel. Agric. Syst. 2004, 81, 73–93. [Google Scholar] [CrossRef]
- De Rouw, A.; Winkel, T. Drought avoidance by asynchronous flowering in pearl millet stands cultivated on-farm and on-station in Niger. Exp. Agric. 1998, 34, 19–39. [Google Scholar] [CrossRef]
- Winkel, T.; Renno, J.-F.; Payne, W. Effect of the timing of water deficit on growth, phenology and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) grown in Sahelian conditions. J. Exp. Bot. 1997, 48, 1001–1009. [Google Scholar] [CrossRef]
- Lebot, V. Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams and Aroids; CABI: Oxfordshire, UK, 2009. [Google Scholar]
- Mukhopadhyay, S.; Sen, H.; Jana, P. Effect of planting materials on growth and yield of sweet potato. J. Root Crops 1990, 16, 119–122. [Google Scholar]
- Motsa, N. Agronomic and physiological approaches to improving productivity of selected sweet potato (Ipomoea batatas l.) cultivars in KwaZulu–Natal: A focus on drought tolerance. PhD Thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2015. [Google Scholar]
- Mukhopadhyay, S.K.; Chattopadhyay, A.; Chakraborty, I.; Bhattacharya, I. Crops that feed the world 5. Sweetpotato. Sweetpotatoes for income and food security. Food Secur. 2011, 3, 283–305. [Google Scholar]
- Low, J.W.; Arimond, M.; Osman, N.; Cunguara, B.; Zano, F.; Tschirley, D. A food-based approach introducing orange-fleshed sweet potatoes increased vitamin A intake and serum retinol concentrations in young children in rural Mozambique. J. Nutr. 2007, 137, 1320–1327. [Google Scholar] [PubMed]
- Yngve, A.; Margetts, B.; Hughes, R.; Tseng, M. Editorial on the occasion of the International Congress of Nutrition. World hunger: A good fight or a losing cause? Public Health Nutr. 2009, 12, 1685–1686. [Google Scholar] [CrossRef] [PubMed]
- Amagloh, F.K.; Hardacre, A.; Mutukumira, A.N.; Weber, J.L.; Brough, L.; Coad, J. A household-level sweet potato-based infant food to complement vitamin a supplementation initiatives. Matern. Child Nutr. 2012, 8, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Kulembeka, H.; Rugutu, C.K.; Kanju, E.; Chirimi, B.; Rwiza, E.; Amour, R. The agronomic performance and acceptability of orange fleshed sweetpotato varieties in the lake zone of Tanzania. Afr. Crop Sci. J. 2005, 12, 229–240. [Google Scholar]
- Laurie, S.; Magoro, M. Evaluation and release of new sweet potato varieties through farmer participatory selection. Afr. J. Agric. Res. 2008, 3, 672–676. [Google Scholar]
- Laurie, S.; Van Heerden, S. Consumer acceptability of four products made from beta-carotene-rich sweet potato. Afr. J. Food Sci. 2012, 6, 96–103. [Google Scholar] [CrossRef]
- Lebot, V.; Aradhya, K. Isozyme variation in taro (Colocasia esculenta (L.) Schott) from Asia and Oceania. Euphytica 1991, 56, 55–66. [Google Scholar]
- Ezumah, H.C. The Growth and Development of Taro, Colocasia esculenta (L) Schott, In Relation To Selected Cultural Management Practices. Ph.D. Thesis, University of Hawaii at Manoa, Honolulu, HI, USA, 1972. [Google Scholar]
- Rural Industries Research and Development Corporation (Australia); Vinning, G. Select Markets for Taro, Sweet Potato and Yam; RIRDC Project No UCQ-13A; RIRDC: Queensland, Australia, 2003. [Google Scholar]
- Mabhaudhi, T.; Modi, A.T.; Beletse, Y.G. Parameterisation and evaluation of the FAO-aquacrop model for a South African taro (Colocasia esculenta L. Schott) landrace. Agric. For. Meteorol. 2014, 192, 132–139. [Google Scholar] [CrossRef]
- Modi, A. Short-term preservation of maize landrace seed and taro propagules using indigenous storage methods. South Afr. J. Bot. 2004, 70, 16–23. [Google Scholar] [CrossRef]
- Modi, A.T. What do subsistence farmers know about indigenous crops and organic farming? Preliminary experience in KwaZulu-Natal. Dev. Southern Afr. 2003, 20, 675–684. [Google Scholar] [CrossRef]
- Agergaard, J.; Birch-Thomsen, T. Transitional rural landscapes: The role of small-scale commercial farming in former homelands of Post-Apartheid KwaZulu-Natal. Geogr. Tidsskr.-Dan. J. Geograph. 2006, 106, 87–102. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Modi, A.; Beletse, Y. Response of taro (Colocasia esculenta L. Schott) landraces to varying water regimes under a rainshelter. Agric. Water Manag. 2013, 121, 102–112. [Google Scholar] [CrossRef]
- Mukurumbira, L. Effects of rate of fertilizer nitrogen and previous grain legumes crop on maize yields. Zimbabwe Agric. J. (Zimbabwe) 1985, 82, 177–179. [Google Scholar]
- Mwale, S.; Azam-Ali, S.; Massawe, F. Growth and development of bambara groundnut (Vigna subterranea) in response to soil moisture: 1. Dry matter and yield. Eur. J. Agron. 2007, 26, 345–353. [Google Scholar] [CrossRef]
- Linnemann, A.; Azam-Ali, S. Bambara groundnut (Vigna subterranea L. Verdc). In Underutilised Crops Series II Vegetable and Pulses; Williams, J.T., Ed.; Chapman and Hall: London, UK, 1993; pp. 13–58. [Google Scholar]
- Swanevelder, C. Bambara–food for Africa; National Department of Agriculture, Government Printer: Pretoria, Republic of South Africa, 1998.
- Mabhaudhi, T.; Modi, A.T. Growth, phenological and yield responses of a bambara groundnut (Vigna subterranea (L.) Verdc.) landrace to imposed water stress under field conditions. South Afr. J. Plant Soil 2013, 30, 69–79. [Google Scholar] [CrossRef]
- Vurayai, R.; Emongor, V.; Moseki, B. Effect of water stress imposed at different growth and development stages on morphological traits and yield of Bambara Groundnuts (Vigna subterranea L. Verdc). Am. J. Plant Physiol. 2011, 6, 17–27. [Google Scholar] [CrossRef]
- Verdcourt, B. Studies in the Leguminosae-Papilionoïdeae for the “Flora of Tropical East. Africa”: IV. Kew Bull. 1970, 24, 507–569. [Google Scholar] [CrossRef]
- El-Jasser, A.S. Chemical and biological properties of local cowpea seed protein grown in Gizan region. Int. J. Agric. Res. Rev. 2011, 1, 68–75. [Google Scholar]
- Bressani, R. Nutritive Value of Cowpea; Singh, S.R., Rachie, K.O., Eds.; Cowpea Research, Production and Utilization: Chicester, UK, 1985; pp. 353–359. [Google Scholar]
- Sebetha, E.; Ayodele, V.I.; Kutu, F.R.; Mariga, I.K. Yields and protein content of two cowpea varieties grown under different production practices in Limpopo province, South. Africa. Afr. J. Biotechnol. 2010, 9, 628–634. [Google Scholar]
- Schippers, R.R. African Indigenous Vegetables: An Overview of the Cultivated Species; University of Greenwich, Natural Resources Institute: London, UK, 2000. [Google Scholar]
- Mposi, M.S. Vegetable amaranth improvement for South Africa. Aust. New Crops Newslett. 1999, 11, 8–14. [Google Scholar]
- Makus, D.; Davis, D. A Mid-Summer Crop for Fresh Greens or Canning: Vegetable Amaranth [Field Performance and Nutrient Content]. 1984. Available online: http://chla.library.cornell.edu/cgi/t/text/pageviewer-idx?c=chla;cc=chla;rgn=full%20text;idno=5721867_2815_003;didno=5721867_2815_003;view=image;seq=0010;node=5721867_2815_003%3A3.9 (accessed on 31 March 2015).
- Andini, R.; Yoshida, S.; Ohsawa, R. Variation in protein content and amino acids in the leaves of grain, vegetable and weedy types of amaranths. Agronomy 2013, 3, 391–403. [Google Scholar] [CrossRef]
- Reta Alemayehu, F.; Bendevis, M.; Jacobsen, S.E. The potential for utilizing the seed crop amaranth (Amaranthus spp.) in East Africa as an alternative crop to support food security and climate change mitigation. J. Agron. Crop Sci. 2014. [Google Scholar] [CrossRef]
- Allemann, J.; Van Den Heever, E.; Viljoen, J. Evaluation of Amaranthus as a possible vegetable crop. Appl. Plant Sci. 1996, 10, 1–4. [Google Scholar]
- Palada, M.; Chang, L. Suggested Cultural Practices for Vegetable Amaranth; The World Vegetable Centre (AVRDC), International Cooperators’ Fact Sheet: Shanhua, Taiwan, 2003; pp. 3–552. [Google Scholar]
- Grubben, G.J. Vegetables. In Plant Resources of Tropical Africa; PROTA: Wageningen, Netherlands, 2004; Series 2; p. 667. [Google Scholar]
- Maundu, P.; Grubben, G. Amaranthus graecizans L. PROTA 2004, 2, 76–78. [Google Scholar]
- Omami, E.N. Response of Amaranth to Salinity Stress. Ph.D. Thesis, University of Pretoria, Pretoria, South Afirca, 2005. [Google Scholar]
- Liu, F.; Stützel, H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Sci. Hortic. 2004, 102, 15–27. [Google Scholar] [CrossRef]
- Akparobi, S. Effect of farmyard manures on the growth and yield of Amaranthus cruentus. Agric. Trop. Et Subtrop. 2009, 42, 1–4. [Google Scholar]
- Dixon, G.R. Plasmodiophora brassicae in its environment. J. Plant Growth Regul. 2009, 28, 212–228. [Google Scholar] [CrossRef]
- Chweya, J.A.; Eyzaguirre, P.B. The Biodiversity of Traditional Leafy Vegetables; IPGRI: Rome, Italy, 1999. [Google Scholar]
- Burton, W.; Pymer, S.; Salisbury, P.; Kirk, J.; Oram, R. Performance of Australian canola quality Indian mustard breeding lines. In Proceedings of 10th International Rapeseed Congress, Canberra, Australia, 26–29 Septemeber 1999 [CD ROM]; The Regional Institute: Canberra, Australia, 1999. [Google Scholar]
- Si, P.; Walton, G. Determinants of oil concentration and seed yield in canola and Indian mustard in the lower rainfall areas of Western Australia. Crop Pasture Sci. 2004, 55, 367–377. [Google Scholar] [CrossRef]
- Woods, D.; Capcara, J.; Downey, R. The potential of mustard (Brassica juncea (L.) Coss) as an edible oil crop on the Canadian Prairies. Can. J. Plant Sci. 1991, 71, 195–198. [Google Scholar] [CrossRef]
- Whitaker, T.W.; Davis, G.N. Cucurbits. Botany, Cultivation, and Utilization; Leonard Hill (Books), Ltd.: London, UK; Interscience Publishers Inc.: New York, NY, USA, 1962. [Google Scholar]
- Shosteck, R. Flowers and Plants: An International Lexicon with Biographical Notes; Illustrations. General (KR, 197500030); New York Times Book Co.: New York, NY, USA, 1974; p. 329. [Google Scholar]
- Kirkbride, J.H. Biosystematic Monograph of the Genus Cucumis (Cucurbitaceae): Botanical Identification of Cucumbers and Melons; Parkway Publishers, Inc.: Boone, NC, USA, 1993. [Google Scholar]
- Wani, A.A.; Kaur, D.; Ahmed, I.; Sogi, D.S. Extraction optimization of watermelon seed protein using response surface methodology. LWT-Food Sci. Technol. 2008, 41, 1514–1520. [Google Scholar] [CrossRef]
- Wani, A.A.; Sogi, D.S.; Grover, L.; Saxena, D.C. Effect of temperature, alkali concentration, mixing time and meal/solvent ratio on the extraction of watermelon seed proteins—A response surface approach. Biosyst. Eng. 2006, 94, 67–73. [Google Scholar] [CrossRef]
- Rimando, A.M.; Perkins-Veazie, P.M. Determination of citrulline in watermelon rind. J. Chromatogr. A 2005, 1078, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Shetty, A.A.; Rana, R.; Buckseth, T.; Preetham, S.P. Waste Utilization in Cucurbits: A Review. Waste Biomass Valorization 2012, 3, 363–368. [Google Scholar] [CrossRef]
- Baboli, Z.M.; Kordi, A.A.S. Characteristics and composition of watermelon seed oil and solvent extraction parameters effects. J. Am. Oil Chem. Soc. 2010, 87, 667–671. [Google Scholar] [CrossRef]
- Achu, M.B.; Fokou, E.; Tchiégang, C.; Fotso, M.; Tchouanguep, F.M. Nutritive value of some Cucurbitaceae oilseeds from different regions in Cameroon. Afr. J. Biotechnol. 2005, 4, 1329–1334. [Google Scholar]
- Akashi, K.; Miyake, C.; Yokota, A. Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. Febs Lett. 2001, 508, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Miyake, C.; Yokota, A. Determination of the rate of photoreduction of O2 in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis. Plant Cell Physiol. 2000, 41, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, S.; Miyake, C.; Kohchi, T.; Fujii, S.; Uchida, M.; Yokota, A. Responses of wild watermelon to drought stress: Accumulation of an ArgE homologue and citrulline in leaves during water deficits. Plant Cell Physiol. 2000, 41, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Kwesiga, F.; Akinnifesi, F.K.; Ramadhani, T.; Kadzere, I.; Saka, J. Domestication of indigenous fruit trees of the miombo in southern Africa. In Proceedings of A SADC Tree Seed Centre Network Technical Meeting, Windhoek, Namibia, 14 March 2000.
- Saka, J.K.; Msonthi, J.D. Nutritional value of edible fruits of indigenous wild trees in Malawi. For. Ecol. Manag. 1994, 64, 245–248. [Google Scholar] [CrossRef]
- Van de Wouw, M.; Kik, C.; van Hintum, T.; van Treuren, R.; Visser, B. Genetic erosion in crops: Concept, research results and challenges. Plant Genet. Resour. 2010, 8, 1–15. [Google Scholar] [CrossRef]
- Izquierdo, J.; Roca, W. Under-utilized Andean food crops: Status and prospects of plant biotechnology for the conservation and sustainable agricultural use of genetic resources. In Symposium on Plant Biotechnology as A Tool for the Exploitation of Mountain Lands; ISHS (International Society for Horticultural Science): Leuven, Belgium, 1997; pp. 157–172. [Google Scholar]
- Barbieri, R.L.; Costa Gomes, J.C.; Alercia, A.; Padulosi, S. Agricultural biodiversity in Southern Brazil: Integrating efforts for conservation and use of neglected and underutilized species. Sustainability 2014, 6, 741–757. [Google Scholar] [CrossRef]
- Ebert, A.W. Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability 2014, 6, 319–335. [Google Scholar] [CrossRef]
- Ochatt, S.; Jain, S.M. Breeding of Neglected and Under-Utilized Crops, Spices and Herbs; Science Publishers, Inc.: New Hampshire, NH, USA, 2007. [Google Scholar]
- Sthapit, B.; Padulosi, S.; Mal, B. Role of on-farm/in situ conservation and underutilized crops in the wake of climate change. Indian J. Plant Genet. Resour. 2010, 23, 145–156. [Google Scholar]
- Stamp, P.; Messmer, R.; Walter, A. Competitive underutilized crops will depend on the state funding of breeding programmes: An opinion on the example of Europe. Plant Breed. 2012, 131, 461–464. [Google Scholar] [CrossRef]
- Gruère, G.; Nagarajan, L.; King, E.O. The role of collective action in the marketing of underutilized plant species: Lessons from a case study on minor millets in South India. Food Policy 2009, 34, 39–45. [Google Scholar] [CrossRef]
- Mwangi, S.; Kimathi, M. African leafy vegetables evolves from underutilized species to commercial cash crops. In Proceedings of Research Workshop on Collective Action and Market Access for Smallholders, Cali, Colombia, 2–5 October 2006.
- Williams, J.; Haq, N. Global research on underutilized crops: An assessment of current activities and proposals for enhanced cooperation. International Centre for Underutilized Crops: Southampton, UK, 2002. [Google Scholar]
- Mabhaudhi, T.; Modi, A. Drought tolerance of selected south african taro (Colocasia esculenta L. Schott) landraces. Exp. Agric. 2015. [Google Scholar] [CrossRef]
- Shackleton, C.M.; Pasquini, M.W.; Drescher, A.W. African Indigenous Vegetables in Urban Agriculture; Routledge: New York, USA, 2009. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chivenge, P.; Mabhaudhi, T.; Modi, A.T.; Mafongoya, P. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2015, 12, 5685-5711. https://doi.org/10.3390/ijerph120605685
Chivenge P, Mabhaudhi T, Modi AT, Mafongoya P. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa. International Journal of Environmental Research and Public Health. 2015; 12(6):5685-5711. https://doi.org/10.3390/ijerph120605685
Chicago/Turabian StyleChivenge, Pauline, Tafadzwanashe Mabhaudhi, Albert T. Modi, and Paramu Mafongoya. 2015. "The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa" International Journal of Environmental Research and Public Health 12, no. 6: 5685-5711. https://doi.org/10.3390/ijerph120605685
APA StyleChivenge, P., Mabhaudhi, T., Modi, A. T., & Mafongoya, P. (2015). The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa. International Journal of Environmental Research and Public Health, 12(6), 5685-5711. https://doi.org/10.3390/ijerph120605685