Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions
Abstract
:1. Introduction
2. Irrigation Water as a Risk Factor
Country | Produce | Water Source | Microorganisms | Average cfu/100 mL | Prevalence | Reference |
---|---|---|---|---|---|---|
Belgium | Strawberry | Groundwater | STEC | − | 0/22 | Delbeke et al., 2015 |
E. coli spp. | 1 | 4/22 | ||||
Rainfall water collected in ponds | STEC | − | 11/56 | |||
E. coli spp. | 40–45 | 40/56 | ||||
Belgium | Lettuce | Rainfall water collected in open wells and bore hole water | STEC | − | 6/68 | Holvoet et al., 2014 |
Campylobacter spp. | − | 37/120 | ||||
Salmonella spp. | − | 1/68 | ||||
E. coli spp. | 30–35 | 90/120 | ||||
Spain | Baby spinach | Surface water collected in water reservoirs | STEC | − | 0/50 | Castro-Ibañez et al., 2015 |
Salmonella spp. | − | 1/50 | ||||
E. coli spp. | 5–10 | 72/250 | ||||
Spain | Tomatoes | Surface water | STEC | − | 0/16 | López-Gálvez et al., 2014 |
Salmonella spp. | − | 1/16 | ||||
E. coli spp. | 20–25 | 6/32 | ||||
Listeria spp. | 30–35 | 26/30 | ||||
Reclaimed water | STEC | − | 0/16 | |||
Salmonella spp. | − | 2/16 | ||||
E. coli spp. | 240–280 | 31/32 | ||||
Listeria spp. | 350–400 | 26/30 | ||||
Italy | Tomatoes | Tap water | E. coli spp. | − | 0/30 | Forslund et al., 2012 |
Reclaimed water | E. coli spp. | 10,300 | 11/30 | |||
Crete | Tomatoes | Tap water | E. coli spp. | 400 | 2/31 | |
Reclaimed water | E. coli spp. | 596 | 4/31 |
Water Treatment | Active Agent | Recommended Dose | Reported Microbial Reductions Range (Log cfu/mL) | Advantages | Disadvantages |
---|---|---|---|---|---|
Sodium hypochlorite | Hypochlorous acid | 2–5 mg/L | 0.2–4.0 | High bactericidal action Liquid ready to use Low operating costs | Organic matter reduces its efficacy Influenced by pH Storage of large volumes By-product formation (trihalomethanes and chlorates among others) |
Calcium hypochlorite | Hypochlorous acid | 2–5 mg/L | 0.2–4.0 | High bactericidal action Tablets ready to use Low operating costs | Organic matter reduces its efficacy Influenced by pH By-product formation (trihalomethanes and chlorates among others) |
Chlorine dioxide | Chlorine dioxide molecule | 0.1–5.0 mg/L | 0.5–5.0 | High bactericidal action Effective at a wide pH range (4–10) Does not react with organic matter as chlorine | “in situ” generation or use of stabilized solutions By-product formation (mostly chlorates) |
Ultrasound | Cavitation | 20–40 kHz | 3.0 | Not affected by pH Easy to use No formation of disinfection by-products | Lack of residual bactericidal action |
UV-C | DNA damage | 1–200 mJ/cm2 | 0.5–5.0 | High bactericidal action Not affected by pH Easy to use No formation of disinfection by-products Low operational costs | Water turbidity affects efficacy Lack of residual bactericidal action |
Membrane filtration | Particle interception | 1.0–5.0 | Not affected by pH Easy to use No formation of disinfection by-products | Filter blockage |
Current Situation in Europe
3. Regulations, Guidelines and Microbial Quality Standards for Water Used in Primary Production
3.1. Legislation—The European Commission
3.2. Guidelines
3.2.1. World Health Organization (WHO)
3.2.2. Codex Alimentarius Commission
3.3. Microbial Quality Standards for Water Used in Primary Production
3.3.1. QAS—1st Generation
3.3.2. QAS—2nd Generation
3.3.3. QAS—3rd Generation
4. Solutions
4.1. Monitoring Pathogen and Indicator Species in Water Sources
4.2. Water Treatments
4.3. Alternative Production Systems
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Guide to minimize microbial food safety hazards for fresh fruits and vegetables. U.S. Department of Health and Human Services, Food and Drug Administration/Center for Food Safety and Applied Nutrition: Washington, DC, USA, 1998.
- Steele, M.; Odumeru, J. Irrigation water as source of foodborne pathogens on fruits and vegetables. J. Food Prot. 2004, 67, 2839–2849. [Google Scholar] [PubMed]
- Gerba, C.P. The role of water and water testing in produce safety. In Microbial Safety of Fresh Produce; Fan, X., Niemira, B.A., Doona, C.J., Feeherty, F.E., Gravani, R.B., Eds.; Wiley: Indianapolis, IN, USA, 2009; pp. 129–142. [Google Scholar]
- Suslow, T.V. Standards for irrigation and foliar contact water. Available online: http://extension.psu.edu/food/safety/farm/resources/water/standards-for-irrigation-and-foliar-contact-water/view (accessed on 28 May 2015).
- Pachepsky, Y.; Shelton, D.R.; McLain, J.E.; Patel, J.; Mandrell, R.E. Irrigation waters as a source of pathogenic microorganisms in produce: A Review. Adv. Agron. 2011, 113, 73–138. [Google Scholar]
- Olaimat, A.N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. J. Food Prot. 2012, 32, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Szonyi, B.; Gautam, R.; Kendra, N.; Anciso, J.; Ivanek, R. Risk factors for microbial contamination in fruits and vegetables at the preharvest level: A systematic review. J. Food Prot. 2012, 75, 2055–2081. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.I.; Selma, M.V.; Suslow, T.; Jacxsens, L.; Uyttendaele, M.; Allende, A. Pre- and post-harvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Crit. Rev. Food Sci. Nutr. 2015, 55, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Uyttendaele, M.; Jaykus, L.A.; Amoah, P.; Chiodini, A.; Cunliffe, D.; Jacxsens, L.; Holvoet, K.; Korsten, L.; Lau, M.; McClure, P.; et al. Microbial hazards in irrigation water: Standards, norms, and testing to manage use of water in fresh produce primary production. Compr. Rev. Food Sci. F 2015, 14, 336–356. [Google Scholar] [CrossRef]
- Agricultural Water: Five Year Research Review; Center for Produce Safety: Davis, CA, USA, 2014.
- Monaghan, J.M.; Hutchison, M.L. Distribution and decline of human pathogenic bacteria in soil after application in irrigation water and the potential for soil-splash-mediated dispersal onto fresh produce. J. Appl. Microbiol. 2012, 112, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Viñas, I.; Usall, J.; Anguera, M.; Abadias, M. Presence and survival of Escherichia coli O157:H7 on lettuce leaves and in soil treated with contaminated compost and irrigation water. Int. J. Food Microbiol. 2012, 156, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Kisluk, G.; Yaron, S. Presence and persistence of Salmonella enterica serotype Typhimurium in the phyllosphere and rhizosphere of spray-irrigated parsley. Appl. Environ. Microbiol. 2012, 78, 4030–4036. [Google Scholar] [CrossRef] [PubMed]
- Van der Linden, I.; Cottyn, B.; Uyttendaele, M.; Vlaemynck, G.; Heyndrickx, M.M.; Maes, M. Survival of enteric pathogens during butterhead lettuce growth: Crop stage, leaf age, and irrigation. Foodborne Pathog. Dis. 2013, 10, 485–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceuppens, S.; Hessel, C.T.; de Quadros Rodrigues, R.; Bartz, S.; Tondo, E.C.; Uyttendaele, M. Microbiological quality and safety assessment of lettuce production in Brazil. Int. J. Food Microbiol. 2014, 181, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, K.; Sampers, I.; Seynnaeve, M.; Uyttendaele, M. Relationships among hygiene indicators and enteric pathogens in irrigation water, soil and lettuce and the impact of climatic conditions on contamination in the lettuce primary production. Int. J. Food Microbiol. 2014, 71, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Castro-Ibáñez, I.; Gil, M.I.; Tudela, J.A.; Ivanek, R.; Allende, A. Assessment of microbial risk factors and impact of meteorological conditions during production of baby spinach in the Southeast of Spain. Food Microbiol. 2015, 49, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Castro-Ibáñez, I.; Tudela, J.A.; Gil, M.I.; Allende, A. Microbial safety considerations of flooding in primary production of leafy greens. Food Res. Int. 68, 62–69. [CrossRef]
- Delbeke, S.; Ceuppens, S.; Holvoet, K.; Samuels, E.; Sampers, I.; Uyttendaele, M. Multiplex real-time PCR and culture methods for detection of Shiga toxin-producing Escherichia coli and Salmonella Thompson in strawberries, a lettuce mix and basil. Int. J. Food Microbiol. 2015, 193, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Généreux, M.; Grenier, M.; Côté, C. Persistence of Escherichia coli following irrigation of strawberry grown under four production systems: Field experiment. Food Control 2015, 47, 103–107. [Google Scholar] [CrossRef]
- Stine, S.W.; Song, I.; Choi, C.Y.; Gerba, C.P. Application of microbial risk assessment to the development of standards for enteric pathogens in water used to irrigate fresh produce. J. Food Prot. 2005, 68, 913–918. [Google Scholar] [PubMed]
- Mota, A.; Mena, K.D.; Soto-Beltran, M.; Tarwater, P.M.; Cháidez, C. Risk assessment of Cryptosporidium and Giardia in water irrigating fresh produce in Mexico. J. Food Prot. 2009, 72, 2184–2188. [Google Scholar] [PubMed]
- Seidu, R.; Sjølander, I.; Abubakari, A.; Amoah, D.; Larbi, J.A.; Stenström, T.A. Modeling the die-off of E. coli and Ascaris in wastewater-irrigated vegetables: Implications for microbial health risk reduction associated with irrigation cessation. Water Sci. Techn. 2013, 68, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Castro-Ibáñez, I.; Jacxsens, L.; Gil, M.I.; Uyttendaele, M.; Allende, A. Quantitative exposure assessment of Escherichia coli in baby spinach primary production in Spain: Effects of weather conditions and agricultural practices. Int. J. Food Microbiol. 2015. submitted. [Google Scholar]
- Jacxsens, L.; Delbeke, S.; Ceuppens, S.; Johannessen, G.; Allende, A.; Sampers, I.; Uyttendaele, M. Comparative quantitative exposure modelling of enteric pathogens Salmonella and Shiga toxin producing Escherichia coli on fresh basil, strawberries and butterhead lettuce. Food Microbiol. 2015. submitted. [Google Scholar]
- Parker, J.S.; Wilson, R.S.; LeJeune, J.T.; Rivers, L.; Doohan, D. An expert guide to understanding grower decisions related to fresh fruit and vegetable contamination prevention and control. Food Control 2012, 26, 107–116. [Google Scholar] [CrossRef]
- Fulponi, L. Private voluntary standards in the food system: The perspective of major food retailers in OECD countries. Food Policy 2006, 31, 1–13. [Google Scholar] [CrossRef]
- McDonald. McDonald’s Good Agricultural Practices Food Safety Standards, Food Safety Checklist & Produce Processing Guidelines–August 2012.
- Jones, L.A.; Worobo, R.W.; Smart, C.D. UV light inactivation of human and plant pathogens in unfiltered surface irrigation water. Appl. Environ. Microb. 2014, 80, 849–854. [Google Scholar] [CrossRef] [PubMed]
- EFSA; Panel on Biological Hazards (BIOHAZ). Scientific opinion on the risk posed by pathogens in food of non-animal origin. Part 2 (Salmonella and Norovirus in leafy greens eaten raw as salads). EFSA J. 2014, 11. Available online: www.efsa.europa.eu/efsajournal (accessed on 16 May 2015). [Google Scholar]
- Considering Water Quality for Use in the Food Industry; ILSI Europe Report Series; International Life Sciences Institute: Brussels, Belgium, 2008.
- Pond, K.; Charles, K.; Pedley, S. Review of the Use of Water in UK Agriculture and the Potential Risks to Food Safety; Report B17005; Food Standards Agency: London, UK, 2007. [Google Scholar]
- Weatherhead, K. Water—Future Availability, Demand and Management. Available online: http://www.ofc.org.uk/files/ofc/papers/08weatherhead.pdf (accessed on 14 May 2015).
- Pedrero, F.; Kalavrouziotis, I.; Alarcón, J.J.; Koukoulakis, P.; Asano, T. Use of treated municipal wastewater in irrigated agriculture—Review of some practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- Norton-Brandão, D.; Scherrenberg, S.M.; van Lier, J.B. Reclamation of used urban waters for irrigation purposes - A review of treatment technologies. J. Environ. Manag. 2013, 122, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, M.V.; Luna, M.C.; Gil, M.I.; Allende, A. Ultrasound treatments improve the microbiological quality of water reservoirs used for the irrigation of fresh produce. Food Res. Int. 2015, 75, 140–147. [Google Scholar] [CrossRef]
- Tyrrel, S.F.; Knox, J.W.; Weatherhead, E.K. Microbiological water quality requirements for salad irrigation in the United Kingdom. J. Food Prot. 2006, 69, 2029–2035. [Google Scholar] [PubMed]
- EC, European Commission. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. Eur. Commun. 1998, 5, 0032–0054. [Google Scholar]
- Economou, V.; Gousia, P.; Kansouzidou, A.; Sakkas, H.; Karanis, P.; Papadopoulou, C. Prevalence, antimicrobial resistance and relation to indicator and pathogenic micro-organisms of Salmonella enterica isolated from surface waters within an agricultural landscape. Int. J. Hyg. Environ. Health. 2012, 216, 435–444. [Google Scholar] [CrossRef] [PubMed]
- EC, European Commission. European Water Framework Directive. Council Directive 2000/60/EC of 2nd December 2000. Available online: http://ec.europa.eu/environment/water/water-framework/index_en.html (accessed on 1 June 2015).
- Forslund, A.; Ensink, J.H.H.; Markussen, B.; Battilani, A.; Psarras, G.; Gola, S.; Sandei, L.; Fletcher, T.; Dalsgaard, A. Escherichia coli contamination and health aspects of soil and tomatoes (Solanum lycopersicum L.) subsurface drip irrigated with on-site treated domestic wastewater. Water Res. 2012, 46, 5917–5934. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Galvez, F.; Allende, A.; Pedrero-Salcedo, F.; Alarcon, J.J.; Gil, M.I. Safety assessment of greenhouse hydroponic tomatoes irrigated with reclaimed and surface water. Int. J. Food Microbiol. 2014, 191, 97–102. [Google Scholar] [CrossRef] [PubMed]
- CAC (Codex Alimentarius Commission). Code of Hygienic Practice for Fresh Fruits and Vegetables. Available online: ftp://ftp.fao.org/codex/publications/Booklets/FreshFruitsVeg/FFV_2007_EN.pdf (accessed on 16 May 2015).
- European Commission. Regulation (EC) No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the hygiene of foodstuffs. 2004. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:139:0001:0054:en:PDF (accessed on 1 July 2015).
- Reuse of effluents: Methods of wastewater treatment and public health safeguards. In Report of a WHO Meeting of Experts, Technical Report Series No. 517; WHO: Geneva, Switzerland, 1973.
- Health guidelines for the use of wastewater in agriculture and aquaculture. In Report of a WHO Scientific Group, Technical Report Series No. 778; WHO: Geneva, Switzerland, 1989.
- Havelaar, A.; Blumenthal, U.J.; Strauss, M.; Kay, D.; Bartram, J. Chapter 2—Guidelines: The current position. In Water Quality: Guidelines, Standards and Health; Fewtrell, L., Bartram, J., Eds.; IWA Publishing: London, UK, 2001; pp. 17–42. [Google Scholar]
- WHO. Third Edition of the WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater in Agriculture and Aquaculture: Guidance note for National Programme Managers and Engineers-Applying the Guidelines along the Sanitation Ladder. 2010. Available online: http://www.who.int/water_sanitation_health/wastewater/FLASH_OMS_WSHH_Guidance_note1_20100729_17092010.pdf (accessed on 18 May 2015).
- WHO. Third edition of the WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater in Agriculture and Aquaculture: Guidance note for National Programme Managers-Guidelines for Drinking-Water Quality, 3rd ed. In Health-based targets; 2010; Available online: http://www.unwater.org/wwd10/downloads/WHO_IWA/Health-Based_Targets_3_17_10.pdf (accessed on 18 May 2015).
- Recommended International Code of Practice: General Principles of Food Hygiene. Available online: http://www.codexalimentarius.org/standards/list-of-standards/en/?provide=standards&orderField=fullReference&sort=asc&num1=CAC/RCP (accessed on 16 May 2015).
- Soon, J.M.; Baines, R.N. Public and private food safety standards: Facilitating or frustrating fresh produce growers? Laws 2013, 2, 1–19. [Google Scholar] [CrossRef]
- The Food Safety Act—A guide for businesses. 2015. Available online: https://www.food.gov.uk/sites/default/files/multimedia/pdfs/fsactguidefoodbusiness.pdf (accessed on 14 May 2015).
- Monaghan, J.M. United Kingdom and European approach to fresh produce food safety and security. HortTechnics 2006, 16, 559–562. [Google Scholar]
- FDA, Food and Drug Administration. Fact Sheets on the Subparts of the Original FSMA Proposed Rule for Produce Safety Standards for the Growing, Harvesting, Packing, and Holding of Produce for Human Consumption. Available online: http://www.fda.gov/Food/GuidanceRegulation/FSMA/ucm334552.htm (accessed on 14 May 2015).
- FDA, Food and Drug Administration. FSMA Proposed Rule for Produce Safety: Information on Specific Provisions. 2014. Available online: http://www.fda.gov/food/guidanceregulation/fsma/ucm415226.htm#water (accessed on 14 May 2015). [Google Scholar]
- Park, S.; Navratil, S.; Gregory, A.; Bauer, A.; Srinath, I.; Jun, M.; Szonyi, B.; Nightingale, K.; Anciso, J.; Ivanek, R. Generic Escherichia coli contamination of spinach at the preharvest level: The role of farm management and environmental factors. Appl. Environ. Microbiol. 2013, 79, 4347–4358. [Google Scholar] [CrossRef] [PubMed]
- Shelton, D.R.; Karns, J.S.; Coppock, C.; Patel, J.; Sharma, M.; Pachepsky, Y.A. Relationship between eae and stx virulence genes and E. coli in an agricultural watershed: Implications for irrigation water standards and leafy green commodities. J. Food Prot. 2011, 74, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, L.; Atwill, E.R.; Jay-Russell, M.; Cooley, M.; Carychao, D.; Gorski, L.; Mandrell, R.E. Occurrence of generic Escherichia coli, E. coli O157 and Salmonella spp. in water and sediment from leafy green produce farms and streams on the Central California coast. Int. J. Food Microbiol. 2013, 165, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, G.; Edge, T.; Gannon, V.; Jokinen, C.; Lyautey, E.; Medeiros, D.; Neumann, N.; Ruecker, N.; Topp, E.; Lapen, D.R. Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape. Water Res. 2009, 43, 2209–2223. [Google Scholar] [CrossRef] [PubMed]
- Won, G.; Schlegel, P.J.; Schrock, J.M.; Lejeune, J.T. Absence of direct association between coliforms and Escherichia coli in irrigation water and on produce. J. Food Prot. 2013, 76, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, K.; Sampers, I.; Seynnaeve, M.; Jacxsens, L.; Uyttendaele, M. Agricultural and management practices and bacterial contamination in greenhouse vs. open field lettuce production. Int. J. Environ. Res. Public Health 2015, 12, 32–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suslow, T. It’s Time to “Farmer-Up”. Available online: http://ucanr.edu/datastoreFiles/234-2605.pdf (accessed on 14 May 2015).
- Benefits and Risks of the Use of Chlorine-Containing Disinfectants in Food Production and Food Processing: Report of a Joint FAO/WHO Expert Meeting; FAO/WHO: Ann Arbor, MI, USA, 2009; pp. 27–30.
- Sharma, S.K.; Sanghi, R.; Mudhoo, A. Chapter 1—Green Practices to Save Our Precious “Water Resource”. In Advances in Water Treatment and Pollution Prevention; Sharma, S.K., Sanghi, R., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–36. [Google Scholar]
- Newman, S.E. Disinfecting Irrigation Water for Disease Management. In Proceedings of 20th Annual Conference on Pest Management on Ornamentals, San Jose, CA, USA, 20–22 February 2004; Available online: http://ghex.colostate.edu/pdf_files/DisinfectingWater.pdf (accessed on 14 May 2015).
- Van der Bruggen, B.; Vandecasteele, C.; van Gestel, T.; Doyen, W.; Leysen, R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 2003, 22, 46–56. [Google Scholar] [CrossRef]
- Raudales, R.E.; Parke, J.L.; Guy, C.L.; Fisher, P.R. Control of waterborne microbes in irrigation: A review. Agric. Water Manag. 2014, 143, 9–28. [Google Scholar] [CrossRef]
- Meggyes, T.; Simon, G. Removal of organic and inorganic pollutants from groundwater using permeable reactive barriers Part2. Engineering of permeable reactive barriers. Land Contam. Reclam. 2000, 8, 175–187. [Google Scholar]
- Ingram, D.T.; Callahan, M.T.; Ferguson, S.; Hoover, D.G.; Chiu, P.C.; Shelton, D.R.; Millner, P.D.; Camp, M.J.; Patel, J.R.; Kniel, K.E.; et al. Use of zero-valent iron biosand filters to reduce Escherichia coli O157: H12 in irrigation water applied to spinach plants in a field setting. J. Appl. Microbiol. 2012, 112, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Song, I.; Stine, S.; Choi, C.; Gerba, C. Comparison of crop contamination by microorganisms during subsurface drip and furrow irrigation. J. Environ. Eng. 2006, 132, 1243–1248. [Google Scholar] [CrossRef]
- Nicola, S.; Hoeberechts, J.; Fontana, E. Comparison between traditional and soilless culture system to produce rocket (Eruca sativa) with low nitrate content. Acta Hortic 2005, 697, 549–555. [Google Scholar]
- Benoit, F.; Ceustermans, N. Consequences of closed soilless growing systems for the recirculating nutrient solution and the production techniques. In Proceedings of the XXVI International Horticultural Congress: Protected Cultivation 2002: In Search of Structures, Systems and Plant Materials, Toronto, Canada, 2004; pp. 331–340.
- Manzocco, L.; Foschia, M.; Tomasi, N.; Maifreni, M.; Costa, L.D.; Marino, M.; Cortella, G.; Cesco, S. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb’s lettuce (Valerianella locusta L. Laterr). J. Sci. Food Agric. 2011, 91, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Luedtke, A.N.; Chapman, B.; Powell, D.A. Implementation and analysis of an on-farm food safety program for the production of greenhouse vegetables. J. Food Prot. 2003, 66, 485–489. [Google Scholar] [PubMed]
- Keller, R.; Perim, K.; Semionato, S.; Zandonade, E.; Cassini, S.; Goncalves, R.F. Hydroponic cultivation of lettuce (Lactuca sativa) using effluents from primary, secondary and tertiary + UV treatments. Water Sci. Technol.: Water Suppl. 2005, 5, 95–100. [Google Scholar]
- Orozco, L.; Rico-Romero, L.; Escartín, E.F. Microbiological profile of greenhouses in a farm producing hydroponic tomatoes. J. Food Prot. 2008, 71, 60–65. [Google Scholar] [PubMed]
- Soundy, P.; Cantliffe, D.J.; Hochmuth, G.J.; Sttofella, P.J. Nutrient requirements for lettuce transplants using a floatation irrigation system. I. Phosphorus. HortScience 2001, 36, 1066–1070. [Google Scholar]
- Deering, A.J.; Mauer, L.J.; Pruitt, R.E. Internalization of E. coli O157: H7 and Salmonella spp. in plants: A review. Food Res. Int. 2012, 45, 567–575. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allende, A.; Monaghan, J. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions. Int. J. Environ. Res. Public Health 2015, 12, 7457-7477. https://doi.org/10.3390/ijerph120707457
Allende A, Monaghan J. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions. International Journal of Environmental Research and Public Health. 2015; 12(7):7457-7477. https://doi.org/10.3390/ijerph120707457
Chicago/Turabian StyleAllende, Ana, and James Monaghan. 2015. "Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions" International Journal of Environmental Research and Public Health 12, no. 7: 7457-7477. https://doi.org/10.3390/ijerph120707457
APA StyleAllende, A., & Monaghan, J. (2015). Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions. International Journal of Environmental Research and Public Health, 12(7), 7457-7477. https://doi.org/10.3390/ijerph120707457