Remediation of Rare Earth Element Pollutants by Sorption Process Using Organic Natural Sorbents
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
Isotherm | Parameter | Metal Ions | |||||
---|---|---|---|---|---|---|---|
Nd(III) | Cs(I) | Sr(II) | Tl(I) | Eu(III) | La(III) | ||
Langmuir | qm–meas (mg/g) | 10.75 | 0.84 | 1.39 | 2.29 | 12.6 | 8.43 |
qm–calc(mg/g) | 10.9 | 0.98 | 1.61 | 2.5 | 12.7 | 8.70 | |
KL (L/mg) | 0.349 | 0.0424 | 0.0444 | 0.0371 | 0.339 | 0.094 | |
R2 | 0.9980 | 0.9850 | 0.9920 | 0.9980 | 0.9970 | 0.9970 | |
SSE | 25.7 | 0.0246 | 0.0312 | 0.033 | 16.3 | 2.66 | |
ARE | 5.41 | 0.827 | 0.611 | 0.498 | 4.28 | 1.92 | |
EABS | 12.2 | 0.369 | 0.391 | 0.458 | 9.15 | 3.59 | |
Freundlich | 1/n | 0.276 | 0.571 | 0.548 | 0.515 | 0.374 | 0.434 |
KF ((mg/g)(L/mg)1/n) | 2.965 | 0.0637 | 0.115 | 0.164 | 2.368 | 0.968 | |
R2 | 0.9100 | 0.9270 | 0.9570 | 0.9150 | 0.8550 | 0.938 | |
SSE | 20.41 | 0.214 | 0.362 | 1.994 | 54.26 | 20.3 | |
ARE | 5.41 | 1.326 | 1.052 | 2.193 | 3.10 | 2.586 | |
EABS | 10.28 | 0.824 | 1.065 | 3.069 | 15.97 | 9.695 | |
Redlich–Peterson | β | 0.794 | 0.832 | 0.718 | 0.817 | 0.740 | 0.668 |
α (L/mol) | 83.93 | 0.075 | 0.2315 | 0.0938 | 107.23 | 2.337 | |
KR (L/g) | 314 | 0.039 | 0.100 | 0.102 | 380 | 3.63 | |
R2 | 0.9920 | 0.9730 | 0.9800 | 0.9790 | 0.995 | 0.984 | |
SSE | 4.62 | 0.061 | 0.116 | 0.361 | 7.41 | 7.156 | |
ARE | 1.81 | 0.662 | 0.652 | 0.849 | 1.639 | 1.41 | |
EABS | 5.62 | 0.452 | 0.656 | 1.343 | 6.41 | 5.62 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tan, X.; Fang, M.; Wang, X. Sorption speciation of lanthanides/actinides on minerals by TRLFS, EXAFS and DFT studies: A review. Molecules 2010, 15, 8431–8468. [Google Scholar] [CrossRef] [PubMed]
- Naczynski, D.J.; Tan, M.C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C.M.; Riman, R.E.; Moghe, P.V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4. [Google Scholar] [CrossRef] [PubMed]
- Foucault-Collet, A.; Gogick, K.A.; White, K.A.; Villette, S.; Pallier, A.; Collet, G.; Kieda, C.; Li, T.; Geib, S.J.; Rosi, N.L.; et al. Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks. Proc. Natl. Acad. Sci. USA 2013, 110, 17199–17204. [Google Scholar] [CrossRef] [PubMed]
- Pfau, C.; Paßlick, C.; Gray, S.K.; Johnson, J.A.; Johnson, C.E.; Schweizer, S. Mössbauer spectroscopy of europium-doped fluorochlorozirconate glasses and glass ceramics: Optimization of storage phosphors in computed radiography. J. Phys. Condens. Matter 2013. [Google Scholar] [CrossRef] [PubMed]
- Selinsky, R.S.; Han, J.H.; Morales Pérez, E.A.; Guzei, I.A.; Jin, S. Synthesis and magnetic properties of Gd doped EuS nanocrystals with enhanced Curie temperatures. J. Am. Chem. Soc. 2010, 132, 15997–16005. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Lin, Z.; Zhang, L.; Huang, Y.; Wang, G. Growth, thermal and spectral properties of Er3+-doped and Er3+/Yb3+-codoped Li3Ba2La3(WO4)8 crystals. PLoS ONE 2012. [Google Scholar] [CrossRef] [PubMed]
- Ureña-Torres, P.; Prié, D.; Keddad, K.; Preston, P.; Wilde, P.; Wan, H.; Copley, J.B. Changes in fibroblast growth factor 23 levels in normophosphatemic patients with chronic kidney disease stage 3 treated with lanthanum carbonate: Results of the PREFECT study, a phase 2a, double blind, randomized, placebo-controlled trial. BMC Nephrol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Chesne, R.B.; Kim, C.S. Zn(II) and Cu(II) adsorption and retention onto iron oxyhydroxide nanoparticles: Effects of particle aggregation and salinity. Geochem. Trans. 2014. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, J.M.; Pourovskii, L.V.; Vaugier, L.; Georges, A.; Biermann, S. Rare-earth vs. heavy metal pigments and their colors from first principles. Proc. Natl. Acad. Sci. USA 2013, 110, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Ecija, D.; Urgel, J.I.; Papageorgiou, A.C.; Joshi, S.; Auwärter, W.; Seitsonen, A.P.; Klyatskaya, S.; Ruben, M.; Fischer, S.; Vijayaraghavan, S.; et al. Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly. Proc. Natl. Acad. Sci. USA 2013, 110, 6678–6681. [Google Scholar] [CrossRef] [PubMed]
- Potapov, A.; Song, Y.; Meade, T.J.; Goldfarb, D.; Astashkin, A.V.; Raitsimring, A. Distance measurements in model bis-Gd(III) complexes with flexible “bridge”. Emulation of biological molecules having flexible structure with Gd(III) labels attached. J. Magn. Resonance 2010, 205, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Sabín, J.; Prieto, G.; Ruso, J.M.; Messina, P.; Sarmiento, F. Aggregation of liposomes in presence of La3+: A study of the fractal dimension. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2007. [Google Scholar] [CrossRef]
- Vasanth Kumar, K.; Sivanesan, S. Isotherms for Malachite Green onto rubber Wood (Hevea brasiliensis) sawdust: Comparison of linear and non-linear methods. Dyes Pigments 2007, 72, 124–129. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surface of glass, mica and platinum. J. Am. Chem. Soc. 1916, 40, 1361–1368. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Redlich, O.; Peterson, D.L. A useful adsorption isotherm. J. Phys. Chem. 1959. [Google Scholar] [CrossRef]
- Butu, M.; Rodino, S.; Pentea, M.; Negrea, A.; Petrache, P.; Butnariu, M. IR spectroscopy of the flour from bones of European hare. Dig. J. Nanometer. Biostruct. 2014, 9, 1317–1322. [Google Scholar]
- Jossens, L.; Prausnitz, J.M.; Fritz, W.; Schlünder, E.U.; Myers, A.L. Thermodynamics of multi-solute adsorption from dilute aqueous solutions. Chem. Eng. Sci. 1978, 33, 1097–1106. [Google Scholar] [CrossRef]
- Mckay, G.; Blair, H.S.; Gardener, J.R. Adsorption of dyes on chitin I. Equilibrium Studies. J. Appl. Polym. Sci. 1982, 27, 3043–3057. [Google Scholar] [CrossRef]
- Juang, R.S.; Wu, F.C.; Tseng, R.L. Adsorption removal of copper (II) using chitosan from simulated rinse solutions containing chelating agent. Water Resour. 1999, 33, 2403–2409. [Google Scholar] [CrossRef]
- Subramanyam, B.; Das, A. Comparison of linearized and non-linearized isotherm models for adsorption of aqueous phenol by two soils. Int. J. Environ. Sci. Technol. 2009, 6, 633–640. [Google Scholar] [CrossRef]
- Zalloum, H.M.; Al-Qodah, Z.; Mubarak, M.S. Copper adsorption on chitosan-derived Schiff bases. J. Macromol. Sci. 2008, 46, 46–57. [Google Scholar] [CrossRef]
- Al-Qodah, Z. Adsorption of methylene blue with diatomite. J. Eng. Technol. 1998, 17, 128–137. [Google Scholar]
- Al-Qodah, Z. Biosorption of heavy metal ions from aqueous solutions by activated sludge. Desalination 2006, 196, 164–176. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butnariu, M.; Negrea, P.; Lupa, L.; Ciopec, M.; Negrea, A.; Pentea, M.; Sarac, I.; Samfira, I. Remediation of Rare Earth Element Pollutants by Sorption Process Using Organic Natural Sorbents. Int. J. Environ. Res. Public Health 2015, 12, 11278-11287. https://doi.org/10.3390/ijerph120911278
Butnariu M, Negrea P, Lupa L, Ciopec M, Negrea A, Pentea M, Sarac I, Samfira I. Remediation of Rare Earth Element Pollutants by Sorption Process Using Organic Natural Sorbents. International Journal of Environmental Research and Public Health. 2015; 12(9):11278-11287. https://doi.org/10.3390/ijerph120911278
Chicago/Turabian StyleButnariu, Monica, Petru Negrea, Lavinia Lupa, Mihaela Ciopec, Adina Negrea, Marius Pentea, Ionut Sarac, and Ionel Samfira. 2015. "Remediation of Rare Earth Element Pollutants by Sorption Process Using Organic Natural Sorbents" International Journal of Environmental Research and Public Health 12, no. 9: 11278-11287. https://doi.org/10.3390/ijerph120911278
APA StyleButnariu, M., Negrea, P., Lupa, L., Ciopec, M., Negrea, A., Pentea, M., Sarac, I., & Samfira, I. (2015). Remediation of Rare Earth Element Pollutants by Sorption Process Using Organic Natural Sorbents. International Journal of Environmental Research and Public Health, 12(9), 11278-11287. https://doi.org/10.3390/ijerph120911278