The Association between LIPC rs493258 Polymorphism and the Susceptibility to Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria and Data Extraction
2.3. Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Studies
3.2. The LIPC rs493258 Polymorphism and AMD
3.3. The LIPC rs493258 Polymorphism and Late AMD
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jager, R.D.; Mieler, W.F.; Miller, J.W. Age-related macular degeneration. N. Engl. J. Med. 2008, 358, 2606–2617. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, 106–116. [Google Scholar] [CrossRef]
- Seddon, J.M.; Reynolds, R.; Yu, Y.; Daly, M.J.; Rosner, B. Risk models for progression to advanced age-related macular degeneration using demographic, environmental, genetic, and ocular factors. Ophthalmology 2011, 118, 2203–2211. [Google Scholar] [CrossRef] [PubMed]
- Venza, I.; Visalli, M.; Oteri, R.; Teti, D.; Venza, M. Combined effects of cigarette smoking and alcohol consumption on antioxidant/oxidant balance in age-related macular degeneration. Aging Clin. Exp. Res. 2012, 24, 530–536. [Google Scholar] [PubMed]
- Merle, B.M.; Silver, R.E.; Rosner, B.; Seddon, J.M. Dietary folate, B vitamins, genetic susceptibility and progression to advanced nonexudative age-related macular degeneration with geographic atrophy: A prospective cohort study. Am. J. Clin. Nutr. 2016, 103, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S. Age-related macular degeneration. Prim. Care 2015, 42, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Koskela, A.; Reinisalo, M.; Hyttinen, J.M.; Kaarniranta, K.; Karjalainen, R.O. Pinosylvin-mediated protection against oxidative stress in human retinal pigment epithelial cells. Mol. Vis. 2014, 20, 760–769. [Google Scholar] [PubMed]
- Merle, B.M.; Maubaret, C.; Korobelnik, J.F.; Delyfer, M.N.; Rougier, M.B.; Lambert, J.C.; Amouyel, P.; Malet, F.; Le Goff, M.; Dartigues, J.F.; et al. Association of HDL related loci with age-related macular degeneration and plasma lutein and zeaxanthin, the Alienor study. PLoS ONE 2013. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Stambolian, D.; Edwards, A.O.; Branham, K.E.; Othman, M.; Jakobsdottir, J.; Tosakulwong, N.; Pericak-Vance, M.A.; Campochiaro, P.A.; Klein, M.L.; et al. Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc. Natl. Acad. Sci. USA 2010, 107, 7401–7406. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 10 June 2016).
- Millett, G.A.; Flores, S.A.; Marks, G.; Reed, J.B.; Herbst, J.H. Circumcision status and risk of HIV and sexually transmitted infections among men who have sex with men: A meta-analysis. J. Am. Med. Assn. 2008, 300, 1674–1684. [Google Scholar] [CrossRef] [PubMed]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Gilbody, S. Bias in meta-analysis detected by a simple, graphical test. Increase in studies of publication bias coincided with increasing use of meta-analysis. Br. Med. J. 1998, 316, 471. [Google Scholar]
- Neale, B.M.; Fagerness, J.; Reynolds, R.; Sobrin, L.; Parker, M.; Raychaudhuri, S.; Tan, P.L.; Oh, E.C.; Merriam, J.E.; Souied, E.; et al. Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc. Natl. Acad. Sci. USA 2010, 107, 7395–7400. [Google Scholar] [CrossRef] [PubMed]
- Peter, I.; Huggins, G.S.; Ordovas, J.M.; Haan, M.; Seddon, J.M. Evaluation of new and established age-related macular degeneration susceptibility genes in the Women’s Health Initiative Sight Exam (WHI-SE) Study. Am. J. Ophthalmol. 2011. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, V.; Leung, H.T.; Plagnol, V.; Bunce, C.; Khan, J.C.; Shahid, H.; Moore, A.T.; Harding, S.P.; Bishop, P.N.; Hayward, C.; et al. Genome-wide association study of age-related macular degeneration identifies associated variants in the TNXB-FKBPL-NOTCH4 region of chromosome 6p21.3. Hum. Mol. Genet. 2012, 21, 4138–4150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, M.; Wen, F.; Zuo, C.; Chen, H.; Wu, K.; Zeng, R. Different impact of high-density lipoprotein-related genetic variants on polypoidal choroidal vasculopathy and neovascular age-related macular degeneration in a Chinese Han population. Exp. Eye Res. 2013, 108, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Zeng, J.; Hughes, G.; Chen, Y.; Grob, S.; Zhao, L.; Lee, C.; Krupa, M.; Quach, J.; Luo, J.; et al. Association of LIPC and advanced age-related macular degeneration. Eye (Lond.) 2013, 27, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.Z. Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: Focus on age-related macular degeneration. Pharmacol. Rep. 2013, 65, 288–304. [Google Scholar] [CrossRef]
- Krohne, T.U.; Stratmann, N.K.; Kopitz, J.; Holz, F.G. Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp. Eye Res. 2010, 90, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.D.; Curcio, C.A.; Johnson, M. Morphometric analysis of lipoprotein-like particle accumulation in aging human macular Bruch’s membrane. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2721–2727. [Google Scholar] [CrossRef] [PubMed]
- Blasiak, J.; Petrovski, G.; Veréb, Z.; Facskó, A.; Kaarniranta, K. Oxidative stress, hypoxia, and autophagy in the neovascular processes of age-related macular degeneration. Biomed. Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- Geirsdottir, A.; Hardarson, S.H.; Olafsdottir, O.B.; Stefánsson, E. Retinal oxygen metabolism in exudative age-related macular degeneration. Acta Ophthalmol. 2014, 92, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Indaram, M.; Ma, W.; Zhao, L.; Fariss, R.N.; Rodriguez, I.R.; Wong, W.T. 7-Ketocholesterol increases retinal microglial migration, activation, and angiogenicity: A potential pathogenic mechanism underlying age-related macular degeneration. Sci. Rep. 2015. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Reynolds, R.; Rosner, B.; Daly, M.J.; Seddon, J.M. Prospective assessment of genetic effects on progression to different stages of age-related macular degeneration using multistate Markov models. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1548–1556. [Google Scholar] [CrossRef] [PubMed]
- Curcio, C.A.; Johnson, M.; Huang, J.D.; Rudolf, M. Apolipoprotein B-containing lipoproteins in retinal aging and age-related macular degeneration. J. Lipid Res. 2010, 51, 451–467. [Google Scholar] [CrossRef] [PubMed]
- Bindu, G.H.; Rao, V.S.; Kakkar, V.V. Friend turns foe: Transformation of anti-inflammatory HDL to proinflammatory HDL during acute-phase response. Cholesterol 2011. [Google Scholar] [CrossRef]
- Wang, Y.F.; Han, Y.; Zhang, R.; Qin, L.; Wang, M.X.; Ma, L. CETP/LPL/LIPC gene polymorphisms and susceptibility to age-related macular degeneration. Sci. Rep. 2015. [Google Scholar] [CrossRef] [PubMed]
Source | Country | Study Design | Sample Size (Case/Control) | Mean Age, y (Case/Control) | Classification Criteria | Type of Case | Genotyping Method | Adjustment * | HWE | Study Quality ** |
---|---|---|---|---|---|---|---|---|---|---|
Neale et al., 2010 [14] | USA | GWAS | 6768/5943 | 79.5/74.2 | CARMS | Late AMD | iPLEX, AFFY | Yes | Yes | High |
Chen et al., 2010 [9] | ||||||||||
Discovery | USA | GWAS | 2157/1150 | 78.6/74.1 | CARMS | Any AMD | ILMN | Yes | Yes | High |
Tufts/MGH II | USA | GWAS | 798/1632 | 79.7/73.0 | CARMS | Any AMD | ILMN | Yes | Yes | High |
Tufts/MGH | USA | GWAS | 821/1709 | 80.3/74.1 | CARMS | Any AMD | ILMN | Yes | Yes | High |
Johns Hopkins | USA | GWAS | 641/122 | 75.5/74.7 | CARMS | Any AMD | ILMN | Yes | Yes | High |
Penn-NJ | USA | GWAS | 556/347 | 79.8/75.6 | CARMS | Any AMD | ILMN | Yes | Yes | High |
Oregon | USA | GWAS | 509/253 | 79.8/74.0 | CARMS | Any AMD | ILMN | Yes | Yes | High |
Spain | Spain | GWAS | 348/276 | 76.7/75.1 | CARMS | Any AMD | ILMN | Yes | Yes | High |
ME | USA | GWAS | 386/190 | 76.0/75.4 | CARMS | Any AMD | ILMN | Yes | Yes | High |
CWR | USA | GWAS | 1178/1430 | 78.5/72.5 | CARMS | Any AMD | ILMN | Yes | Yes | High |
Pittsburgh | USA | GWAS | 170/143 | 69.9/76.7 | CARMS | Any AMD | ILMN | Yes | Yes | High |
MDV | USA | GWAS | 690/245 | 75.7/68.4 | CARMS | Any AMD | ILMN | Yes | Yes | High |
Japan | Japan | GWAS | 654/333 | 74.8/74.2 | CARMS | Any AMD | ILMN | Yes | Yes | High |
Peter et al., 2011 [15] | European | Case-control | 146/1269 | 74.5/73.6 | WARMGS | Any AMD and late AMD | TM, AB | No | Yes | High |
Cipriani et al., 2012 [16] | UK | GWAS | 893/2199 | 78.6/44.5 | ICGS | Late AMD | ILMN | No | NP | High |
Merle et al., 2013 [8] | European | Case-control | 347/1031 | 78.3/76.5 | ICGS | Any AMD and late AMD | TM, AB | Yes | Yes | High |
Zhang et al., 2013 [17] | China | Case-control | 157/204 | 65.4/69.0 | NR | Late AMD | TM, AB | Yes | NP | High |
Lee et al., 2013 [18] | USA | GWAS | 1626/859 | 79.3/72.6 | ICGS | Late AMD | AB | No | Yes | High |
Subgroup | N | Cases/Controls | Pooled OR (CI) | p | |
---|---|---|---|---|---|
Heterogeneity | Meta-Regression | ||||
Any AMD | 16 | 20,559/17,200 | 0.87 (0.84, 0.90) | 0.89 | |
Late AMD | 4 | 11,650/10,307 | 0.87 (0.83, 0.90) | 0.85 | |
Ethnicity | |||||
Caucasians | 14 | 19,712/16,714 | 0.87 (0.84, 0.89) | 0.83 | 0.43 |
Asians | 2 | 847/486 | 0.88 (0.72, 1.05) | 0.49 | |
Age of case | |||||
≥75 | 13 | 18,022/16,469 | 0.86 (0.83, 0.89) | 0.90 | 0.22 |
<75 | 3 | 1537/731 | 0.93 (0.80, 1.06) | 0.51 | |
Study design | |||||
GWAS | 15 | 20,355/17,043 | 0.87 (0.84, 0.89) | 0.88 | 0.76 |
Case-control | 1 | 204/157 | 0.99 (0.65, 1.34) | ||
Adjusting for CFH gene | |||||
Yes | 14 | 15,881/12,993 | 0.87 (0.83, 0.90) | 0.81 | 0.25 |
No | 2 | 4678/4207 | 0.88 (0.80, 0.95) | 0.68 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, M.; Zhang, X.; Nie, J.; Zhang, M.; Liu, X.; Ma, L. The Association between LIPC rs493258 Polymorphism and the Susceptibility to Age-Related Macular Degeneration. Int. J. Environ. Res. Public Health 2016, 13, 1022. https://doi.org/10.3390/ijerph13101022
Wang Y, Wang M, Zhang X, Nie J, Zhang M, Liu X, Ma L. The Association between LIPC rs493258 Polymorphism and the Susceptibility to Age-Related Macular Degeneration. International Journal of Environmental Research and Public Health. 2016; 13(10):1022. https://doi.org/10.3390/ijerph13101022
Chicago/Turabian StyleWang, Yafeng, Mingxu Wang, Xiaoqing Zhang, Jing Nie, Ming Zhang, Xiaohong Liu, and Le Ma. 2016. "The Association between LIPC rs493258 Polymorphism and the Susceptibility to Age-Related Macular Degeneration" International Journal of Environmental Research and Public Health 13, no. 10: 1022. https://doi.org/10.3390/ijerph13101022
APA StyleWang, Y., Wang, M., Zhang, X., Nie, J., Zhang, M., Liu, X., & Ma, L. (2016). The Association between LIPC rs493258 Polymorphism and the Susceptibility to Age-Related Macular Degeneration. International Journal of Environmental Research and Public Health, 13(10), 1022. https://doi.org/10.3390/ijerph13101022