UV “Indices”—What Do They Indicate?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Definition and Measurement of UV Exposure
3.2. Erythemal Dose and Index
3.3. Immunosuppression
3.4. Carcinogenesis
3.5. Vitamin D
3.6. Other Effects Relevant to Human Health
3.7. Ecosystem Effects
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Haluza, D.; Simic, S.; Moshammer, H. Temporal and spatial melanoma trends in Austria: An ecological study. Int. J. Environ. Res. Public Health 2014, 11, 734–748. [Google Scholar] [CrossRef] [PubMed]
- Schrempf, M.; Haluza, D.; Simic, S.; Riechelmann, S.; Graw, K.; Seckmeyer, G. Is multidirectional UV exposure responsible for increasing melanoma prevalence with altitude? Int. J. Environ. Res. Public Health 2016, 13, 961. [Google Scholar] [CrossRef] [PubMed]
- Commission Internationale de l’Éclairage (CIE). CIE S007/E-1998 Erythemal Reference Action Spectrum and Standard Erythemal Dose; CIE: Vienna, Austria, 1999. [Google Scholar]
- Zamoiski, R.D.; Freedman, D.M.; Linet, M.S.; Kitahara, C.M.; Liu, W.; Cahoon, E.K. Prospective study of ultraviolet radiation exposure and risk of breast cancer in the United States. Environ. Res. 2016, 151, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Biersack, M.G.; Hajdukiewicz, M.; Uebelhack, R.; Franke, L.; Piazena, H.; Klaus, P.; Höhne-Zimmer, V.; Braun, T.; Buttgereit, F.; Burmester, G.R.; et al. Sustained increase of 25-hydroxyvitamin D levels in healthy young women during wintertime after three suberythemal UV irradiations—The MUVY Pilot Study. PLoS ONE 2016, 11, e0159040. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, A.B., Jr.; Fleischer, S.E. Solar radiation and the incidence and mortality of leading invasive cancers in the United States. Dermatoendocrinology 2016, 8, e1162366. [Google Scholar] [CrossRef] [PubMed]
- De Gruijl, F.R. Biological action spectra. Radiat. Prot. Dosim. 2000, 91, 57–63. [Google Scholar] [CrossRef]
- Haluza, D.; Schonbauer, R.; Cervinka, R. Green perspectives for public health: A narrative review on the physiological effects of experiencing outdoor nature. Int. J. Environ. Res. Public Health 2014, 11, 5445–5461. [Google Scholar] [CrossRef] [PubMed]
- Commission Internationale de l’Éclairage (CIE). Rationalizing Nomenclature for UV Doses and Effects on Humans; WMO/GAW Report No. 211; CIE: Vienna, Austria, 2014. [Google Scholar]
- International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Phys. 2004, 87, 171–186. [Google Scholar]
- International Electrotechnical Commission (IEC). IEC 60050-845 International Electrotechnical Vocabulary: Lighting; IEC: Geneva, Switzerland, 1987. [Google Scholar]
- Bowmaker, J.K.; Dartnall, H.J. Visual pigments of rods and cones in a human retina. J. Physiol. 1980, 298, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Commission Internationale de l’Éclairage (CIE). Standardization of the Terms UV-A1, UV-A2 and UV-B; Report CIE-134/1; CIE: Vienna, Austria, 1999. [Google Scholar]
- World Health Organization (WHO). Ultraviolet Radiation. Environmental Health Criteria 14; WHO: Geneva, Switzerland, 1979. [Google Scholar]
- World Health Organization (WHO). Environmental Burden of Disease Series, No. 13: Solar Ultraviolet Radiation—Global Burden of Disease from Solar Ultraviolet Radiation; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- International Agency for Research on Cancer (IARC). Solar and ultraviolet radiation. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1992. [Google Scholar]
- Diffey, B.L. Sources and measurement of ultraviolet radiation. Methods 2002, 28, 4–13. [Google Scholar] [CrossRef]
- Roy, C.R.; Gies, H.P.; Lugg, D.J.; Toomey, S.; Tomlinson, D.W. The measurement of solar ultraviolet radiation. Mutat. Res. 1998, 422, 7–14. [Google Scholar] [CrossRef]
- Schuch, A.P.; Garcia, C.C.M.; Makita, K.; Menck, C.F.M. DNA damage as a biological sensor for environmental sunlight. Photochem. Photobiol. Sci. 2013, 12, 1259–1272. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, E.; Monroy, E.; Calle, F.; Omnès, F.; Gibart, P. AlGaN photodiodes for monitoring solar UV radiation. J. Geophys. Res. 2000, 105, 4865–4871. [Google Scholar] [CrossRef]
- Yagura, T.; Makita, K.; Yamamoto, H.; Menck, C.F.M.; Schuch, A.P. Biological sensors for solar ultraviolet radiation. Sensors 2011, 11, 4277–4294. [Google Scholar] [CrossRef] [PubMed]
- Rettberg, P.; Cockell, C.S. Biological UV dosimetry using the DLR-biofilm. Photochem. Photobiol. Sci. 2004, 3, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Diffey, B.L.; Jansén, C.T.; Urbach, F.; Wulf, H.C. The standard erythema dose: A new photobiological concept. Photodermatol. Photoimmunol. Photomed. 1997, 13, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Godar, D.E.; Urbach, F.; Gasparro, F.P.; van der Leun, J.C. UV doses of young adults. Photochem. Photobiol. 2003, 77, 453–457. [Google Scholar] [CrossRef]
- Li, Y.W.; Chu, C.Y. The minimal erythema dose of broadband ultraviolet B in Taiwanese. J. Formos. Med. Assoc. 2007, 106, 975–978. [Google Scholar] [CrossRef]
- Urbach, F. Phototoxic skin reaction to UVR—Is “sunburn” a “burn”? Photodermatol. Photoimmunol. Photomed. 1996, 12, 219–221. [Google Scholar] [CrossRef] [PubMed]
- McKinlay, A.F.; Diffey, B.L. A reference action spectrum for ultra-violet induced erythema in human skin. In Human Exposure to Ultraviolet Radiation: Risks and Regulations; Passchier, W.F., Bosnjakovich, B.F.M., Eds.; Elsevier: Amsterdam, The Netherlands, 1987; pp. 83–87. [Google Scholar]
- Komhyr, W.D.; Machta, L. The relative response of erythema. In The Perturbed Troposphere of 1990 and 2020; Climatic Impact Assessment Program (CIAP): Washington, DC, USA, 1973. [Google Scholar]
- Green, A.E.S.; Sawada, T.; Shettle, E.P. The middle ultraviolet reaching the ground. Photochem. Photobiol. 1974, 19, 251–259. [Google Scholar] [CrossRef]
- Diffey, B.L. A comparison of dosimeters used for solar ultraviolet radiometry. Photochem. Photobiol. 1987, 46, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Anders, A.; Altheide, H.-J.; Knaelmann, M.; Tronnier, H. Action spectrum for erythema in humans investigated with dye lasers. Photochem. Photobiol. 1995, 61, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Parrish, J.A.; Jaenicke, K.F.; Anderson, R.R. Erythema and melanogenesis action spectra of normal human skin. Photochem. Photobiol. 1982, 36, 187–191. [Google Scholar] [CrossRef] [PubMed]
- De Fabo, E.C.; Noonan, F.P. Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J. Exp. Med. 1983, 158, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, N.K.; Norval, M.; Traynor, N.J.; Wolf, M.; Johnson, B.E.; Crosby, J. Action spectra for the trans to cis photoisomerisation of urocanic acid in vitro and in mouse skin. Photochem. Photobiol. 1993, 57, 584–590. [Google Scholar] [CrossRef] [PubMed]
- De Gruijl, F.R. Health effects from solar UV radiation. Radiat. Prot. Dosim. 1997, 72, 177–196. [Google Scholar] [CrossRef]
- Elmets, C.A.; LeVine, M.J.; Bickers, D.R. Action spectrum studies for induction of immunologic unresponsiveness to dinitrofluorobenzene following in vivo low dose ultraviolet radiation. Photochem. Photobiol. 1985, 42, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Damian, D.L.; Matthews, Y.L.; Phan, T.A.; Halliday, G.M. An action spectrum for ultraviolet radiation-induced immunosuppression in humans. Br. J. Dermatol. 2011, 164, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Setlow, R.B. The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis. Proc. Natl. Acad. Sci. USA 1974, 71, 3363–3366. [Google Scholar] [CrossRef] [PubMed]
- Setlow, R.B.; Grist, E.; Thompson, K.; Woodhead, A.D. Wavelenghts effective in induction of malignant melanoma. Proc. Natl. Acad. Sci. USA 1993, 90, 6666–6670. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, G.; Mayer, B.; Seckmeyer, G.; Moise, A. Measurements of spectral solar UV irradiance in tropical Australia. J. Geophys. Res. 1997, 102, 8719–8730. [Google Scholar] [CrossRef]
- Noonan, F.P.; Dudek, J.; Merlino, G.; De Fabo, E.C. Animal models of melanoma: An HGF/SF transgenic mouse model may facilitate experimental access to UV initiating events. Pigment Cell Res. 2003, 16, 16–25. [Google Scholar] [CrossRef] [PubMed]
- De Gruijl, F.R.; Van der Leun, J.C. Estimate of the wavelength dependency of ultraviolet carcinogenesis in humans and its relevance to the risk assessment of a stratospheric ozone depletion. Health Phys. 1994, 67, 319–325. [Google Scholar] [CrossRef] [PubMed]
- De Gruijl, F.R.; Sterenborg, H.J.C.M.; Forbes, P.D.; Davies, R.E.; Cole, C.; Kelfkens, G.; van Weelden, H.; Slaper, H.; van der Leun, J.C. Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res. 1993, 53, 53–60. [Google Scholar] [PubMed]
- Cho, E.; Rosner, B.A.; Colditz, G.A. Risk factors for melanoma by body site. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1241–1244. [Google Scholar] [CrossRef] [PubMed]
- Urbach, F. The historical aspects of photocarcinogenesis. Front. Biosci. 2002, 7, e85–e90. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.R.; Engelsen, O. Calculated ultraviolet exposure levels for a healthy vitamin D status. Photochem. Photobiol. 2006, 82, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.R.; Kift, R.; Berry, J.L.; Rhodes, L.E. The Vitamin D debate: Translating controlled experiments into reality for human sun exposure times. Photochem. Photobiol. 2011, 87, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Commission Internationale de l’Éclairage (CIE). Action Spectrum for the Production of Previtamin D3 in Human Skin; Technical Report 174; CIE: Vienna, Austria, 2006. [Google Scholar]
- Lehmann, B.; Genehr, T.; Knuschke, P.; Pietzsch, J.; Meurer, M. UVB induced conversion of 7-dehydrocholesterol to 1a,25-dihydroxyvitamin D3 in an in vitro human skin equivalent model. J. Investig. Dermatol. 2001, 117, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.; Knuschke, P.; Meurer, M. UVB-induced conversion of 7-dehydrocholesterol to 1alpha,25-dihydroxycholesterol D3 (calcitriol) in the human keratinocyte line HaCaT. Photochem. Photobiol. 2000, 72, 803–809. [Google Scholar] [CrossRef]
- MacLaughlin, J.A.; Anderson, R.R.; Holick, M.F. Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science 1982, 216, 1001–1003. [Google Scholar] [CrossRef] [PubMed]
- Olds, W.J.; McKinley, A.R.; Moore, M.R.; Kimlin, M.G. In vitro model of vitamin D3 (Cholecalciferol) synthesis by UV radiation: Dose-response relationships. J. Photochem. Photobiol. B Biol. 2008, 93, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Norval, M.; Björn, L.O.; de Gruijl, F.R. Is the action spectrum for the UV-induced production of previtamin D3 in human skin correct? Photochem. Photobiol. Sci. 2010, 9, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Seckmeyer, G.; Schrempf, M.; Wieczorek, A.; Riechelmann, S.; Graw, K.; Seckmeyer, S.; Zankl, M. A novel method to calculate solar UV exposure relevant to vitamin D production in humans. Photochem. Photobiol. 2013, 89, 974–983. [Google Scholar] [CrossRef] [PubMed]
- Gates, F.L. On nuclear derivatives and the lethal action of ultra-violet light. Science 1928, 68, 479–480. [Google Scholar] [CrossRef] [PubMed]
- Gates, F.L. A study of the action of ultra violet light III. The absorption of ultra violet light by bacteria. J. Gen. Physiol. 1930, 18, 557–571. [Google Scholar] [CrossRef]
- Suthaparan, A.; Solhaug, K.A.; Stensvand, A.; Gislerød, H.R. Determination of UV action spectra affecting the infection process of Oidium neolycopersici, the cause of tomato powdery mildew. J. Photochem. Photobiol. B 2016, 156, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Ralph, A.P.; Lucas, R.M.; Norval, M. Vitamin D and solar ultraviolet radiation in the risk and treatment of tuberculosis. Lancet Infect. Dis. 2013, 13, 77–88. [Google Scholar] [CrossRef]
- Caldwell, M.M. Solar UV irradiation and the growth and development of higher plants. In Photophysiology; Giese, A.C., Ed.; Academic Press: New York, NY, USA, 1971; Volume 6, Chapter 4; pp. 131–177. [Google Scholar]
- Flint, S.D.; Caldwell, M.M. A biological spectral weighting function for ozone depletion research with higher plants. Physiol. Plant. 2003, 117, 137–144. [Google Scholar] [CrossRef]
- Hunter, J.H.; Taylor, J.H.; Moser, H.G. Effect of ultraviolet irradiation on eggs and larvae of the northern anchovy, Engraulis mordax, and the pacific mackerel, Scomber japonicus, during the embryonic stage. Photochem. Photobiol. 1979, 29, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Eisinger, W.; Swartz, T.E.; Bogomolni, R.A.; Taiz, L. The ultraviolet action spectrum for stomatal opening in broad bean. Plant Physiol. 2000, 122, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.C.; Baker, K.S. Assessment of the influence of enhanced UV-B on marine primary production. In The Role of Solar Ultraviolet Radiation in Marine Ecosystems; Calkins, J., Ed.; Plenum Publishing Corporation: New York, NY, USA, 1982; pp. 509–537. [Google Scholar]
- Boucher, N.P.; Prezelin, B.B. An in situ biological weighting function for UV inhibition of phytoplankton carbon fixation in the Southern Ocean. Mar. Ecol. Prog. Ser. 1996, 144, 223–236. [Google Scholar] [CrossRef]
- Cullen, J.J.; Neale, P.J.; Lesser, M.P. Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 1992, 258, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Norval, M. The Effect of ultraviolet radiation on human viral infections. Photochem. Photobiol. 2006, 82, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, L.; Parisi, A.V.; Downs, N. Dual calibrated dosimeter for simultaneous measurements of erythemal and vitamin D effective solar ultraviolet radiation. J. Photochem. Photobiol. B 2016, 157, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Kimlin, M.G.; Olds, W.; Moore, M.R. Location and Vitamin D synthesis: Is the hypothesis validated by geophysical data? J. Photochem. Photobiol. B Biol. 2007, 86, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Kollias, N.; Malallah, Y.H.; al-Ajmi, H.; Baqer, A.; Johnson, B.E.; González, S. Erythema and melanogenesis action spectra in heavily pigmented individuals as compared to fair-skinned Caucasians. Photodermatol. Photoimmunol. Photomed. 1996, 12, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, N.G.; Chaplin, G. The evolution of human skin coloration. J. Hum. Evol. 2000, 39, 57–106. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, N.G.; Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. USA 2010, 107, 8962–8968. [Google Scholar] [CrossRef] [PubMed]
- Bataille, V. Sun exposure, sunbeds and sunscreens and melanoma. What are the controversies? Curr. Oncol. Rep. 2013, 15, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Boniol, M.; Autier, P.; Boyle, P.; Gandini, S. Cutaneous melanoma attributable to sunbed use: Systematic review and meta-analysis. BMJ 2012, 345, e4757. [Google Scholar] [CrossRef] [PubMed]
- Moan, J.; Baturaite, Z.; Juzeniene, A.; Porojnicu, A.C. Vitamin D, sun, sunbeds and health. Public Health Nutr. 2012, 15, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Diffey, B. Ultraviolet A sunbeds and vitamin D. J. Am. Acad. Dermatol. 2011, 65, 1059–1060. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Non-Ionizing Radiation Protection. Health issues of ultraviolet tanning appliances used for cosmetic purposes. Health Phys. 2003, 84, 119–127. [Google Scholar]
- Grant, W.B. Critique of the International Agency for Research on Cancer’s meta-analyses of the association of sunbed use with risk of cutaneous malignant melanoma. Dermatoendocrinology 2009, 1, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Haluza, D.; Schwab, M.; Simic, S.; Cervinka, R.; Moshammer, H. Perceived relevance of educative information on public (skin) health: Results of a representative, population-based telephone survey. Int. J. Environ. Res. Public Health 2015, 12, 14260–14274. [Google Scholar] [CrossRef] [PubMed]
- Haluza, D.; Simic, S.; Moshammer, H. Sunbed use prevalence and associated skin health habits: Results of a representative, population-based survey among Austrian residents. Int. J. Environ. Res. Public Health 2016, 13, 231. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moshammer, H.; Simic, S.; Haluza, D. UV “Indices”—What Do They Indicate? Int. J. Environ. Res. Public Health 2016, 13, 1041. https://doi.org/10.3390/ijerph13101041
Moshammer H, Simic S, Haluza D. UV “Indices”—What Do They Indicate? International Journal of Environmental Research and Public Health. 2016; 13(10):1041. https://doi.org/10.3390/ijerph13101041
Chicago/Turabian StyleMoshammer, Hanns, Stana Simic, and Daniela Haluza. 2016. "UV “Indices”—What Do They Indicate?" International Journal of Environmental Research and Public Health 13, no. 10: 1041. https://doi.org/10.3390/ijerph13101041
APA StyleMoshammer, H., Simic, S., & Haluza, D. (2016). UV “Indices”—What Do They Indicate? International Journal of Environmental Research and Public Health, 13(10), 1041. https://doi.org/10.3390/ijerph13101041