A Case Study of Upper-Room UVGI in Densely-Occupied Elementary Classrooms by Real-Time Fluorescent Bioaerosol Measurements
Abstract
:1. Introduction
2. Methodology
2.1. Location
2.2. Experiment Design and Procedures
2.3. Fluorescent Bioaerosols
2.4. Data Analysis
3. Result
3.1. Environmental Parameters
3.2. Concentrations before Adjustment to Background
3.3. Concentrations after Adjustment to Background
4. Discussion
4.1. Comparing to Cultural Method
4.2. Effect of Adjustment
4.3. Occupants and Their Activities Cause the Increase of FBCs (Reflect the Difference between Occupied and Unoccupied Periods)
4.4. Scope and Limitations
5. Conclusions
- Upper-room UVGI devices can reduce the fluorescent bioaerosols found in an elementary classroom. Daily samples collected through a four-month study showed that average concentrations of fine size (<3 μm) FBCs in 12 visiting days from the control classroom were statistically significantly higher than those from the classroom equipped with UVGI devices. The RBMs provided statistically similar results on the performance of upper-room UVGI devices when comparing to a parallel study using the traditional culture-based sampling method.
- With the RBMs, both FBCs and total aerosols were monitored. Comparing the concentrations from occupied and unoccupied periods found significantly higher FBCs during the occupied periods of all visiting days. This result supports the notion that humans and their activities are the primary cause of an increase of detectable FBCs during occupied periods.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Eduard, W.; Heederik, D.; Duchaine, C.; Green, B.J. Bioaerosol exposure assessment in the workplace: The past, present and recent advances. J. Environ. Monit. 2012, 14, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Lacey, J.; Crook, B. Fungal and actinomycete spores as pollutants of the workplace and occupational allergens. Ann. Occup. Hyg. 1988, 32, 515–533. [Google Scholar] [CrossRef] [PubMed]
- Menzies, D.; Bourbeau, J. Building-Related Illnesses. N. Engl. J. Med. 1997, 337, 1524–1531. [Google Scholar] [CrossRef] [PubMed]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Perez-Padilla, R.; Schilmann, A.; Riojas-Rodriguez, H. Respiratory health effects of indoor air pollution. Int. J. Tuberc. Lung Dis. 2010, 14, 1079–1086. [Google Scholar] [PubMed]
- Bornehag, C.; Sundell, J.; Sigsgaard, T. Dampness in buildings and health (DBH): Report from an ongoing epidemiological investigation on the association between indoor environmental factors and health effects among children in Sweden. Indoor Air 2004, 14 (Suppl. S7), 59–66. [Google Scholar] [CrossRef] [PubMed]
- Zuraimi, M.S.; Tham, K.W. Indoor air quality and its determinants in tropical child care centers. Atmos. Environ. 2008, 42, 2225–2239. [Google Scholar] [CrossRef]
- Miller, S.L.; Macher, J.M. Evaluation of a methodology for quantifying the effect of room air ultraviolet germicidal irradiation on airborne bacteria. Aerosol Sci. Technol. 2000, 33, 274–295. [Google Scholar] [CrossRef]
- Peccia, J.; Hernandez, M. Photoreactivation in airborne Mycobacterium parafortuitum. Appl. Environ. Microbiol. 2001, 67, 4225–4232. [Google Scholar] [CrossRef] [PubMed]
- Green, C.; Scarpino, P. The use of ultraviolet germicidal irradiation (UVGI) in disinfection of airborne bacteria. Environ. Eng. Policy 2002, 3, 101–107. [Google Scholar] [CrossRef]
- Ko, G.; First, M.W.; Burge, H.A. The characterization of upper-room ultraviolet germicidal irradiation in inactivating airborne microorganisms. Environ. Health Perspect. 2002, 110, 95–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, C.M.; Ko, G. Effect of ultraviolet germicidal irradiation on viral aerosols. Environ. Sci. Technol. 2007, 41, 5460–5465. [Google Scholar] [CrossRef] [PubMed]
- King, B.; Kesavan, J.; Sagripanti, J.-L. Germicidal UV sensitivity of bacteria in aerosols and on contaminated surfaces. Aerosol Sci. Technol. 2011, 45, 645–653. [Google Scholar] [CrossRef]
- Jensen, P.A.; Lambert, L.A.; Iademarco, M.F.; Ridzon, R. Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings, 2005. MMWR Recomm Rep. 2005, 54, 1–141. [Google Scholar] [PubMed]
- Lin, H.-H.; Ezzati, M.; Murray, M. Tobacco smoke, indoor air pollution and tuberculosis: A systematic review and meta-analysis. PLoS Med. 2007, 4, e20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardell, E.A.; Brickner, P.W. Tuberculosis in new york city: Focal transmission of an often fatal disease. JAMA 1996, 276, 1259–1260. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.; Yang, Z.; Preston-Martin, S.; Al, E. PAtterns of tuberculosis transmission in central los angeles. JAMA 1997, 278, 1159–1163. [Google Scholar] [CrossRef] [PubMed]
- Escombe, A.R.; Moore, D.A.; Gilman, R.H.; Navincopa, M.; Ticona, E.; Mitchell, B.; Noakes, C.; Martínez, C.; Sheen, P.; Ramirez, R.; et al. Upper-room ultraviolet light and negative air ionization to prevent tuberculosis transmission. PLoS Med. 2009, 6, e43. [Google Scholar] [CrossRef] [PubMed]
- Agranovski, V.; Ristovski, Z.; Hargreaves, M.; Blackall, P.; Morawska, L. Real-time measurement of bacterial aerosols with the UVAPS: Performance evaluation. J. Aerosol Sci. 2003, 34, 301–317. [Google Scholar] [CrossRef]
- Agranovski, V.; Ristovski, Z. Real-time monitoring of viable bioaerosols: Capability of the UVAPS to predict the amount of individual microorganisms in aerosol particles. J. Aerosol Sci. 2005, 36, 665–676. [Google Scholar] [CrossRef] [Green Version]
- Kanaani, H.; Hargreaves, M.; Smith, J.; Ristovski, Z.; Agranovski, V.; Morawska, L. Performance of UVAPS with respect to detection of airborne fungi. J. Aerosol Sci. 2008, 39, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Yanagi, U.; Ikeda, K.; Kagi, N. Application of the IMD in measurement of airborne microbial particles. In International Network for Information on Ventilation and Energy Performance, Proceedings of the 6th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC 2007), Sendai, Japan, 28–31 October 2007.
- Bhangar, S.; Huffman, J.A.; Nazaroff, W.W. Size-resolved fluorescent biological aerosol particle concentrations and occupant emissions in a university classroom. Indoor Air 2014, 24, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Bhupathiraju, V.K.; Varnau, B.; Nelson, J.R.; Jiang, J.; Bolotin, C. Evaluation of an instantaneous microbial detection system in controlled and cleanroom environments. BioPharm Int. 2007, 20, 35–46. [Google Scholar]
- Miller, M.J.; Lindsay, H.; Valverde-Ventura, R.; O’Conner, M.J. Evaluation of the BioVigilant IMD-A, a novel optical spectroscopy technology for the continuous and real-time environmental monitoring of viable and nonviable particles. Part I. Review of the technology and comparative studies with conventional methods. PDA J. Pharm. Sci. Technol. 2009, 63, 245–258. [Google Scholar] [PubMed]
- Xu, P.; Kujundzic, E.; Peccia, J.; Schafer, M.P.; Moss, G.; Hernandez, M.; Miller, S.L. Impact of environmental factors on efficacy of upper-room air ultraviolet germicidal irradiation for inactivating airborne mycobacteria. Environ. Sci. Technol. 2005, 39, 9656–9664. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, W. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection; Springer: New York, NY, USA, 2009. [Google Scholar]
- Su, C.; Lau, J.; Gibbs, S. Evaluation of Ultraviolet Germicidal Irradiation in Reducing the Airborne Cultural Bacteria Concentrations in an Elementary School in the Midwestern United States. J. Environ. Health 2015, 77, 16–21. [Google Scholar] [PubMed]
- Dalmaso, G. IMD Technology with an Example of a Successful Application. In Proceedings of the 41 st R3-Nordic Symposium, Dipoli, Espoo, Finland, 25–26 May 2010; p. 39.
- Agranovski, V.; Ristovski, Z.; Hargreaves, M.; Blackall, P.; Morawska, L. Performance evaluation of the UVAPS: Influence of physiological age of airborne bacteria and bacterial stress. J. Aerosol Sci. 2003, 34, 1711–1727. [Google Scholar] [CrossRef]
- Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995, 59, 143–169. [Google Scholar] [PubMed]
- Jensen, P.A.; Todd, W.F.; Davis, G.N.; Scarpino, P.V. Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria. Am. Ind. Hyg. Assoc. J. 1992, 53, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Eduard, W.; Heederik, D. Methods for quantitative assessment of airborne levels of noninfectious microorganisms in highly contaminated work environments. Am. Ind. Hyg. Assoc. J. 1998, 59, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Nevalainen, A.; Pastuszka, J.; Liebhaber, F.; Willeke, K. Performance of bioaerosol samplers: Collection characteristics and sampler design considerations. Atmos. Environ. Part A Gen. Top. 1992, 26, 531–540. [Google Scholar] [CrossRef]
- Chen, Q.; Hildemann, L.M. The effects of human activities on exposure to particulate matter and bioaerosols in residential homes. Environ. Sci. Technol. 2009, 43, 4641–4646. [Google Scholar] [CrossRef] [PubMed]
- Fox, A.; Harley, W.; Feigley, C.; Salzberg, D.; Sebastian, A.; Larsson, L. Increased levels of bacterial markers and CO2 in occupied school rooms. J. Environ. Monit. 2003, 5, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Yazdanbakhsh, M.; Kremsner, P.G.; van Ree, R. Parasites and the hygiene hypothesis: Regulating the immune system? Clin. Rev. Allergy Immunol. 2004, 26, 15–24. [Google Scholar] [CrossRef]
- Lee, B.U.; Jung, J.H.; Yun, S.H.; Hwang, G.B.; Bae, G.N. Application of UVAPS to real-time detection of inactivation of fungal bioaerosols due to thermal energy. J. Aerosol Sci. 2010, 41, 694–701. [Google Scholar] [CrossRef]
Month | Day | UVGI | SD | Control | SD | p-Values | Proportion (%) of Reduction |
Table 1a | |||||||
October | DAY1 | 115,507 | 37,662 | 130,675 | 68,453 | <0.001 | 11.6% |
November | DAY2 | 114,829 | 42,628 | 150,561 | 63,257 | <0.001 | 23.7% |
December | DAY3 | 124,344 | 40,464 | 115,959 | 45,918 | <0.001 | −7.2% |
DAY4 | 123,349 | 44,746 | 147,970 | 45,798 | <0.001 | 16.6% | |
DAY5 | 72,802 | 30,987 | 104,317 | 34,547 | <0.001 | 30.2% | |
DAY6 | 82,625 | 28,117 | 101,161 | 39,277 | <0.001 | 18.3% | |
DAY7 | 74,993 | 44,155 | 111,091 | 77,674 | <0.001 | 32.5% | |
DAY8 | 118,451 | 60,586 | 139,756 | 49,941 | <0.001 | 15.2% | |
DAY9 | 119,348 | 46,224 | 139,737 | 65,215 | <0.001 | 14.6% | |
DAY10 | 93,896 | 44,664 | 156,205 | 64,377 | <0.001 | 39.9% | |
DAY11 | 81,260 | 56,607 | 81,455 | 51,393 | 0.747 | 0.2% | |
January | DAY12 | 91,892 | 27,630 | 106,601 | 43,190 | <0.001 | 13.8% |
DAY13 | 74,925 | 30,986 | 77,691 | 46,437 | 0.293 | 3.6% | |
DAY14 | 78,767 | 26,301 | 104,253 | 48,711 | <0.001 | 24.4% | |
DAY15 | 63,986 | 20,363 | 59,964 | 24,181 | <0.001 | −6.7% | |
DAY16 | 92,164 | 36,499 | 70,473 | 31,362 | <0.001 | −30.8% | |
DAY17 | 119,133 | 55,323 | 135,855 | 50,214 | <0.001 | 12.3% | |
DAY18 | 159,660 | 79,687 | 106,932 | 50,690 | <0.001 | −49.3% | |
DAY19 | 115,687 | 67,385 | 96,060 | 45,830 | <0.001 | −20.4% | |
DAY20 | 72,978 | 40,714 | 53,381 | 39,227 | <0.001 | −36.7% | |
Table 1b | |||||||
Month | Day | UVGI | SD | Control | SD | p-Values | Proportion (%) of Reduction |
October | DAY1 | 1812 | 1020 | 2539 | 1604 | <0.001 | 28.6% |
November | DAY2 | 1731 | 997 | 2073 | 1279 | <0.001 | 16.5% |
December | DAY3 | 2058 | 1133 | 1911 | 989 | 0.034 | −7.7% |
DAY4 | 2408 | 1433 | 2361 | 1223 | <0.001 | −2.0% | |
DAY5 | 1406 | 1031 | 1521 | 843 | 0.008 | 7.6% | |
DAY6 | 1437 | 947 | 1596 | 935 | 0.002 | 10.0% | |
DAY7 | 1338 | 1232 | 1341 | 1229 | 0.584 | 0.2% | |
DAY8 | 1872 | 1401 | 1735 | 852 | 0.732 | −7.9% | |
DAY9 | 2087 | 1230 | 1432 | 1029 | <0.001 | −45.8% | |
DAY10 | 1352 | 1189 | 1940 | 1284 | <0.001 | 30.4% | |
DAY11 | 1431 | 1361 | 977 | 1016 | <0.001 | −46.4% | |
January | DAY12 | 1446 | 830 | 1612 | 936 | 0.002 | 10.3% |
DAY13 | 1419 | 1121 | 1896 | 2012 | <0.001 | 25.2% | |
DAY14 | 1751 | 1252 | 2045 | 1459 | 0.001 | 14.4% | |
DAY15 | 901 | 496 | 997 | 738 | 0.092 | 9.6% | |
DAY16 | 1121 | 735 | 999 | 614 | 0.021 | −12.3% | |
DAY17 | 1507 | 1061 | 1559 | 820 | 0.144 | 3.3% | |
DAY18 | 1500 | 960 | 1260 | 841 | <0.001 | −19.0% | |
DAY19 | 1228 | 944 | 1140 | 810 | 0.306 | −7.7% | |
DAY20 | 885 | 681 | 587 | 585 | <0.001 | −50.7% |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, C.; Lau, J.; Yu, F. A Case Study of Upper-Room UVGI in Densely-Occupied Elementary Classrooms by Real-Time Fluorescent Bioaerosol Measurements. Int. J. Environ. Res. Public Health 2017, 14, 51. https://doi.org/10.3390/ijerph14010051
Su C, Lau J, Yu F. A Case Study of Upper-Room UVGI in Densely-Occupied Elementary Classrooms by Real-Time Fluorescent Bioaerosol Measurements. International Journal of Environmental Research and Public Health. 2017; 14(1):51. https://doi.org/10.3390/ijerph14010051
Chicago/Turabian StyleSu, Chunxiao, Josephine Lau, and Fang Yu. 2017. "A Case Study of Upper-Room UVGI in Densely-Occupied Elementary Classrooms by Real-Time Fluorescent Bioaerosol Measurements" International Journal of Environmental Research and Public Health 14, no. 1: 51. https://doi.org/10.3390/ijerph14010051
APA StyleSu, C., Lau, J., & Yu, F. (2017). A Case Study of Upper-Room UVGI in Densely-Occupied Elementary Classrooms by Real-Time Fluorescent Bioaerosol Measurements. International Journal of Environmental Research and Public Health, 14(1), 51. https://doi.org/10.3390/ijerph14010051