Prevalence and Parental Risk Factors for Speech Disability Associated with Cleft Palate in Chinese Children—A National Survey
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Interviewers and Interviewing Procedures
2.3. Identification of Children with Speech Disability Associated with Cleft Palate
2.4. Data Analysis
3. Results
3.1. Prevalence of Speech Disability Associated with Cleft Palate among Chinese Children
3.2. Parental Factors Associated with Speech Disability Associated with Cleft Palate among Chinese Children
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mossey, P.A.; Little, J.; Munger, R.G.; Dixon, M.J.; Shaw, W.C. Cleft lip and palate. Lancet 2009, 374, 1773–1785. [Google Scholar] [CrossRef]
- Priester, G.H.; Goorhuis-Brouwer, S.M. Speech and language development in toddlers with and without cleft palate. Int. J. Pediatr. Otorhinolaryngol. 2008, 72, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.C.; Raynes-Greenow, C.; Turner, R.; Bower, C.; Dodson, A.; Nicholls, W.; Nassar, N. School performance for children with cleft lip and palate: A population-based study. Child Care Health Dev. 2016. [Google Scholar] [CrossRef] [PubMed]
- Kramer, F.J.; Gruber, R.; Fialka, F.; Sinikovic, B.; Hahn, W.; Schliephake, H. Quality of life in school-age children with orofacial clefts and their families. J. Craniofac. Surg. 2009, 20, 2061–2066. [Google Scholar] [CrossRef] [PubMed]
- Gowda, M.R.; Pai, N.B.; Vella, S.L. A pilot study of mental health and quality-of-life of caregivers of children with cleft lip/palate in India. Indian J. Psychiatry 2013, 55, 167–169. [Google Scholar] [PubMed]
- Ruiter, J.S.; Korsten-Meijer, A.G.; Goorhuis-Brouwer, S.M. Communicative abilities in toddlers and in early school age children with cleft palate. Int. J. Pediatr. Otorhinolaryngol. 2009, 73, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, F.; Adebayo, E.T.; Mohammed, R.; Adekeye, E.O. Facial cleft with Amelia: A Nigerian case report. Ann. Afr. Med. 2013, 12, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Lupo, P.J.; Danysh, H.E.; Symanski, E.; Langlois, P.H.; Cai, Y.; Swartz, M.D. Neighborhood-based socioeconomic position and risk of oral clefts among offspring. Am. J. Public Health 2015, 105, 2518–2525. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, K.U.; Mangold, E.; Herms, S.; Nowak, S.; Reutter, H.; Paul, A.; Becker, J.; Herberz, R.; AlChawa, T.; Nasser, E.; et al. Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci. Nat. Genet. 2012, 44, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Z.; Zhongpeng, Y.; Yanjun, G.; Jiaqi, D.; Yuchi, Z.; Bing, S.; Chenghao, L. Maternal active smoking and risk of oral clefts: A meta-analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, H.J.; Hassan, M.H.; Innes, N.P.; Elkodary, H.M.; Little, J.; Mossey, P.A. Passive smoking in the etiology of non-syndromic orofacial clefts: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0116963. [Google Scholar] [CrossRef] [PubMed]
- Izedonmwen, O.M.; Cunningham, C.; Macfarlane, T.V. What is the risk of having offspring with cleft lip/palate in pre-maternal obese/overweight women when compared to pre-maternal normal weight women? A systematic review and meta-analysis. J. Oral Maxillofac. Res. 2015, 6, e1. [Google Scholar] [CrossRef] [PubMed]
- Stothard, K.J.; Tennant, P.W.; Bell, R.; Rankin, J. Maternal overweight and obesity and the risk of congenital anomalies: A systematic review and meta-analysis. JAMA 2009, 301, 636–650. [Google Scholar] [CrossRef] [PubMed]
- Kalaskar, R.; Kalaskar, A.; Naqvi, F.S.; Tawani, G.S.; Walke, D.R. Prevalence and evaluation of environmental risk factors associated with cleft lip and palate in a central Indian population. Pediatr. Dent. 2013, 35, 279–283. [Google Scholar] [PubMed]
- Rappazzo, K.M.; Warren, J.L.; Meyer, R.E.; Herring, A.H.; Sanders, A.P.; Brownstein, N.C.; Luben, T.J. Maternal residential exposure to agricultural pesticides and birth defects in a 2003 to 2005 North Carolina birth cohort. Birth Defects Res. Part A Clin. Mol. Teratol. 2016, 106, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Mirilas, P.; Mentessidou, A.; Kontis, E.; Asimakidou, M.; Moxham, B.J.; Petropoulos, A.S.; Emmanouil-Nikolousi, E.N. Parental exposures and risk of nonsyndromic orofacial clefts in offspring: A case-control study in Greece. Int. J. Pediatr. Otorhinolaryngol. 2011, 75, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Materna-Kiryluk, A.; Wisniewska, K.; Badura-Stronka, M.; Mejnartowicz, J.; Wieckowska, B.; Balcar-Boron, A.; Czerwionka-Szaflarska, M.; Gajewska, E.; Godula-Stuglik, U.; Krawczynski, M.; et al. Parental age as a risk factor for isolated congenital malformations in a polish population. Paediatr. Perinat. Epidemiol. 2009, 23, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Herkrath, A.P.; Herkrath, F.J.; Rebelo, M.A.; Vettore, M.V. Parental age as a risk factor for non-syndromic oral clefts: A meta-analysis. J. Dent. 2012, 40, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Chen, G.; Song, X.; Liu, J.; Yan, L.; Du, W.; Pang, L.; Zhang, L.; Wu, J.; Zhang, B.; et al. Twenty-year trends in the prevalence of disability in China. Bull. World Health Organ. 2011, 89, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Lohr, S.L. Sampling: Design and Analysis; Duxbury Press: Pacific Grove, CA, USA, 1999. [Google Scholar]
- Korn, E.L.; Graubard, B.I. Analysis of Health Surverys; Wiley: New York, NY, USA, 1999. [Google Scholar]
- SAS Institute Inc. Statistical Analysis Software (SAS), version 9.1; SAS Institute Inc.: Cary, NC, USA, 2002.
- Dai, L.; Zhu, J.; Mao, M.; Li, Y.; Deng, Y.; Wang, Y.; Liang, J.; Tang, L.; Wang, H.; Kilfoy, B.A.; et al. Time trends in oral clefts in Chinese newborns: Data from the Chinese national birth defects monitoring network. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guan, P.; Xu, W.; Zhou, B. Risk factors for oral clefts: A population-based case-control study in Shenyang, China. Paediatr. Perinat. Epidemiol. 2009, 23, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Wang, Y.; Miao, L.; Zhu, J. Nonsyndromic cleft lip with or without cleft palate in Chinese Population: Analysis of 3766 cases. Hua Xi Yi Ke Da Xue Xue Bao 2000, 31, 408–410. [Google Scholar] [PubMed]
- Xiao, K.; Zhang, Z.; Li, J.; Yu, T. Epidemiology of cleft lip and cleft palate in China. Zhonghua Yi Xue Za Zhi 1989, 69, 192–194. [Google Scholar] [PubMed]
- Fu, S.; Huang, H.; Linling, H. Epidemiological study of cleft lip and palate in Jiangxi Province, 2006–2012. Mod. Prev. Med. 2015, 42, 822–824. [Google Scholar]
- Burdi, A.R.; Silvey, R.G. The relation of sex-associated facial profile reversal and stages of human palatal closure. Teratology 1969, 2, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Paul, C.; Robaire, B. Ageing of the male germ line. Nat. Rev. Urol. 2013, 10, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Crosnoe, L.E.; Kim, E.D. Impact of age on male fertility. Curr. Opin. Obstetr. Gynecol. 2013, 25, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Kong, A.; Frigge, M.L.; Masson, G.; Besenbacher, S.; Sulem, P.; Magnusson, G.; Gudjonsson, S.A.; Sigurdsson, A.; Jonasdottir, A.; Jonasdottir, A.; et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 2012, 488, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, K.U.; Ahmed, S.T.; Bohmer, A.C.; Sangani, N.B.; Varghese, S.; Klamt, J.; Schuenke, H.; Gultepe, P.; Hofmann, A.; Rubini, M.; et al. Meta-analysis reveals genome-wide significance at 15q13 for nonsyndromic clefting of both the lip and the palate, and functional analyses implicate grem1 as a plausible causative gene. PLoS Genet. 2016, 12, e1005914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Han, Y.; Zhang, H.; Zhou, L.; Li, D.; Cai, Q.; Ma, J.; Zhang, W.; Wang, L. Association and cumulative effects of GWAS-identified genetic variants for nonsyndromic orofacial clefts in a Chinese population. Environ. Mol. Mutagen. 2013, 54, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Lu, Y.; Ai, L.; Jiao, B.; Yu, J.; Zhang, B.; Liu, Q. Association between FOXE1 and non-syndromic orofacial clefts in a northeastern Chinese population. Br. J. Oral Maxillofac. Surg. 2015, 53, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Li, D.; Ma, L.; Zhang, H.; Gong, M.; Li, S.; Yuan, H.; Zhang, W.; Ma, J.; Jiang, H.; et al. TPM1 polymorphisms and nonsyndromic orofacial clefts susceptibility in a Chinese Han population. Am. J. Med. Genet. Part A 2016, 170A, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Bille, C.; Skytthe, A.; Vach, W.; Knudsen, L.B.; Andersen, A.M.; Murray, J.C.; Christensen, K. Parent’s age and the risk of oral clefts. Epidemiology 2005, 16, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.N.; Li, J.H.; Chen, H.Y.; Chang, H.S.; Wu, B.X.; Lu, Z.K.; Wang, D.Z.; Liu, X.G. Genetics of cleft lip and cleft palate in China. Am. J. Hum. Genet. 1982, 34, 999–1002. [Google Scholar] [PubMed]
- Figueiredo, J.C.; Ly, S.; Magee, K.S.; Ihenacho, U.; Baurley, J.W.; Sanchez-Lara, P.A.; Brindopke, F.; Nguyen, T.H.; Nguyen, V.; Tangco, M.I.; et al. Parental risk factors for oral clefts among central Africans, Southeast Asians, and Central Americans. Birth Defects Res. Part A Clin. Mol. Teratol. 2015, 103, 863–879. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Shu, S.; Tang, S. A case-control study of environmental exposures for nonsyndromic cleft of the lip and/or palate in Eastern Guangdong, China. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Mirowsky, J.; Ross, C.E. Education, health, and the default American lifestyle. J. Health Soc. Behav. 2015, 56, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Nazar, G.P.; Lee, J.T.; Arora, M.; Millett, C. Socioeconomic inequalities in secondhand smoke exposure at home and at work in 15 low- and middle-income countries. Nicotine Tob. Res. 2015, 18, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Starling, A.P.; Engel, L.S.; Calafat, A.M.; Koutros, S.; Satagopan, J.M.; Yang, G.; Matthews, C.E.; Cai, Q.; Buckley, J.P.; Ji, B.T.; et al. Predictors and long-term reproducibility of urinary phthalate metabolites in middle-aged men and women living in urban Shanghai. Environ. Int. 2015, 84, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Burdorf, A.; Brand, T.; Jaddoe, V.W.; Hofman, A.; Mackenbach, J.P.; Steegers, E.A. The effects of work-related maternal risk factors on time to pregnancy, preterm birth and birth weight: The generation R study. Occup. Environ. Med. 2011, 68, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Brender, J.D.; Shinde, M.U.; Zhan, F.B.; Gong, X.; Langlois, P.H. Maternal residential proximity to chlorinated solvent emissions and birth defects in offspring: A case-control study. Environ. Health 2014, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Deguen, S.; Kihal, W.; Jeanjean, M.; Padilla, C.; Zmirou-Navier, D. Neighborhood deprivation and risk of congenital heart defects, neural tube defects and orofacial clefts: A systematic review and meta-analysis. PLoS ONE 2016, 11, e0159039. [Google Scholar] [CrossRef] [PubMed]
Weighted Number (n) | Weighted Prevalence (per 10,000 People, 95% CI) | p-Value | |
---|---|---|---|
Age group | 0.0005 | ||
0–3 | 12,335 | 2.13 (1.66–2.60) | |
4–6 | 24,526 | 5.65 (4.77–6.53) | |
7–17 | 75,209 | 3.37 (3.07–3.67) | |
Gender | 0.0328 | ||
Male | 68,709 | 3.94 (3.57–4.31) | |
Female | 43,361 | 2.88 (2.55–3.21) | |
Residence location | 0.0014 | ||
Rural | 94,909 | 3.93 (3.61–4.25) | |
Urban | 17,161 | 2.06 (1.67–2.45) | |
Total | 112,070 | 3.45 (3.19–3.71) |
Variable | Odds Ratio (95% CI) | p-Value |
---|---|---|
Children Gender | ||
Male | 1.646 (1.157–2.342) | 0.0056 |
Female | Ref. | - |
Residence location | ||
Rural area | 1.159 (0.715–1.881) | 0.5494 |
Urban area | Ref. | - |
History of speech disability in mother | ||
Yes | 20.266 (5.788–70.959) | <0.0001 |
No | Ref. | - |
History of speech disability in father | ||
Yes | 5.334 (0.637–44.656) | 0.1226 |
No | Ref. | - |
Maternal education level | ||
Junior middle school or under | 3.424 (1.082–10.837) | 0.0363 |
Senior middle school or above | Ref. | - |
Paternal education level | ||
Junior middle school or under | 2.923 (1.245–6.866) | 0.0138 |
Senior middle school or above | Ref. | - |
Maternal age at conception of child (per year) | 0.970 (0.924–1.018) | 0.2124 |
Paternal age at conception of child (per year) | 1.061 (1.017–1.108) | 0.0065 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, C.; Wang, Z.; He, P.; Guo, C.; Chen, G.; Zheng, X. Prevalence and Parental Risk Factors for Speech Disability Associated with Cleft Palate in Chinese Children—A National Survey. Int. J. Environ. Res. Public Health 2016, 13, 1168. https://doi.org/10.3390/ijerph13111168
Yun C, Wang Z, He P, Guo C, Chen G, Zheng X. Prevalence and Parental Risk Factors for Speech Disability Associated with Cleft Palate in Chinese Children—A National Survey. International Journal of Environmental Research and Public Health. 2016; 13(11):1168. https://doi.org/10.3390/ijerph13111168
Chicago/Turabian StyleYun, Chunfeng, Zhenjie Wang, Ping He, Chao Guo, Gong Chen, and Xiaoying Zheng. 2016. "Prevalence and Parental Risk Factors for Speech Disability Associated with Cleft Palate in Chinese Children—A National Survey" International Journal of Environmental Research and Public Health 13, no. 11: 1168. https://doi.org/10.3390/ijerph13111168
APA StyleYun, C., Wang, Z., He, P., Guo, C., Chen, G., & Zheng, X. (2016). Prevalence and Parental Risk Factors for Speech Disability Associated with Cleft Palate in Chinese Children—A National Survey. International Journal of Environmental Research and Public Health, 13(11), 1168. https://doi.org/10.3390/ijerph13111168