Pollution and Oral Bioaccessibility of Pb in Soils of Villages and Cities with a Long Habitation History
Abstract
:1. Introduction
2. Background Information
2.1. Utrecht
2.2. Wijk bij Duurstede
2.3. Fijnaart
2.4. Graft-De Rijp
3. Methods
3.1. Site Selection and Soil Sampling
3.2. Sample Preparation
3.3. Analytical Procedure
3.4. Data Analysis
4. Results
4.1. Chemical and Pb Isotope Composition of the Soil Samples
4.2. Potential Anthropogenic Pb Sources (Pb Artefacts)
4.3. In Vitro Digestion Model
5. Discussion
5.1. Anthropogenic Pb Sources in Urban Soils
5.1.1. Differences and Similarities between Cities/Villages
5.1.2. Differences and Similarities between Historical Time Periods
5.2. Oral Pb Bioaccessibility
6. Conclusions
Supplementary Material
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nriagu, J.O. A history of global metal pollution. Science 1996, 272, 223–224. [Google Scholar] [CrossRef]
- Macholz, R.M. The Biogeochemistry of Lead in the Environment, Part A: Ecological Cycles; Elsevier/North-Holland Biomedical Press: New York, NY, USA, 1978. [Google Scholar]
- Lomborg, B. The Sceptical Environmentalist: Measuring the Real State of the World; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Von Storch, H.; Costa-Cabral, M.; Hagner, C.; Feser, F.; Pacyna, J.; Pacyna, E.; Kolb, S. Four decades of gasoline emissions and control policies in Europe: A retrospective assessment. Sci. Total Environ. 2003, 311, 151–176. [Google Scholar] [CrossRef]
- Van der Gon, H.D.; Appelman, W. Lead emissions from road transport in Europe: A revision of current estimates using various estimation methodologies. Sci. Total. Environ. 2009, 407, 5367–5372. [Google Scholar] [CrossRef] [PubMed]
- Walraven, N.; van Os, B.J.H.; Klaver, G.T.; Middelburg, J.J.; Davies, G.R. The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in The Netherlands. Sci. Total Environ. 2014, 472, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Shotyk, W.; Weiss, D.; Appleby, P.G.; Cheburkin, A.K.; Frei, R.; Gloor, M.; Kramers, J.D.; Reese, S.; Van der Knaap, W.O. History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 1998, 281, 1635–1640. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.; Shotyk, W.; Appleby, P.G.; Kramers, J.D.; Cheburkin, A.K. Atmospheric Pb deposition since the industrial revolution recorded by five Swiss peat profiles: Enrichment factors, fluxes, isotopic composition, and sources. Environ. Sci. Technol. 1999, 33, 1340–1352. [Google Scholar] [CrossRef]
- Vile, M.A.; Kelman Wieder, R.; Novák, M. 200 Years of Pb deposition throughout then Czech Republic: Patterns and sources. Environ. Sci. Technol. 2000, 34, 12–21. [Google Scholar] [CrossRef]
- Le Roux, G.; Aubert, D.; Stille, P.; Krachler, M.; Kober, B.; Cheburkin, A.; Bonani, G.; Shotyk, W. Recent atmospheric Pb deposition at a rural site in southern Germany assessed using a peat core and snow pack, and comparison with other archives. Atmos. Environ. 2005, 39, 6790–6801. [Google Scholar] [CrossRef]
- Walraven, N.; van Os, B.J.H.; Klaver, G.T.; Middelburg, J.J.; Davies, G.R. Reconstruction of historical atmospheric Pb deposition using Dutch urban lake sediments: A Pb isotope study. Sci. Total Environ. 2014, 484, 185–195. [Google Scholar] [CrossRef]
- Chow, T.J. Pb accumulation in roadside soil and grass. Nature 1970, 225, 295–296. [Google Scholar] [CrossRef]
- Gulson, B.L.; Mizon, K.J.; Law, A.J.; Korsch, M.J.; Davis, J.J. Sources and pathways of lead in humans from the Broken Hill mining community: An alternative use of exploration methods. Econ. Geol. 1994, 89, 889–908. [Google Scholar] [CrossRef]
- Walraven, N.; van Os, B.J.H.; Klaver, G.Th.; Baker, J.H.; Vriend, S.P. Trace element concentrations and stable lead isotopes in soils as tracers of lead pollution in Graft-De Rijp, the Netherlands. J. Geochem. Explor. 1997, 59, 47–58. [Google Scholar] [CrossRef]
- Hansmann, W.; Köppel, V. Lead-isotopes as tracers of pollutants in soils. Chem. Geol. 2000, 171, 123–144. [Google Scholar] [CrossRef]
- Cloquet, C.; Carignan, J.; Libourel, G.; Sterckeman, T.; Perdrix, E. Tracing source pollution in soils using cadmium and lead isotopes. Environ. Sci. Technol. 2006, 40, 2525–2530. [Google Scholar] [CrossRef] [PubMed]
- Komárek, M.; Ettler, V.; Chrastný, V.; Mihaljevič, M. Lead isotopes in environmental sciences: A review. Environ. Internat. 2008, 34, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Reimann, C.; Smith, D.B.; Woodruff, L.G.; Flem, B. Pb-concentrations and Pb-isotope ratios in soils collected along an east-west transect across the United States. Appl. Geochem. 2011, 26, 1623–1631. [Google Scholar] [CrossRef]
- Walraven, N.; van Gaans, P.F.M.; van der Veer, G.; van Os, B.J.H.; Klaver, G.Th.; Vriend, S.P.; Middelburg, J.J.; Davies, G.R. Tracing diffuse anthropogenic Pb sources in rural soils by means of Pb isotope analysis. Appl. Geochem. 2013, 37, 242–257. [Google Scholar] [CrossRef]
- Rabinowitz, M.B.; Wetherill, G.W. Identifying sources of lead contamination by stable isotopes techniques. Environ. Sci. Technol. 1972, 6, 705–709. [Google Scholar] [CrossRef]
- Olsen, K.W.; Skogerboe, R.K. Identification of soil lead compounds from automotive sources. Environ. Sci. Technol. 1975, 9, 227–230. [Google Scholar] [CrossRef]
- Gulson, B.L.; Tiller, K.G.; Mizon, K.J.; Merry, R.H. Use of Pb isotope ratios in soils to identify the sources of Pb contamination near Adelaide, South Australia. Environ. Sci. Technol. 1981, 15, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, M.; Stille, P. Rare earth element behavior and Pb, Sr, Nd isotope systematics in a heavy metal contaminated soil. Appl. Geochem. 1997, 12, 607–623. [Google Scholar] [CrossRef]
- Shiharata, H.; Elias, W.; Patterson, C.C. Chronological variations in concentrations and isotopic compositions of anthropogenic atmospheric lead in sediments of a remote subalpine pond. Geochim. Cosmochim. Acta 1980, 44, 149–162. [Google Scholar] [CrossRef]
- Petit, D.; Mennessier, J.P.; Lamberts, L. Stable lead isotopes in pond sediments as tracer of past and present atmospheric lead pollution in Belgium. Atmos. Environ. 1984, 18, 1189–1193. [Google Scholar] [CrossRef]
- Moor, H.C.; Schaller, T.; Sturm, M. Recent changes in stable Pb isotope ratios in sediments of Lake Zug, Switzerland. Environ. Sci. Technol. 1996, 30, 2928–2933. [Google Scholar] [CrossRef]
- Zang, Y. 100 years of Pb deposition and transport in soils in Champaign, Illinois, USA. Water Air Soil Pollut. 2003, 146, 197–210. [Google Scholar] [CrossRef]
- Nriagu, J.O. Lead and Lead Poisoning in Antiquity; John Wiley & Sons Inc: New York, NY, USA, 1983. [Google Scholar]
- Ter Haar, G.; Aronow, R. New information on lead in dirt and dust as related to the childhood lead problem. Environ. Health Perspect. 1974, 7, 83–89. [Google Scholar] [CrossRef]
- Bogden, J.D.; Louria, D.L. Soil contamination from lead in paint chips. Bull. Environ. Contam. Toxicol. 1975, 14, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P. Lead in Danes: Historical and toxicological studies. Environ. Qual. Saf. Suppl. 1975, 2, 6–75. [Google Scholar] [PubMed]
- Walraven, N.; Bakker, M.; van Os, B.J.H.; Klaver, G.T.; Middelburg, J.J.; Davies, G.R. Factors controlling the oral bioaccessibility of anthropogenic Pb in polluted soils. Sci. Total Environ. 2015, 2, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Oomen, A.G.; Rompelberg, C.J.M.; Bruil, M.A.; Dobbe, C.J.G.; Pereboom, D.P.K.H.; Sips, A.J.A.M. Development of an in vitro digestion model for estimation of bioaccessibility of soil contaminants. Arch. Environ. Contam. Toxicol. 2003, 44, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Hagens, W.I.; Walraven, N.; Minekus, M.; Havenaar, R.; Lijzen, J.P.A.; Oomen, A.G. Relative Oral Bioavailability of Lead from Dutch Made Grounds; RIVM report 2009:711701086; National Institute for Public Health and the Wnvironment, Ministry of Health, Welfare and Sport: Utrech, The Netherlands, 2009. [Google Scholar]
- Provincie Gaat Door Met Sanering Fijnaart. Available online: http://www.brabant.nl/politiek-en-bestuur/provinciale-staten/vergaderstukken-en-besluiten-ps-en-commissies/zoek.aspx?qvi=9386 (accessed on 26 September 2013).
- Centraal Bureau voor de Statistiek: Kies Table. Available online: http://statline.cbs.nl/StatWeb/dome/?TH=3600&LA=nl (accessed on 7 January 2016).
- De Bruin, R.E.; Hoekstra, T.J.; Pietersma, A. Twintig Eeuwen Utrecht, Een Korte Geschiedenis; Atelier Rijksbouwmeester: Utrecht, The Netherlands, 1999. [Google Scholar]
- Archis. Archeological archive and information system. 2013; (restricted access). [Google Scholar]
- Het Utrechts Archief. Available online: http://www.hetutrechtsarchief.nl/werkstukken/onderwerpen/middeleeuwse-stad (accessed on 7 January 2016).
- Kooij, P. P.D.’t Hart, Leven in Utrecht 1850–1914: Groei Naar Een Moderne Stad; Het Utrechts Archief: Hilversum, The Netherlands, 2005. [Google Scholar]
- Gemeente Wijk bij Duurstede: Geschiedenis. Available online: http://www.wijkbijduurstede.nl/zoeken/resultaten/geschiedenis/ (accessed on 7 January 2016).
- Regionaal Archief West Brabant. Available online: http://www.regionaalarchiefwestbrabant.nl/historie/moerdijk/fijnaart-en-heijningen (accessed on 7 January 2016).
- Ruimtelijke En Economische Ontwikkeling: Domplein Revisited. Available online: https://www.utrecht.nl/fileadmin/uploads/documenten/3.ruimtelijk-ontwikkeling/Erfgoed/Publicaties/Basisrapportages_Archeologie/BRArch-64-DP7-Domplein.pdf (accessed on 7 January 2016).
- Dijkstra, J. Het Domein van de Boer en de Ambachtsman: Een Opgraving op het Terrein van de Voormalige Fruitveiling te Wijk bij Duurstede: Een Deel van Dorestad en de Villa Wijk Archeologisch Onderzocht; ADC Archeoprojecten: Amersfoort, The Netherlands, 2012. [Google Scholar]
- Centraal Bureau voor de Statistiek. Available online: http://statline.cbs.nl/StatWeb/publication/?DM=SLNL&PA=71554NED&D1=0–7&D2=a&VW=T (accessed on 7 January 2016).
- Van der Veer, G. Geochemical Soil Survey of the Netherlands: Atlas of Major and Trace Elements in Topsoil and Parent Material, Assessment of Natural and Anthropogenic Enrichment Factors; Utrecht University: Utrech, The Netherlands, 2006. [Google Scholar]
- Walraven, N.; van Gaans, P.F.M.; van der Veer, G.; van Os, B.J.H.; Klaver, G.Th.; Vriend, S.P.; Middelburg, J.J.; Davies, G.R. Lithologically inherited variation in Pb isotope ratios in sedimentary soils in The Netherlands. Appl. Geochem. 2013, 37, 228–241. [Google Scholar] [CrossRef]
- Huisman, D.J.; de Groot, T.; Pols, S.; van Os, B.J.H.; Degryse, P. Compositional variation in roman colourless glass objects from the Bocholtz burial (The Netherlands). Archaeometry 2009, 51, 413–439. [Google Scholar] [CrossRef]
- Krachler, M.; Le Roux, G.; Kober, B.; Shotyk, W. Optimising accuracy and precision of lead isotope measurements (206Pb, 207Pb, 208Pb) in acid digests of peat with ICP-SMS using individual mass discrimination correction. J. Anal. Atom. Spectrom. 2004, 19, 354–361. [Google Scholar] [CrossRef]
- NEN-ISO-EN 17294-2: 2004 en: Water–Toepassing van Massaspectrometrie Met Inductief Gekoppeld Plasma (ICP-MS)-Deel 2: Bepaling van 62 Elementen. Available online: https://www.nen.nl/NEN-Shop/Norm/NENENISO-1729422004-en.htm (accessed on 01 November 2004).
- NEN 6966: 2005/C1:2006: Milieu–Analyse van Geselecteerde Elementen in Water, Eluaten en Destruaten–Atomaire Emissiespectrometrie Met Inductief Gekoppeld Plasma. Available online: https://www.nen.nl/pdfpreview/preview_110620.pdf (accessed on 01 December 2005).
- Van de Wiele, T.R.; Oomen, A.G.; Wragg, J.; Cave, M.; Minekus, M.; Hack, A.; Cornelis, C.; Rompelberg, C.J.M.; De Zwart, L.L.; Klinck, B.; et al. Comparison of five in vitro digestion models to in vivo experimental results: Lead bioaccessibility in the human gastrointestinal tract. J. Environ. Sci. Heal. A 2007, 42, 1203–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huisman, D.J. Geochemical Characterization of Subsurface Sediments in The Netherlands; Netherlands Institute of Applied Geosciences: Utrecht, The Netherlands, 1998. [Google Scholar]
- Pasteels, P.; Netels, V.; DeJonghe, L.; Deutsch, S. La composition isotopique du plomb des gisements belges: Implications sur les plans génétique et économique (note préliminaire). Bull. Soc. Belge. Géol. 1980, 89, 123–136. [Google Scholar]
- Cauet, S.; Weis, D.; Herbosch, A. Genetic study of Belgian lead zinc mineralizations in carbonate environments through lead isotopic geochemistry. BRGM 1982, 4, 329–341. [Google Scholar]
- Monna, F.; Lancelot, J.; Croudace, I.W.; Cundy, A.B.; Lewis, J.T. Lead isotopic composition of airborne material from France and Southern U.K. Implications for Pb pollution sources in urban areas. Environ. Sci. Technol. 1997, 31, 2277–2286. [Google Scholar] [CrossRef]
- Chiaradia, M.; Cupelin, F. Behaviour of airborne lead and temporal variations of its source effect in Geneva (Switzerland): Comparison of anthropogenic versus natural processes. Atmos. Environ. 2000, 34, 959–971. [Google Scholar] [CrossRef]
- Carignan, J.; Libourel, G.; Cloquet, C.; Le Forestier, L. Lead isotopic composition of fly ash and flue gas residues from municipal solid waste combustors in France: Implication for atmospheric lead source tracing. Environ. Sci. Technol. 2005, 39, 2018–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrid, F.; Biasioli, M.; Ajmone-Marsan, F. Availability and bioaccessibility of metals in fine particles of some urban soils. Arch. Environ. Con. Tox. 2008, 55, 212–232. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Weber, J.; Naidu, R.; McLaren, R.G.; Juhasz, A.L. Assessment of lead bioaccessibility in peri-urban contaminated soils. J. Hazard. Mater. 2011, 186, 300–305. [Google Scholar] [CrossRef]
- Appleton, J.D.; Cave, M.R.; Wragg, J. Modelling lead bioaccessibility in urban topsoils based on data from Glasgow, London, Northampton and Swansea, UK. Environ. Pollut. 2012, 171, 265–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.-S.; Yu, S.; Li, X.-D. The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Appl. Geochem. 2012, 27, 995–1004. [Google Scholar] [CrossRef]
- Farmer, J.G.; Broadway, A.; Cave, M.R.; Wragg, J.; Fordyce, F.M.; Graham, M.C.; Ngwenya, B.T.; Bewley, R.J.F. A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland. Sci. Total Environ. 2011, 409, 4958–4965. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.Y.; Cattle, S.R. Bioaccessibility of lead in urban soils of Broken Hill, Australia: A study based on in vitro digestion and the IEUBK model. Sci. Total Environ. 2015, 538, 922–933. [Google Scholar] [CrossRef] [PubMed]
- Oomen, A.G.; Hack, A.; Minekus, M.; Zeijdner, E.; Cornelis, C.; Schoeters, G.; Verstraete, W.; Wiele, T.V.; Wragg, J.; Rompelberg, C.J.M.; et al. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environ. Sci. Technol. 2002, 36, 3326–3334. [Google Scholar] [CrossRef] [PubMed]
- Van Kesteren, P.C.E.; Walraven, N.; Schuurman, T.; Dekker, R.; Havenaar, R.; Maathuis, A.J.H.; Bouwmeester, H.; Kramer, E.; Hoogenboom, R.; Slob, W.; et al. Bioavailability of Lead from Dutch Made Grounds: A Validation Study; RIVM report 607711015/2014; National Institute for Public Health and the Wnvironment, Ministry of Health, Welfare and Sport: Utrech, The Netherlands, 2014. [Google Scholar]
- Swartjes, F.A. Risk-Based Assessment of Soil and Groundwater Quality in The Netherlands: Standards and Remediation Urgency. Risk Analysis 1999, 19, 1235–1249. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry (ATSDR). Lead Toxicity. Available online: http://www.atsdr.cdc.gov/csem/lead/docs/lead.pdf (accessed on 11 February 2016).
Location | Abbreviation | Coordinates | Founded in (year) | Sampling Date |
---|---|---|---|---|
Utrecht | U | 136,800, 455,900 | 47 B.C. | October 2000 |
Wijk bij Duurstede | WbD | 151,900, 442,950 | 57 B.C. | May 2003 |
Fijnaart | F | 91,400, 405,650 | 1548 A.D. | April 2001 |
Graft-De Rijp | GdR | 118,200, 507,650 | 1612 A.D. | January 1996 |
Measured Parameter | Statistic | All | Utrecht | Wijk bij Duurstede | Fijnaart | Graft-De Rijp | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | B | R | Me | Mo | All | B | R | Me | Mo | All | B | Mo | All | B | Mo | |||
Pba (mg/kg) | n | 137 | 22 | 2 | 2 | 5 | 13 | 40 | 6 | 5 | 10 | 19 | 30 | 5 | 25 | 45 | 5 | 40 |
MIN | <LOD | <LOD | <LOD | 12 | 31 | 51 | <LOD | <LOD | <LOD | 6 | 20 | <LOD | <LOD | 9 | <LOD | <LOD | 5 | |
MED | 140 | 127 | 2 | 13 | 67 | 158 | 57 | 3 | 4 | 22 | 94 | 133 | 3 | 225 | 789 | 3 | 790 | |
MAX | 5266 | 390 | 2 | 15 | 390 | 387 | 740 | 4 | 7 | 142 | 740 | 1093 | 3 | 1093 | 5266 | 3 | 5266 | |
(206Pb/207Pb)a | n | 102 | 18 | - | - | 5 | 13 | 24 | - | - | 6 | 18 | 23 | - | 23 | 37 | - | 37 |
MIN | 1.111 | 1.153 | - | - | 1.167 | 1.153 | 1.137 | - | - | 1.137 | 1.153 | 1.130 | - | 1.130 | 1.111 | - | 1.111 | |
MED | 1.171 | 1.174 | - | - | 1.169 | 1.175 | 1.170 | - | - | 1.170 | 1.170 | 1.163 | - | 1.163 | 1.172 | - | 1.172 | |
MAX | 1.199 | 1.191 | - | - | 1.177 | 1.191 | 1.180 | - | - | 1.175 | 1.180 | 1.199 | - | 1.199 | 1.179 | - | 1.179 | |
(208Pb/207Pb)a | n | 102 | 18 | - | - | 5 | 13 | 24 | - | - | 6 | 18 | 23 | - | 23 | 37 | - | 37 |
MIN | 2.367 | 2.430 | - | - | 2.431 | 2.430 | 2.418 | - | - | 2.418 | 2.434 | 2.367 | - | 2.367 | 2.386 | - | 2.386 | |
MED | 2.447 | 2.442 | - | - | 2.447 | 2.441 | 2.452 | - | - | 2.457 | 2.451 | 2.432 | - | 2.432 | 2.448 | - | 2.448 | |
MAX | 2.476 | 2.475 | - | - | 2.475 | 2.466 | 2.459 | - | - | 2.459 | 2.459 | 2.476 | - | 2.476 | 2.458 | - | 2.458 | |
(206Pb/208Pb)a | n | 102 | 18 | - | - | 5 | 13 | 24 | - | - | 6 | 18 | 23 | - | 23 | 37 | - | 37 |
MIN | 0.465 | 0.472 | - | - | 0.474 | 0.472 | 0.470 | - | - | 0.470 | 0.473 | 0.472 | - | 0.472 | 0.465 | - | 0.465 | |
MED | 0.478 | 0.479 | - | - | 0.478 | 0.480 | 0.477 | - | - | 0.477 | 0.478 | 0.479 | - | 0.479 | 0.478 | - | 0.478 | |
MAX | 0.490 | 0.488 | - | - | 0.481 | 0.488 | 0.480 | - | - | 0.478 | 0.480 | 0.490 | - | 0.490 | 0.482 | - | 0.482 | |
Al (wt.%) | n | 137 | 22 | 2 | 2 | 5 | 13 | 40 | 6 | 5 | 10 | 19 | 30 | 5 | 25 | 45 | 5 | 40 |
MIN | 0.159 | 1.988 | 2.144 | 4.805 | 3.004 | 1.988 | 2.529 | 3.884 | 5.350 | 2.975 | 2.529 | 0.338 | 0.338 | 1.006 | 0.159 | 3.387 | 0.159 | |
MED | 3.472 | 3.273 | 4.123 | 4.811 | 3.910 | 3.036 | 4.740 | 6.367 | 6.110 | 4.800 | 3.610 | 3.014 | 3.115 | 3.013 | 3.546 | 6.351 | 3.440 | |
MAX | 7.357 | 6.101 | 6.101 | 4.817 | 4.523 | 3.775 | 6.997 | 6.997 | 6.292 | 5.842 | 6.072 | 4.147 | 3.683 | 4.147 | 7.357 | 7.357 | 7.251 |
Sample | Nr. | Site | Period | Century | Al (wt.%) | Pb (mg/kg) | 206Pb/207Pb | 208Pb/207Pb | 206Pb/208Pb |
---|---|---|---|---|---|---|---|---|---|
potsherd | 1 | U | Me | - | N.D. | 47 | 1.187 | 2.496 | 0.476 |
glazed roof tile | 2 | U | Mo | - | 5.963 | 4948 | 1.188 | 2.450 | 0.485 |
building remnants | 3 | U | Mo | - | 3.594 | 513 | 1.180 | 2.436 | 0.484 |
metal slag | 4 | U | Mo | - | 3.550 | 106 | 1.156 | 2.447 | 0.473 |
potsherd | 5 | WbD | R | - | 7.993 | 26 | 1.204 | 2.472 | 0.487 |
potsherd | 6 | WbD | R | - | 7.546 | 28 | 1.205 | 2.475 | 0.487 |
potsherd | 7 | WbD | R | - | 11.432 | 35 | 1.203 | 2.476 | 0.486 |
potsherd | 8 | WbD | R | - | 10.013 | 32 | 1.206 | 2.480 | 0.486 |
potsherd | 9 | WbD | R | - | 6.803 | 21 | 1.195 | 2.474 | 0.483 |
potsherd | 10 | WbD | R | - | 9.785 | 31 | 1.200 | 2.480 | 0.484 |
potsherd | 11 | WbD | R | - | 11.436 | 24 | 1.197 | 2.479 | 0.483 |
potsherd | 12 | WbD | R | - | 10.061 | 33 | 1.204 | 2.478 | 0.486 |
potsherd | 13 | WbD | R | - | 8.487 | 28 | 1.204 | 2.477 | 0.486 |
potsherd | 14 | WbD | R | - | 12.382 | 39 | 1.206 | 2.480 | 0.486 |
potsherd | 15 | WbD | R | - | 8.989 | 11 | 1.195 | 2.476 | 0.483 |
potsherd | 16 | WbD | R | - | 12.259 | 40 | 1.200 | 2.476 | 0.485 |
glazed potsherd | 17 | WbD | R | - | 7.862 | 13129 | 1.182 | 2.458 | 0.481 |
glazed potsherd | 18 | WbD | R | - | 6.572 | 26836 | 1.173 | 2.449 | 0.479 |
sherd | 19 | WbD | R | mid | 8.705 | 297 | 1.185 | 2.460 | 0.482 |
sherd | 20 | WbD | R | mid | 9.564 | 194 | 1.199 | 2.472 | 0.485 |
sherd | 21 | WbD | R | early | 7.413 | 156 | 1.204 | 2.474 | 0.487 |
glass | 22 | WbD | R | - | 1.306 | 8 | 1.170 | 2.444 | 0.479 |
sherd | 23 | WbD | R | 3/4 | 6.202 | 22 | 1.199 | 2.456 | 0.488 |
production slag | 24 | WbD | Me | - | 1.195 | 12 | 1.195 | 2.467 | 0.485 |
production slag | 25 | WbD | Me | - | 6.871 | 29 | 1.203 | 2.476 | 0.486 |
production slag | 26 | WbD | Me | - | 1.583 | 3 | 1.196 | 2.468 | 0.484 |
sherd | 27 | WbD | Me | - | 8.175 | 23 | 1.204 | 2.490 | 0.484 |
sherd | 28 | WbD | Me | - | 9.833 | 27 | 1.205 | 2.486 | 0.485 |
sherd | 29 | WbD | Me | - | 14.704 | 51 | 1.190 | 2.474 | 0.481 |
glass | 30 | WbD | Me | early | 1.147 | 6103 | 1.207 | 2.484 | 0.486 |
sherd | 31 | WbD | Me | car. | 8.062 | 38 | 1.150 | 2.405 | 0.478 |
sherd | 32 | WbD | Me | car. | 7.514 | 27 | 1.182 | 2.462 | 0.480 |
glazed potsherd | 33 | WbD | Me | 10/11 | 10.444 | 31138 | 1.177 | 2.457 | 0.479 |
glazed potsherd | 34 | WbD | Me | 11 | 10.421 | 12620 | 1.177 | 2.458 | 0.479 |
glazed potsherd | 35 | WbD | Me | 12 | 10.378 | 5345 | 1.177 | 2.456 | 0.479 |
glazed potsherd | 36 | WbD | Me | 13 | 8.189 | 30529 | 1.178 | 2.458 | 0.479 |
glazed potsherd | 37 | WbD | Me | 14 | 7.291 | 9760 | 1.181 | 2.460 | 0.480 |
prod. remnants | 38 | WbD | Me | - | 5.208 | 58 | 1.182 | 2.466 | 0.480 |
prod. remnants | 39 | WbD | Me | - | 4.595 | 712 | 1.179 | 2.458 | 0.480 |
prod. remnants | 40 | WbD | Me | - | 3.854 | 66 | 1.178 | 2.458 | 0.479 |
prod. remnants | 41 | WbD | Me | - | 0.143 | 651 | 1.179 | 2.456 | 0.480 |
prod. remnants | 42 | WbD | Me | - | 1.070 | 2265 | 1.165 | 2.442 | 0.477 |
glazed potsherd | 43 | WbD | Mo | - | 6.688 | 37038 | 1.174 | 2.457 | 0.478 |
glazed potsherd | 44 | WbD | Mo | - | 5.682 | 16868 | 1.175 | 2.454 | 0.479 |
glazed potsherd | 45 | WbD | Mo | 16/17 | 11.404 | 10049 | 1.183 | 2.463 | 0.480 |
glazed potsherd | 46 | WbD | Mo | 16 | 7.071 | 40994 | 1.184 | 2.460 | 0.481 |
glazed potsherd | 47 | WbD | Mo | 17 | 7.274 | 15354 | 1.152 | 2.397 | 0.480 |
glazed potsherd | 48 | WbD | Mo | 17 | 6.978 | 86904 | 1.171 | 2.451 | 0.478 |
glazed potsherd | 49 | WbD | Mo | 17 | 6.227 | 16845 | 1.180 | 2.455 | 0.481 |
majolica | 50 | WbD | Mo | 17 | 4.349 | 19478 | 1.185 | 2.458 | 0.482 |
glazed tile | 51 | WbD | Mo | 17 | 5.139 | 11544 | 1.186 | 2.461 | 0.482 |
glazed potsherd | 52 | WbD | Mo | 17 | 7.551 | 21518 | 1.185 | 2.459 | 0.482 |
glazed potsherd | 53 | WbD | Mo | 18 | 7.399 | 6667 | 1.178 | 2.452 | 0.481 |
Pb spool | 54 | WbD | Mo | - | 0.007 | 878370 | 1.179 | 2.453 | 0.481 |
potsherd | 55 | F | Mo | - | N.D. | 39 | 1.181 | 2.460 | 0.480 |
coal ashes | 56 | F | Mo | - | N.D. | 123 | 1.161 | 2.446 | 0.475 |
glazed rooftile | 57 | F | Mo | - | N.D. | 23106 | 1.172 | 2.451 | 0.478 |
metal slag | 58 | F | Mo | - | N.D. | 41 | 1.167 | 2.452 | 0.476 |
coal ashes | 59 | F | Mo | - | N.D. | 2182 | 1.174 | 2.447 | 0.480 |
glazed roof tile | 60 | F | Mo | - | N.D. | 19300 | 1.176 | 2.452 | 0.479 |
metal slag | 61 | F | Mo | - | N.D. | 82 | 1.170 | 2.445 | 0.479 |
metal slag | 62 | F | Mo | - | N.D. | 1502 | 1.159 | 2.442 | 0.474 |
undefined object | 63 | GdR | Mo | - | N.D. | 196 | 1.168 | 2.448 | 0.477 |
glazed red roof tile | 64 | GdR | Mo | - | 6.822 | 59419 | 1.176 | 2.450 | 0.480 |
glazed red roof tile | 65 | GdR | Mo | - | 6.843 | 40186 | 1.177 | 2.453 | 0.480 |
red roof tile | 66 | GdR | Mo | - | 7.664 | 166 | 1.164 | 2.443 | 0.476 |
red roof tile | 67 | GdR | Mo | - | 7.743 | 189 | 1.167 | 2.452 | 0.476 |
glazed chimney pot | 68 | GdR | Mo | - | 7.447 | 27697 | 1.194 | 2.478 | 0.482 |
grey roof tile | 69 | GdR | Mo | - | 9.918 | 51 | 1.183 | 2.459 | 0.481 |
red paint (on wood) | 70 | GdR | Mo | - | 0.090 | 185665 | 1.196 | 2.468 | 0.485 |
impregnated wood | 71 | GdR | Mo | - | 0.217 | 4918 | 1.192 | 2.466 | 0.483 |
brown paint | 72 | GdR | Mo | - | N.D. | 107896 | 1.160 | 2.445 | 0.474 |
white paint | 73 | GdR | Mo | - | 0.894 | 60074 | 1.171 | 2.451 | 0.478 |
Pb sheet 1 | 74 | GdR | Mo | - | N.D. | ~1000000 | 1.165 | 2.439 | 0.478 |
Pb sheet 2 | 75 | GdR | Mo | - | N.D. | ~1000000 | 1.166 | 2.464 | 0.473 |
Location | Sample Name | Inferred Pb Source | Soil | Chyme | Pellet | Bioaccessibility | ||
---|---|---|---|---|---|---|---|---|
Pb (mg/kg) | 206Pb/207Pb | 208Pb/207Pb | Pb (mg/kg) | Pb (mg/kg) | FB-Pb (%) | |||
Utrecht 1 | U1 | City waste (Pb white) | 1443 | 1.156 | 2.439 | 509 | 484 | 35 |
Utrecht 1 | U2 | City waste (Pb white) | 1651 | 1355 | 1204 | 82 | ||
Utrecht 2 | U3 | City waste | 1237 | - | - | 777 | 789 | 63 |
Utrecht 2 | U4 | City waste | 1275 | 541 | 581 | 42 | ||
Utrecht 3 | U5 | City waste | 952 | 1.160 | 2.437 | 303 | 313 | 32 |
Utrecht 3 | U6 | City waste | 927 | 520 | 577 | 56 | ||
Wijk bij Duurstede 1 | WbD1 | City waste | 639 | 1.172 * | 2.453 * | 201 | 168 | 31 |
Wijk bij Duurstede 1 | WbD2 | City waste | 1431 | 545 | 490 | 38 | ||
Graft-de Rijp 1 | GdR1 | City waste | 965 | 1.179 * | 2.455 * | 317 | 279 | 33 |
Graft-de Rijp 2 | GdR2 | City waste | 2335 | 1.175 | 2.456 | 677 | 888 | 29 |
Graft-de Rijp 2 | GdR3 | City waste | 1947 | 506 | 425 | 26 | ||
Graft-de Rijp 3 | GdR4 | City waste | 540 | 1.174 | 2.451 | 175 | 322 | 32 |
Graft-de Rijp 3 | GdR5 | City waste | 1549 | 474 | 855 | 31 | ||
Graft-de Rijp 4 | GdR6 | City waste | 1668 | 1.174 * | 2.450 * | 265 | 524 | 16 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walraven, N.; Bakker, M.; Van Os, B.; Klaver, G.; Middelburg, J.J.; Davies, G. Pollution and Oral Bioaccessibility of Pb in Soils of Villages and Cities with a Long Habitation History. Int. J. Environ. Res. Public Health 2016, 13, 221. https://doi.org/10.3390/ijerph13020221
Walraven N, Bakker M, Van Os B, Klaver G, Middelburg JJ, Davies G. Pollution and Oral Bioaccessibility of Pb in Soils of Villages and Cities with a Long Habitation History. International Journal of Environmental Research and Public Health. 2016; 13(2):221. https://doi.org/10.3390/ijerph13020221
Chicago/Turabian StyleWalraven, Nikolaj, Martine Bakker, Bertil Van Os, Gerard Klaver, Jack Jacobus Middelburg, and Gareth Davies. 2016. "Pollution and Oral Bioaccessibility of Pb in Soils of Villages and Cities with a Long Habitation History" International Journal of Environmental Research and Public Health 13, no. 2: 221. https://doi.org/10.3390/ijerph13020221
APA StyleWalraven, N., Bakker, M., Van Os, B., Klaver, G., Middelburg, J. J., & Davies, G. (2016). Pollution and Oral Bioaccessibility of Pb in Soils of Villages and Cities with a Long Habitation History. International Journal of Environmental Research and Public Health, 13(2), 221. https://doi.org/10.3390/ijerph13020221