Polymorphisms in Four Genes (KCNQ1 rs151290, KLF14 rs972283, GCKR rs780094 and MTNR1B rs10830963) and Their Correlation with Type 2 Diabetes Mellitus in Han Chinese in Henan Province, China
Abstract
:1. Introduction
2. Methods
2.1. Ethics Statement
2.2. Study Population
2.3. Clinical and Biochemical Measurements
2.4. Sample Size Calculation
2.5. SNP Selection and Genotyping
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Yang, S.H.; Dou, K.F.; Song, W.J. Prevalence of diabetes among men and women in China. N. Engl. J. Med. 2010, 362, 2425–2426. [Google Scholar] [CrossRef] [PubMed]
- Voight, B.F.; Scott, L.J.; Steinthorsdottir, V.; Morris, A.P.; Dina, C.; Welch, R.P.; Zeggini, E.; Huth, C.; Aulchenko, Y.S.; Thorleifsson, G.; et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 2010, 42, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.; Hivert, M.F.; Langenberg, C.; Tanaka, T.; Pankow, J.S.; Vollenweider, P.; Lyssenko, V.; Bouatia-Naji, N.; Dupuis, J.; Jackson, A.U.; et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 2010, 42, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Mussig, K.; Staiger, H.; Machicao, F.; Kirchhoff, K.; Guthoff, M.; Schafer, S.A.; Kantartzis, K.; Silbernagel, G.; Stefan, N.; Holst, J.J.; et al. Association of type 2 diabetes candidate polymorphisms in KCNQ1 with incretin and insulin secretion. Diabetes 2009, 58, 1715–1720. [Google Scholar] [CrossRef] [PubMed]
- Dimas, A.S.; Lagou, V.; Barker, A.; Knowles, J.W.; Magi, R.; Hivert, M.F.; Benazzo, A.; Rybin, D.; Jackson, A.U.; Stringham, H.M.; et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 2014, 63, 2158–2171. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Xie, Y.; Lin, K.; Li, S.; Zhou, Y.; Ma, P.; Lv, Z.; Zhou, X. Genome-wide association studies-derived susceptibility loci in type 2 diabetes: Confirmation in a Chinese population. Clin. Invest. Med. 2012, 35, E327. [Google Scholar] [PubMed]
- Rees, S.D.; Hydrie, M.Z.; Shera, A.S.; Kumar, S.; O'Hare, J.P.; Barnett, A.H.; Basit, A.; Kelly, M.A. Replication of 13 genome-wide association (GWA)-validated risk variants for type 2 diabetes in Pakistani populations. Diabetologia 2011, 54, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet-Ostaptchouk, J.V.; Van Haeften, T.W.; Landman, G.W.; Reiling, E.; Kleefstra, N.; Bilo, H.J.; Klungel, O.H.; De Boer, A.; Van Diemen, C.C.; Wijmenga, C.; et al. Common variants in the type 2 diabetes KCNQ1 gene are associated with impairments in insulin secretion during hyperglycaemic glucose clamp. PLoS ONE 2012, 7, e32148. [Google Scholar]
- Turki, A.; Mtiraoui, N.; Al-Busaidi, A.S.; Khirallah, M.; Mahjoub, T.; Almawi, W.Y. Lack of association between genetic polymorphisms within KCNQ1 locus and type 2 diabetes in Tunisian Arabs. Diabetes Res. Clin. Pract. 2012, 98, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Heni, M.; Ketterer, C.; Thamer, C.; Herzberg-Schafer, S.A.; Guthoff, M.; Stefan, N.; Machicao, F.; Staiger, H.; Fritsche, A.; Haring, H.U. Glycemia determines the effect of type 2 diabetes risk genes on insulin secretion. Diabetes 2010, 59, 3247–3252. [Google Scholar] [CrossRef] [PubMed]
- Kozian, D.H.; Barthel, A.; Cousin, E.; Brunnhofer, R.; Anderka, O.; Marz, W.; Bohm, B.; Winkelmann, B.; Bornstein, S.R.; Schmoll, D. Glucokinase-activating GCKR polymorphisms increase plasma levels of triglycerides and free fatty acids, but do not elevate cardiovascular risk in the Ludwigshafen Risk and Cardiovascular Health Study. Horm. Metab. Res. 2010, 42, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Onuma, H.; Tabara, Y.; Kawamoto, R.; Shimizu, I.; Kawamura, R.; Takata, Y.; Nishida, W.; Ohashi, J.; Miki, T.; Kohara, K.; et al. The GCKR rs780094 polymorphism is associated with susceptibility of type 2 diabetes, reduced fasting plasma glucose levels, increased triglycerides levels and lower HOMA-IR in Japanese population. J. Hum. Genet. 2010, 55, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Wu, Y.; Li, H.; Loos, R.J.; Hu, F.B.; Sun, L.; Lu, L.; Pan, A.; Liu, C.; Wu, H.; et al. Association of GCKR rs780094, alone or in combination with GCK rs1799884, with type 2 diabetes and related traits in a Han Chinese population. Diabetologia 2009, 52, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Small, K.S.; Hedman, A.K.; Grundberg, E.; Nica, A.C.; Thorleifsson, G.; Kong, A.; Thorsteindottir, U.; Shin, S.Y.; Richards, H.B.; Consortium, G.; et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat. Genet. 2011, 43, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Shen, J.; Hu, D.; Yan, G.; Liu, X.; Xu, X.; Pei, L.; Li, Y.; Sun, C. Association of KCNQ1 and KLF14 polymorphisms and risk of type 2 diabetes mellitus: A global meta-analysis. Hum. Immunol. 2014, 75, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gao, K.; Zhao, J.; Feng, T.; Yin, L.; Wang, J.; Wang, C.; Li, C.; Wang, Y.; Wang, Q.; et al. Glucagon gene polymorphism modifies the effects of smoking and physical activity on risk of type 2 diabetes mellitus in Han Chinese. Gene 2014, 534, 352–355. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes, Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2005, 28 (Suppl. 1), S37–S42. [Google Scholar]
- Joint Committee on formulation of China adult dyslipidemia Prevention Guide. China adult dyslipidemia prevention guide. Chin. J. Cardiol. 2007, 35, 401–404. [Google Scholar]
- The International HapMap Project. Available online: http://www.hapmap.org (accessed on 11 February 2014).
- Power for Genetic Association Analyses (PGA). Available online: http://dceg.cancer.gov/bb/tools/pga (accessed on 6 December 2014).
- Yasuda, K.; Miyake, K.; Horikawa, Y.; Hara, K.; Osawa, H.; Furuta, H.; Hirota, Y.; Mori, H.; Jonsson, A.; Sato, Y.; et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 2008, 40, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Edwards, T.; Signorello, L.B.; Cai, Q.; Zheng, W.; Shu, X.O.; Blot, W.J. Evaluation of genome-wide association study-identified type 2 diabetes loci in African Americans. Am. J. Epidemiol. 2012, 176, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Ohshige, T.; Iwata, M.; Omori, S.; Tanaka, Y.; Hirose, H.; Kaku, K.; Maegawa, H.; Watada, H.; Kashiwagi, A.; Kawamori, R.; et al. Association of new loci identified in European genome-wide association studies with susceptibility to type 2 diabetes in the Japanese. PLoS ONE 2011, 6, e26911. [Google Scholar] [CrossRef] [PubMed]
- Sparso, T.; Andersen, G.; Nielsen, T.; Burgdorf, K.S.; Gjesing, A.P.; Nielsen, A.L.; Albrechtsen, A.; Rasmussen, S.S.; Jorgensen, T.; Borch-Johnsen, K.; et al. The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes. Diabetologia 2008, 51, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Vaxillaire, M.; Cavalcanti-Proenca, C.; Dechaume, A.; Tichet, J.; Marre, M.; Balkau, B.; Froguel, P.; Group, D.S. The common P446L polymorphism in GCKR inversely modulates fasting glucose and triglyceride levels and reduces type 2 diabetes risk in the DESIR prospective general French population. Diabetes 2008, 57, 2253–2257. [Google Scholar] [CrossRef] [PubMed]
- Orho-Melander, M.; Melander, O.; Guiducci, C.; Perez-Martinez, P.; Corella, D.; Roos, C.; Tewhey, R.; Rieder, M.J.; Hall, J.; Abecasis, G.; et al. Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes 2008, 57, 3112–3121. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Li, X.; Gu, Q.; Chen, H.; Lu, D.; Gao, X. Associations of common polymorphisms in GCKR with type 2 diabetes and related traits in a Han Chinese population: A case-control study. BMC Med. Genet. 2011, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Ronn, T.; Wen, J.; Yang, Z.; Lu, B.; Du, Y.; Groop, L.; Hu, R.; Ling, C. A common variant in MTNR1B, encoding melatonin receptor 1B, is associated with type 2 diabetes and fasting plasma glucose in Han Chinese individuals. Diabetologia 2009, 52, 830–833. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Yu, Z.; Li, H.; Franco, O.H.; Liu, Y.; Lin, X. Distributions of C-reactive protein and its association with metabolic syndrome in middle-aged and older Chinese people. J. Am. Coll. Cardiol. 2007, 49, 1798–1805. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wu, Y.; Li, H.; Qi, Q.; Langenberg, C.; Loos, R.J.; Lin, X. MTNR1B rs10830963 is associated with fasting plasma glucose, HbA1C and impaired beta-cell function in Chinese Hans from Shanghai. BMC Med. Genet. 2010, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.H.; Ho, J.S.; Wang, Y.; Lee, H.M.; Lam, V.K.; Germer, S.; Martin, M.; So, W.Y.; Ma, R.C.; Chan, J.C.; et al. Common polymorphisms in MTNR1B, G6PC2 and GCK are associated with increased fasting plasma glucose and impaired beta-cell function in Chinese subjects. PLoS ONE 2010, 5, e11428. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Hara, K.; Shojima, N.; Horikoshi, M.; Iwata, M.; Hirota, Y.; Tobe, K.; Seino, S.; Kadowaki, T. Variations with modest effects have an important role in the genetic background of type 2 diabetes and diabetes-related traits. J. Hum. Genet. 2012, 57, 776–779. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Xiang, A.H.; Trigo, E.; Takayanagi, M.; Beale, E.; Lawrence, J.M.; Hartiala, J.; Richey, J.M.; Allayee, H.; Buchanan, T.A.; et al. Genetic variation in MTNR1B is associated with gestational diabetes mellitus and contributes only to the absolute level of beta cell compensation in Mexican Americans. Diabetologia 2014, 57, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Vlassi, M.; Gazouli, M.; Paltoglou, G.; Christopoulos, P.; Florentin, L.; Kassi, G.; Mastorakos, G. The rs10830963 variant of melatonin receptor MTNR1B is associated with increased risk for gestational diabetes mellitus in a Greek population. Hormones 2012, 11, 70–76. [Google Scholar] [PubMed]
- Li, C.; Qiao, B.; Zhan, Y.; Peng, W.; Chen, Z.J.; Sun, L.; Zhang, J.; Zhao, L.; Gao, Q. Association between genetic variations in MTNR1A and MTNR1B genes and gestational diabetes mellitus in Han Chinese women. Gynecol. Obstet. Invest. 2013, 76, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhang, R.; Wang, C.; Yu, W.; Lu, J.; Ma, X.; Wang, J.; Jiang, F.; Tang, S.; Bao, Y.; et al. Effects of GCK, GCKR, G6PC2 and MTNR1B variants on glucose metabolism and insulin secretion. PLoS ONE 2010, 5, e11761. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zheng, H.; Bei, J.X.; Sun, L.; Jia, W.H.; Li, T.; Zhang, F.; Seielstad, M.; Zeng, Y.X.; Zhang, X.; et al. Genetic structure of the Han Chinese population revealed by genome-wide SNP variation. Am. J. Hum. Genet. 2009, 85, 775–785. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Cases (n = 736) | Controls (n = 768) | Z/χ2 | p |
---|---|---|---|---|
Gender * | ||||
Male | 426 (57.88) | 324 (42.19) | 37.018 | <0.001 |
Female | 310 (42.12) | 444 (57.81) | ||
Age # | 52.50 (43–61) | 47.00 (39–57) | 6.212 | <0.001 |
FBG # | 7.04 (5.73, 9.21) | 5.19 (4.92, 5.50) | 24.350 | <0.001 |
BMI # (kg/m2) | 28.58 (25.37, 32.12) | 23.50 (21.43, 25.85) | 20.671 | <0.001 |
WC # (cm) | 93.50 (85.00, 108.00) | 80.50 (74.53, 87.70) | 20.442 | <0.001 |
SBP # (mmHg) | 128.00 (120.00, 138.00) | 121.50 (111.33, 134.67) | 7.011 | <0.001 |
DBP # (mmHg) | 82.00 (72.00, 90.00) | 77.00 (71.33, 85.33) | 6.147 | <0.001 |
TC # (mmol/L) | 4.87 (4.29, 5.59) | 4.30 (3.70, 4.91) | 12.398 | <0.001 |
TG # (mmol/L) | 1.59 (1.11, 2.37) | 1.30 (0.95, 1.88) | 6.652 | <0.001 |
HDL-C # (mmol/L) | 1.09 (0.96, 1.25) | 1.15 (0.99, 1.32) | −3.378 | <0.001 |
LDL-C # (mmol/L) | 3.03 (2.55, 3.69) | 2.40 (1.93, 2.90) | 16.713 | <0.001 |
Smoking * | ||||
Non-smoking | 536 (48.73) | 565 (51.27) | 0.124 | 0.725 |
Smoking | 20 (49.75) | 203 (50.25) | ||
alcohol consumption * | ||||
Non-drinking | 611 (47.36) | 679 (52.64) | 7.601 | 0.0058 |
Drinking | 121(57.62) | 89(42.38) |
SNP | Genotype | n for Genotype | p (G) * | Allele | n for Allele | p (A) * | p (HW) # | ||
---|---|---|---|---|---|---|---|---|---|
Case | Control | Case | Control | ||||||
rs151290 (KCNQ1) | AA/AC/CC | 71/358/294 | 107/364/287 | 0.037 | A/C | 500/946 | 578/938 | 0.045 | 0.6237 |
rs972283 (KLF14) | GG/AG/AA | 379/286/56 | 389/297/71 | 0.540 | G/A | 1044/398 | 1075/439 | 0.400 | 0.1942 |
rs780094 (GCKR) | GG/AG/AA | 194/343/185 | 186/348/225 | 0.204 | G/A | 731/713 | 720/798 | 0.082 | 0.0264 |
rs10830963 (MTNR1B) | CC/CG/GG | 243/347/134 | 280/350/129 | 0.387 | C/G | 833/615 | 910/608 | 0.181 | 0.2737 |
SNP | Genetic Model | Cases/Controls | OR (95% CI) | p | Adjusted OR (95% CI) * | Adjusted p * |
---|---|---|---|---|---|---|
rs151290 | Genotype | |||||
(KCNQ1) | AA | 71/107 | 1.000 | 1.000 | ||
AC | 358/364 | 1.482 (1.062–2.069) | 0.021 | 1.539 (1.015–2.332) | 0.042 | |
CC | 294/287 | 1.544 (1.097–2.172) | 0.013 | 1.641 (1.070–2.516) | 0.023 | |
Dominant model | ||||||
AA | 71/107 | 1.000 | ||||
AC + CC | 652/651 | 1.509 (1.097–2.077) | 0.011 | 1.582 (1.061–2.358) | 0.024 | |
Recessive model | ||||||
AA + AC | 429/471 | 1.000 | 1.000 | |||
CC | 294/287 | 1.125 (0.913–1.386) | 0.270 | 1.154 (0.893–1.491) | 0.275 | |
Allele | ||||||
A | 500/578 | 1.000 | ||||
C | 946/938 | 1.166 (1.004–1.355) | 0.045 | |||
rs972283 | Genotype | |||||
(KLF14) | GG | 379/389 | 1.000 | 1.000 | ||
AG | 286/297 | 0.988 (0.797–1.226) | 0.915 | 0.901 (0.692–1.173) | 0.438 | |
AA | 56/71 | 0.810 (0.555–1.181) | 0.273 | 0.734 (0.458–1.176) | 0.199 | |
Dominant model | ||||||
GG | 379/389 | 1.000 | 1.000 | |||
AG + AA | 342/368 | 0.954 (0.778–1.170) | 0.650 | 0.870 (0.677–1.118) | 0.275 | |
Recessive model | ||||||
GG + AG | 665/686 | 1.000 | 1.000 | |||
AA | 56/71 | 0.814 (0.564–1.173) | 0.270 | 0.768 (0.486–1.213) | 0.258 | |
Allele | ||||||
G | 1044/1075 | 1.000 | ||||
A | 398/439 | 0.934 (0.795–1.096) | 0.400 | |||
rs780094 | Genotype | |||||
(GCKR) | GG | 194/186 | 1.000 | 1.000 | ||
AG | 343/348 | 0.945 (0.736–1.214) | 0.658 | 1.090 (0.800–1.485) | 0.585 | |
AA | 185/225 | 0.788 (0.596–1.043) | 0.096 | 0.863 (0.610–1.221) | 0.404 | |
Dominant model | ||||||
GG | 194/186 | 1.000 | 1.000 | |||
AG + AA | 528/573 | 0.883 (0.700–1.116) | 0.298 | 1.001 (0.749–1.338) | 0.994 | |
Recessive model | ||||||
GG + AG | 537/534 | 1.000 | 1.000 | |||
AA | 185/225 | 0.818 (0.651–1.027) | 0.084 | 0.815 (0.615–1.079) | 0.153 | |
Allele | ||||||
G | 731/720 | 1.000 | ||||
A | 713/798 | 0.880 (0.762–1.017) | 0.082 | |||
rs10830963 | Genotype | |||||
(MTNR1B) | CC | 243/280 | 1.000 | 1.000 | ||
CG | 347/350 | 1.142 (0.910–1.433) | 0.251 | 1.026 (0.775–1.357) | 0.858 | |
GG | 134/129 | 1.197 (0.890–1.610) | 0.235 | 1.128 (0.788–1.615) | 0.510 | |
Dominant model | ||||||
CC | 243/280 | 1.000 | 1.000 | |||
CG + GG | 481/479 | 1.157 (0.935–1.432) | 0.181 | 1.054 (0.811–1.370) | 0.694 | |
Recessive model | ||||||
CC + CG | 590/630 | 1.000 | 1.000 | |||
GG | 134/129 | 1.109 (0.850–1.448) | 0.446 | 1.112 (0.807–1.532) | 0.517 | |
Allele | ||||||
C | 833/910 | 1.000 | ||||
G | 615/608 | 1.105 (0.955–1.279) | 0.181 |
SNP * | Genotype | SNP * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
rs10830963 (MTNR1B) | rs151290 (KCNQ1) | rs972283 (KLF14) | ||||||||
CC | CG | GG | AA | AC | CC | GG | AG | AA | ||
rs780094 (GCKR) | GG | 1 (Reference) | 1.113 (0.389–3.180) 0.842 | 2.347 (0.626–8.791) 0.206 | 1 (Reference) | 0.567 (0.193–1.671) 0.304 | 0.466 (0.157–1.382) 0.169 | 1 (Reference) | 1.044 (0.379–2.878) 0.933 | 1.822 (0.085–38.920) 0.701 |
AG | 1.170 (0.401–3.420) 0.774 | 0.655 (0.313–1.368) 0.260 | 0.392 (0.157–0.982) 0.046 | 1.170 (0.401–3.420) 0.774 | 0.976 (0.331–2.875) 0.965 | 1.153 (0.383–3.472) 0.800 | 1.170 (0.401–3.420) 0.774 | 1.004 (0.513–1.965) 0.991 | 3.393 (0.955–12.055) 0.059 | |
AA | 0.396 (0.115–1.362) 0.142 | 1.304 (0.569–2.986) 0.531 | 0.442 (0.156–1.249) 0.124 | 0.396 (0.115–1.362) 0.142 | 2.265 (0.657–7.812) 0.196 | 4.883 (1.366–17.464) 0.015 | 0.396 (0.115–1.362) 0.142 | 1.245 (0.583–2.659) 0.571 | 2.583 (0.672–9.934) 0.167 | |
rs151290 (KCNQ1) | AA | 1 (Reference) | 1.113 (0.389–3.180) 0.842 | 2.347 (0.626–8.791) 0.206 | - | - | - | - | - | - |
- | AC | 0.567 (0.193–1.671) 0.304 | 1.046 (0.400–2.738) 0.927 | 0.721 (0.217–2.396) 0.594 | - | - | - | - | - | - |
- | CC | 0.466 (0.157–1.382) 0.169 | 0.905 (0.336–2.438) 0.844 | 0.521 (0.151–1.797) 0.302 | - | - | - | - | - | - |
rs972283 (KLF14) | GG | 1 (Reference) | 1.113 (0.389–3.180) 0.842 | 2.347 (0.626–8.791) 0.206 | 1 (Reference) | 0.567 (0.193–1.671) 0.304 | 0.466 (0.157–1.382) 0.169 | - | - | - |
AG | 1.044 (0.379–2.878) 0.933 | 0.801 (0.437–1.467) 0.472 | 1.133 (0.512–2.508) 0.757 | 1.044 (0.379–2.878) 0.933 | 1.034 (0.426–2.510) 0.942 | 1.128 (0.452–2.814) 0.796 | - | - | - | |
AA | 1.822 (0.085–38.920) 0.701 | 1.940 (0.627–6.002) 0.250 | 1.986 (0.482–8.187) 0.343 | 1.822 (0.085–38.920) 0.701 | 0.204 (0.011–3.892) 0.291 | 0.222 (0.011–4.495) 0.327 | - | - | - |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, K.; Wang, J.; Li, L.; Zhai, Y.; Ren, Y.; You, H.; Wang, B.; Wu, X.; Li, J.; Liu, Z.; et al. Polymorphisms in Four Genes (KCNQ1 rs151290, KLF14 rs972283, GCKR rs780094 and MTNR1B rs10830963) and Their Correlation with Type 2 Diabetes Mellitus in Han Chinese in Henan Province, China. Int. J. Environ. Res. Public Health 2016, 13, 260. https://doi.org/10.3390/ijerph13030260
Gao K, Wang J, Li L, Zhai Y, Ren Y, You H, Wang B, Wu X, Li J, Liu Z, et al. Polymorphisms in Four Genes (KCNQ1 rs151290, KLF14 rs972283, GCKR rs780094 and MTNR1B rs10830963) and Their Correlation with Type 2 Diabetes Mellitus in Han Chinese in Henan Province, China. International Journal of Environmental Research and Public Health. 2016; 13(3):260. https://doi.org/10.3390/ijerph13030260
Chicago/Turabian StyleGao, Kaiping, Jinjin Wang, Linlin Li, Yujia Zhai, Yongcheng Ren, Haifei You, Bingyuan Wang, Xuli Wu, Jianna Li, Zichen Liu, and et al. 2016. "Polymorphisms in Four Genes (KCNQ1 rs151290, KLF14 rs972283, GCKR rs780094 and MTNR1B rs10830963) and Their Correlation with Type 2 Diabetes Mellitus in Han Chinese in Henan Province, China" International Journal of Environmental Research and Public Health 13, no. 3: 260. https://doi.org/10.3390/ijerph13030260
APA StyleGao, K., Wang, J., Li, L., Zhai, Y., Ren, Y., You, H., Wang, B., Wu, X., Li, J., Liu, Z., Li, X., Huang, Y., Luo, X. -P., Hu, D., Ohno, K., & Wang, C. (2016). Polymorphisms in Four Genes (KCNQ1 rs151290, KLF14 rs972283, GCKR rs780094 and MTNR1B rs10830963) and Their Correlation with Type 2 Diabetes Mellitus in Han Chinese in Henan Province, China. International Journal of Environmental Research and Public Health, 13(3), 260. https://doi.org/10.3390/ijerph13030260